CATALOGUE OF GENE SYMBOLS FOR WHEAT:  2003 Supplement

 

R.A. McIntosh1, K.M. Devos2, J. Dubcovsky3, C.F. Morris4 and W.J. Rogers5

 

1Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty, N.S.W., Australia, 2570.

2Departments of Crop and Soil Sciences, and Plant Biology, University of Georgia, Athens, GA 30602, U.S.A.

3Department of Agronomy and Range Science, University of California, Davis, CA 95616, U.S.A.

4Western Wheat Quality Laboratory, USDA-ARS, Washington State University, Pullman, WA 99164-6394, U.S.A.

5Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, C.C. 47, (7300) Azul, Argentina.’

The most recent edition of the Catalogue appeared in the Proceedings of the 9th International Wheat Genetics Symposium Vol. 5 (A.E. Slinkard ed., University Extension Press, University of Saskatchewan, Saskatoon, Canada).  A modified version is displayed on the GrainGenes Website: http://wheat.pw.usda.gov

The 1999, 2000, 2001 and 2002 Supplements are included in 1999, 2000, 2001 and 2002 Annual Wheat Newsletter, Wheat Information Service and are listed on the GrainGenes Website.  The present Supplement will be offered to editors/curators for similar listing.

Revisions

10. Laboratory Designators for DNA markers

aww

Langridge, P.

plangrid@waite.adelaide.edu.au

Department of Plant Science

Waite Campus*

University of Adelaide*

Glen Osmond

South Australia 5064

Australia

cfd

Bernard, M.

michel.Bernard@clermont.inra.fr

UMR Amélioration et Santé des plantes, INRA – UBP

63039 Clermont-Ferrand*, Cedex 2

France

bfc

Nomura, T.

thaidi@kais.kyoto-u.ac.jp

Biofunction Chemistry*

Division of Applied Life Sciences

Graduate School of Agriculture

Kyoto University

Kyoto 606-8502, Japan

 

iag

Wricke, G.

office@mbox.genetik.uni-hannover.de

Institut fur Angewandte Genetic*

Universitat Hannover

Herrenhauser Strasse 2

3000 Hannover 21

FRG

DuPw

Petra Wolters

petra.wolters@usa.dupont.com

DuPont Company*
P.O. Box 6104
Newark, DE 19714-6104
USA

whs

Mohler, V.

mohler@wzw.tum.de

Lehrstuhl für Pflanzenbau und Pflanzenzüchtung

Wissenschaftszentrum Weihenstephan*

Technische Universität München

Am Hogancher 2

85350 Freising

Germany

scu

Henry, R.J.

Centre for Plant Conservation Genetics

Southern Cross University*

P.O. Box 157

Lismore NSW 2480

Australia

 

 


Gross Morphology: Spike characteristics

1. Squarehead/spelt

Q. 

ma:

Fine mapping of the 20cM region possessing Q and delimited by deletions 5AL-7 and-23 is reported in {0324}.

 

5. Elongated glume

According to {0254} the loci of T. polonicum, T. petropavlovsky and T. isphanicum are allelic ('homoeoallelic') whereas other workers had claimed genes in the first two forms were not allelic.  Wang et al {0254} however concluded that loci bearing alleles for elongated glumes in T. turanicum and T. durum conv. falcatum were not part of the above series.

P1.

7A.

ma:

Xgwm260-7AS - 2.3cM - P1pol - 5.6cM - Xgwm1083-7AL {0254}; Xgwm890-7AS - 2.1cM - P1pet {0254}.

 

Awnedness

1.         Dominant Inhibitors

1.1. Hooded

Hd. Add at the end of ma: ‘Hd was mapped as a QTL with a peak on Xfba78-4A in {0309}.’.

 

1.2. Tipped 1

B1.    At the end of section add:  'The postulation of B1 in both CS and Courtot {0309} based on the phenotype of a CS deletion stock is not supported by genetic observations.'.

 

1.3. Tipped 2

B2. Add at the end of ma :B1 was mapped as a QTL with a peak on Xwmc182-6B {0309}.’.

 

DNA Markers

Group 1S

Amendments:

XgbxG746-1B.  Add ‘(1BL).’ in the last column.

Xutv1518-1A,B. Revise the first column to ‘Xutv1518-1A,B {9959}2, 1D {0360}1.’.

 

Add:

Xcsl106(NBS-LRR)1-1D [{0360}].

[rga5.2a {0360}].

Rga5.2.

(1DS).

Xcsl106(NBS-LRR)2-1D [{0135}].

[rga5.2b {0135}].

Rga5.2.

(1DS).

Xcsl106(NBS-LRR)3-1D [{0360}].

[rga5.2c {0360}].

Rga5.2.

(1DS).

Xiag95-1D {0360}.

 

IAG95.

 

Xunl11-1B {0373}.

 

UNL11.

 

Xunl12-1B {0373}.

 

UNL12.

 

Xunl13-1B {0373}.

 

UNL13.

 

Xunl14-1B {0373}.

 

UNL14.

 

Xunl15-1B {0373}.

 

UNL15

 

Xunl16-1B {0373}.

 

UNL16.

 

Xunl17-1B {0373}.

 

UNL17.

 

Xunl24-1B {0373}.

 

UNL24.

 

Xunl27-1B {0373}.

 

UNL27.

 

Xunl31-1B {0373}.

 

UNL31.

 

Xwhs2001-1D [{0370}].

[XaAXT/CAA-1D {0370}].

aACT/CAA-1 /aACT/CAA-2.

 

Xwmc49-1B {0348}.

 

WMC 49F/WMC 49R.

 

Xwmc51-1B {0348}.

 

WMC 51F/WMC 51R.

 

Xwmc329-1B,D {0348}.

 

WMC 329F/WMC 329R.

 

 

Group 1L

Amendments:

Xbcd200-1A,B. Add ‘(7A).’ in the last column.

Xbcd454-1A. Revise the first column to ‘Xbcd454-1A {1529}5, 1B {0354}.’.

Xbcd1495-1B. Revise the last column to ‘(6A,B,D).’.

Xgbx3581-1B. Revise the last column to ‘(2A, 4B).’.

XgbxG177-1D. Revise the first column to ‘XgbxG177-1A,B {0354}, 1D {9958}.’.

XgbxG557-1A. Add ‘(4A).’ in the last column.

Xwg180-1A. Revise the first column to ‘Xwg180-1A {280}5, 1B {0354}.’.

Xwg241-1A,B,D. Add ‘(6B, 7D.).’ in the last column.

 

Add:

Xcdo57-1A [{0354}].

[Xcdo57a-1A {9354}].

 

(2A, 5A,B,D, 7A,B,D).

XgbxG263-1B {0354}.

 

gbxG263.

 

XgbxG542-1A {0354}.

 

gbxG542.

(2A, 3D, 4A).

XgbxG597-1A {0354}.

 

gbxG597.

 

XgbxG746-1B {0354}.

 

 

(1BS).

Xwmc44-1B {0153,0348}.

 

WMC 44F/WMC 44R.

 

Xwmc156-1B {0348}.

 

WMC 156F/WMC 156R.

 

Xwmc216-1D {0348}.

 

WMC 216F/WMC 216R.

(7B).

Xwmc254-1A {0348}.

 

WMC 254F/WMC 254R.

(4B).

                               

Group 1

Amendments:

Xgbx3076-1A. Revise the first column to ‘Xgbx3076-1A {9958}, 1B {0354}.’

Xwmc44-1B. Delete (moved to 1L).

Xwmc120-1A {0153}. Add ‘(6B).’ in the last column.

 

Add:

TaMlo-A1,B1,D1 {0336}.

 

Mlo.

 

Note: Sequences from each of these genes were identical with those from T.urartu, Ae. speltoides and Ae. tauschii, respectively (0336).

Xabc310-1B [{0354}].

[Xabc310a-1B {0354}.].

ABC310.

(3B, 4A,5B, 7A,B).

Xcfd15-1A {0349}.

 

CFD 15F/CFD 15R.

 

Xcfd19-1D {0349}.

 

CFD 19F/CFD 19R.

(5B, 6D).

Xcfd20-1B {0349}.

 

CFD 20F/CFD 20R.

 

Xcfd21-1D {0349}.

 

CFD 21F/CFD 21R.

(7D).

Xcfd27-1D {0349}.

 

CFD 27F/CFD 27R.

 

Xcfd28-1D {0349}.

 

CFD 28F/CFD 28R.

 

Xcfd32-1D {0349}.

 

CFD 32F/CFD 32R.

 

Xcfd48-1B {0349}.

 

CFD 48F/CFD 48R.

 

Xcfd58-1D {0349}.

 

CFD 58F/CFD 58R.

 

Xcfd59-1B {0349}.

 

CFD 59F/CFD 59R.

(1D).

Xcfd59-1D {0349}.

 

CFD 59F/CFD 59R.

(1B).

Xcfd61-1D {0349}.

 

CFD 61F/CFD 61R.

 

Xcfd63-1D {0349}.

 

CFD 63F/CFD 63R.

 

Xcfd65-1B {0349}.

 

CFD 65F/CFD 65R.

(1D).

Xcfd65-1D {0349}.

 

CFD 65F/CFD 65R.

(1B).

Xcfd72-1D {0349}.

 

CFD 72F/CFD 72R.

 

Xcfd83-1D {0349}.

 

CFD 83F/CFD 83R.

 

XDuPw38-1A {0366}.

 

DUPW 38F/DUPW 38R.

 

Xgbx3321-1A,B [{0354}].

[Xgbx3321a-1A, Xgbx3321b-1B {0354}].

gbx3321.

(6A,B).

Xgwm325-1D [{0354}].

[Xgwm325b-1D {0354}].

WMS 325F/WMS 325R.

(6D).

Xscu2-1D [{0368}].

 

SFR002.B09 F/R.

 

Xscu4-1A,B,D [{0368}].

 

HWM004.H07 F/R.

 

Xscu7-1B [{0368}].

 

SFR007.D06 F/R.

 

Xscu19-1A,B,D [{0368}].

 

HWM019cc.05 F/R.

 

XscuTAE-1D [{0368}].

 

TAE F/TAE R.

 

Xunl18-1B {0373}.

 

UNL18.

 

Xunl19-1B {0373}.

 

UNL19.

 

Xunl20-1B {0373}.

 

UNL20.

 

Xunl26-1B {0373}.

 

UNL26.

 

Xunl29-1B {0373}.

 

UNL29.

 

Xunl30-1B {0373}.

 

UNL30.

 

Xunl32-1B {0373}.

 

UNL32.

 

Xwmc106-1A {0366}.

 

WMC 106F/WMC 106R.

 

 

Group 2S

Amendments:

Xbcd102-2D. Revise the last column to ‘(5B, 6A,B).’.

Xcdo57-2A. Revise the last column to ‘(1A, 5A,B,D, 7A,B,D).’.

Xgbx3832-2A. Revise the last column to ‘(2DL, 4A, 5A).’.

XgbxG35-2B. Revise the first column to ‘XgbxG35-2B.1 [{9958,0354}].’, revise the second column to ‘[XgbxG035c-2B {9958}, XgbxG035a-2B {0354}].’ and revise the last column to ‘(2BL, 4A, 7B).’.

XgbxG36-2A. Revise the last column to ‘(4A, 6A, 7B).’.

XgbxG218-2D. Revise the last column to ‘(7A,B,D).’.

XgbxG281-2A. Revise the first column to ‘XgbxG281-2A {9958}, 2B {0354}.’.

XgbxGx71-2B. Add ‘(3B).’ in the last column.

XgbxR739-2B. Revise the first column to ‘XgbxR739-2B {9958}, 2D {0354}.’.

Xwmc25-2B. Revise the first column to ‘Xwmc25-2B [{0242}], 2D {0153,0348}’ and remove ‘(2D).’ from the last column.

column.

 

Add:

Xbcd438-2D {0354}.

 

BCD438.

 

Xbcd1069-2D {0354}.

 

BCD1069.

 

Xbcd1086-2B [{0074}],{0354}.

[Xbcd1086b-2B {0074}].

BCD1086.

 

Xfba127-2B [{0354}].

[Xfba127a-2B {0354}].

FBA127.

(3A, 5B, 6B, 7A).

Xfbb67-2A {0354}.

 

FBB67.

(4B, 7AS, 7BL).

Xgbx3581-2A {0354}.

 

gbx3581.

(1B, 4B).

Xwmc166-2D {0348}.

 

WMC 166F/WMC 166R.

(7B).

Xwmc177-2A {0348}

 

WMC 177F/WMC 177R.

 

Xwmc213-2B {0348}.

 

WMC 213F/WMC 213R.

 

Xwmc243-2B {0348}.

 

WMC 243F/WMC 243R.

 

Xwmc257-2B {0348}.

 

WMC 258F/WMC 258R.

 

Xwmc265-2B {0348}.

 

WMC 265F/WMC 265R.

 

Xwmc272-2B {0348}.

 

WMC 272F/WMC 272R.

 

 

Group 2L

Amendments:

Xbcd135-2B,D. Revise the first column to ‘Xbcd135-2A {0354}, 2B {1060}, 2D {864}.’.

Xgbx3832-2D. Revise the last column to ‘(2AS, 4A, 5A).’.

 

Add:

Xgbx3110-2A [{0354}].

[Xgbx3110a,b-2A {0354}].

gbx3110.

(7A,B).

Xgwm82-2A {0354}.

 

WMS 82F/WMS 82R.

(6A).

Xwmc167-2D {0153,0348}.

 

WMC 167F/WMC 167R.

 

Xwmc175-2B,D {0348}.

 

WMC 175F/WMC 175R.

 

Xwmc181-2A,D {0348}.

 

WMC 181F/WMC 181R.

 

Xwmc261-2A {0348}.

 

WMC 261F/WMC 261R.

 

 

Group 2

Amendments:

Xbcd1086-2B. Delete (moved to 2S).

XgbxG542-2A. Revise the last column to ‘(1A, 3D, 4A).’.

XgbxR635-2D. Revise the first column to ‘XgbxR635-2A {0354}, 2D {9958}.’.

Xwmc25-2D. Delete (moved to 2S).

Xwmc167-2D. Delete (moved to 2L).

 

Add:

Xcfd2-2A {0349}.

 

CFD 2F/CFD 2R.

(4A, 5B).

Xcfd11-2B {0349}.

 

CFD 11F/CFD 11R.

(2D).

Xcfd11-2D {0349}.

 

CFD 11F/CFD 11R.

(2B).

Xcfd17-2D {0349}.

 

CFD 17F/CFD 17R.

 

Xcfd25-2B {0349}.

 

CFD 25F/CFD 25R.

 

Xcfd36-2D {0349}.

 

CFD 36F/CFD 36R.

 

Xcfd43-2D {0349}.

 

CFD 43F/CFD 43R.

 

Xcfd44-2D {0349}.

 

CFD 44F/CFD 44R.

 

Xcfd50-2D {0349}.

 

CFD 50F/CFD 50R.

 

Xcfd51-2D {0349}.

 

CFD 51F/CFD 51R.

 

Xcfd53-2D {0349}.

 

CFD 53F/CFD 53R.

 

Xcfd56-2D {0349}.

 

CFD 56F/CFD 56R.

 

Xcfd62-2D {0349}.

 

CFD 62F/CFD 62R.

(7A).

Xcfd73-2B {0349}.

 

CFD 73F/CFD 73R.

 

Xcfd77-2D {0349}.

 

CFD 77F/CFD 77R.

 

XDuPw207-2B {0366}

 

DUPW 207F/DUPW 207R.

 

XDuPw210-2A {0366}.

 

DUPW 210F/DUPW 210R.

 

XgbxG35-2B.2 [{0354}].

[XgbxG035b-2B {0354}].

gbxG035.

(2BS, 4A, 7B).

Xscu6-2A,B,D [{0368}].

 

CSB006.H05 F/R.

 

 

Group 3S

Amendments:

Xbcd15-3A. Revise the last column to ‘(4A,D, 4B,D).’.

Xfba127-3A. Revise the last column to ‘(2B, 5B, 6B, 7A).’.

Xwmc43-3B. Revise the first column to ‘Xwmc43-3B [{0242}],{0348}, 3D {0348}.’.

 

Add:

Xaww1(Msh7)-3A,B,D [{0345}].

[TaMSH7-3A,B,D {0345}].

TaMSH7.

 

XgbxGx71-3B [{0354}].

[XgbxGx71d-3B {0354}].

gbxGx71.

(2B).

 

Group 3L

Amendments:

Xfbb283-3B. Revise the last column to ‘(6A, 6D).’.

Xgbx3864-3D. Revise the first column to ‘Xgbx3864-3B [{0354}], 3D {9958}.’ and revise the second column to ‘[Xgbx3864a-3B {0354}, Xgbx3864a-3D {9958}].’.

XgbxG65-3B. Revise the first column to ‘XgbxG65-3B {9958}, 3D [{0354}].’ and add ‘[XgbxG065-3D {0354}].’ in the second column.

XgbxG305-3D. Revise the first column to ‘XgbxG305-3A {0354}, 3D {9958}.’.

XgbxG542-3D. Revise the last column to ‘(1A, 2A, 4A).’.

XgbxG773-3B. Revise the first column to ‘XgbxG773-3A {0354}, 3B {9958}.’.

 

Add:

XgbxG147-3D {0354}.

 

gbxG147.

(4B).

XgbxG541-3D {0354}.

 

gbxG541.

(3B, 5B).

Xwmc153-3A {0348}.

 

WMC 153F/WMC 153R.

 

Xwmc264-3A {0348}.

 

WMC 264F/WMC 264R.

 

Xwmc322-3B {0348}.

 

WMC 322F/WMC 322R.

 

Xwmc326-3B {0348}.

 

WMC 326F/WMC 326R.

 

 

Group 3

Amendments:

Xwg178-3D. Revise the first column to ‘Xwg178-3B {0354}, 3D {9926}4.’

 

Add:

Xabc158-3D {0354}.

 

ABC158.

(7A,B).

Xabc310-3B {0354}.

 

ABC310.

(1B, 4A,5B, 7A,B).

Xcfd4-3B {0349}.

 

CFD 4F/CFD 4R.

 

Xcfd9-3D {0349}.

 

CFD 9F/CFD 9R.

 

Xcfd34-3D {0349}.

 

CFD 34F/CFD 34R.

 

Xcfd35-3D {0349}.

 

CFD 35F/CFD 35R.

 

Xcfd55-3D {0349}.

 

CFD 55F/CFD 55R.

 

Xcfd64-3D {0349}.

 

CFD 64F/CFD 64R.

 

Xcfd70-3D {0349}.

 

CFD 70F/CFD 70R.

 

Xcfd79-3B {0349}.

 

CFD 79F/CFD 79R.

(3D).

Xcfd79-3D {0349}.

 

CFD 79F/CFD 79R.

(3B).

XDuPw173-3D {0366}.

 

DUPW 173F/DUPW 173R.

 

XDuPw227-3A {0366}.

 

DUPW 227F/DUPW 227R.

 

Xgbx3793-3B {0354}.

 

gbx3793.

 

XgbxG83-3D [{0354}].

[XgbxG083b-3D {0354}].

gbxG083.

(4D, 5D, 6B).

XgbxG276-3B [{0354}].

[XgbxG276a-3B {0354}].

gbxG276.

(5A,4B).

XgbxG541-3B [{0354}].

[XgbxG541a-3B {0354}].

gbxG541.

(3D, 5B).

 

Group 4S (4AL:4BS:4DS)

Amendments:

Xcdo1338-4A. Revise the first column to ‘Xcdo1338-4A {1008}, 4B {0354}.’.

Xcn110(Lpx)-4B. Revise the first column to ‘Xcn110(Lpx-1)-4B [{0269}]2.’.

 

Add:

XcsME1-4B {0379}.

 

csME1.

 

Xksu919(Lpx-1)-4A [{0091}].

[Lpx-4A {0091}].

6C02E12 {0094}.

 

Note: KSU919 cross-hybridizes to the Xksu919(Lpx-2)-5A,B loci.

Xwmc52-4D {0348}.

 

WMC 52F/WMC 52R.

 

Xwmc238-4B {0348}.

 

WMC 238F/WMC 238R.

 

 

Group 4L (4AS:4BL:4DL)

Amendments:

XgbxG147-4B. Add ‘(3D).’ in the last column.

XgbxR866-4A. Revise the first column to ‘XgbxR866-4A {9958}, 4B [{0354}].’, add ‘[XgbxR866c-4B {0354}].’ in the second column and add ‘(5A).’ in the last column.

 

Add:

Xbcd15-4A,D [{0354}].

[Xbcd015c,a-3A,D {0354}].

BCD15.

(3A, 4B,D).

XgbxG83-4D [{0354}].

[XgbxG083a-4D {0354}].

gbxG083.

(3D, 5D, 6B).

It is not known whether XgbxG83-4D belongs to Group 4AS:4BL:4DL or 5AL:4BL:4DL.

Xwmc96-4A {0348}.

 

WMC 96F/WMC 96R.

(5A).

Xwmc173-4A {0348}.

 

WMC 173F/WMC 173R.

 

Xwmc331-4D {0348}.

 

WMC 331F/WMC 331R.

 

 

Group 5AL:4BL:4DL

Amendments:

Xbcd15-4B,D. Revise the last column to ‘(3A, 4A,D).’.

Xfbb67-4B. Revise the last column to ‘(2A, 7AS, 7BL).’.

Xgbx3581-4B. Revise the last column to ‘(1B, 2A).’.

XgbxG276-4B. Revise the first column to ‘XgbxG276-5A [{0354}], 4B {9958}.’, add ‘[XgbxG276a,b-5A {0354}].’ in the second column and add ‘(3B).’ in the last column.

XgbxG367-4D. Revise the last column to ‘(4B, 6A, 6B, 7A).’.

 

Group 4

Amendments:

Xwg180-4B. Revise the last columnt to ‘(1A,B, 7BS,L).’.

Xwmc254-4B. Add ‘(1A).’ in the last column.

 

Add:

Xbfc9v(cyp71C)-4A, B, D [{0371}].

[Cyp71C9v-4A,B,D {0371}].

CYP71C9v {0371}.

 

Xcfd2-4A {0349}.

 

CFD 2F/CFD 2R.

(2A, 5B).

Xcfd16-4A {0349}.

 

CFD 16F/CFD 16R.

 

Xcfd22-4B {0349}.

 

CFD 22F/CFD 22R.

 

Xcfd23-4D {0349}.

 

CFD 23F/CFD 23R.

 

Xcfd24-4A {0349}.

 

CFD 24F/CFD 24R.

 

Xcfd39-4B {0349}.

 

CFD 39F/CFD 39R.

 

Xcfd54-4B {0349}.

 

CFD 54F/CFD 54R.

 

Xcfd71-4A {0349}.

 

CFD 71F/CFD 71R.

(4D).

Xcfd71-4D {0349}.

 

CFD 71F/CFD 71R.

(4A).

Xcfd84-4D {0349}.

 

CFD 84F/CFD 84R.

 

XDuPw4-4A {0366}.

 

DUPW 4F/DUPW 4R.

 

XDuPw23-4B {0366}.

 

DUPW 23F/DUPW 23R.

 

XDuPw43-4B {0366}.

 

DUPW 43F/DUPW 43R.

 

XDuPw108-4A {0366}.

 

DUPW 108F/DUPW 108R.

 

XDuPw238-4D {0366}.

 

DUPW 238F/DUPW 238R.

 

Xfba248-4B [{0354}].

[Xfba248b-4B {0354}].

FBA248.

(7A).

XgbxG36-4A [{0354}].

[XgbxG036-4A {0354}].

gbxG036.

(2A, 6A, 7B).

XgbxG102-4D {0354}.

 

gbxG102.

 

XgbxG328-4D {0354}.

 

gbxG328.

 

XgbxG367-4B [{0354}].

[XgbxG367a-4B {0354}].

gbxG367.

(4D, 6A, 6B, 7A).

XgbxG542-4A {0354}.

 

gbxG542.

(1A, 2A, 3D).

XgbxG557-4A {0354}.

 

gbxG557.

(1A).

Xscu6465-4A [{0368}].

 

PSR6465 F/PSR6465 R.

 

XSut1-4A,B,D {0361}.

 

TaSUT1D

(4A,B,D).

 

 

 

 

 

Group 5S

Amendments:

Xcdo1338-5A,B,D. Revise the last column to ‘(4A,B).’.

XgbxG625-5A. Revise the first column to ‘XgbxG625-5A {9958}, 5B [{0354}].’ and add ‘[XgbxG625b-5B {0354}].’ in the second column.

 

Group 5L

Amendments:

Xbcd454-5A. Revise the last column to ‘(1A,B).’.

Xcdo57-5A,B,D. Revise the last column to ‘(1A, 2A, 7A,B,D).’.

Xcdo412-5A,B,D. Add ‘(7B).’ in the last column.

Xcn111(Lpx)-5B. Revise the first column to ‘Xcn111(Lpx-2)-5B [{0269}]2.’.

Xfba127-5B. Revise the last column to ‘(2B, 3A, 6B, 7A).’.

XgbxG70-5D. Revise the first column to ‘XgbxG70-5A [{0354}], 5D {9958}.’ and the second column to ‘[XgbxG070a-5A {0354}, XgbxG070-5D {9958}].’.

XgbxG134-5D. Revise the first column to ‘XgbxG134-5B {0354}, 5D {9958}.’.

XgbxG541-5B. Add ‘(3B, 3D).’ in the last column.

XgbxR33-5A. Revise the first column to ‘XgbxR33-5A [{9958}], 5B [{0354}].’ and revise the second column to ‘[XgbxR033-5A {9958}, XgbxR033-5B {0354}].’.

XgbxR678-5D. Revise the first column to ‘XgbxR678-5B {0354}, 5D {9958}.’.

Xksu919(Lpx)-5A,B. Revise the first column to ‘Xksu919(Lpx-2)-5A,B [{0091}], 5D [{0148}].’, revise the second column to [Lpx-5A,B {0091}, 5D {0148}].’, delete ‘(4A).’ from the last column and add ‘Note: The probe KSU919 cross-hybridizes to the Xksu919(Lpx-1)-4A locus.’.

 

Add:

Xbcd102-5B {0354}.

 

BCD102.

(2D, 6A,B).

Xcdo475-5B {0354}.

 

CDO475.

(4A,7A,D).

Xcfd7-5D [{0354}].

[Xcfd4A6-5D {0354}].

CFD 7F/CFD 7R.

 

Xfba340-5D [{0354}].

[Xfba340b-5D {0354}].

FBA340.

(6B, 7A).

It is not known whether Xfba340-5D belongs to group 5L or 4AL:5BL:5DL.

Xgbx3832-5A [{0354}].

[Xgbx3832c-5A {0354}].

gbx3832.

(2A, 2D, 4A).

XgbxG83-5D [{0354}].

[XgbxG083c-5D {0354}].

gbxG083.

(3D, 4D, 6B).

Xgwm44-5A {0354}.

 

WMS 44F/WMS 44R.

(7D).

Xocs(CK2a)-5A,B,D [{0369}].

 

tck2a.

 

Xwmc97-5D {0348}.

 

WMC 97F/WMC 97R.

 

Xwmc215-5A {0348}.

 

WMC 215F/WMC 215R.

 

Xwmc327-5A {0348}.

 

WMC 327F/WMC 327R.

 

 

4AL:5BL:5DL

Amendments:

Xabc310-4A,5B. Revise the last column to ‘(1B, 3B, 7A,B).’.

 

Group 5

Amendments:

Xbcd135-5D. Revise the last column to ‘(2A,B,D, 7A,4A).’.

Xwmc96-5A.  Add ‘(4A).’ in the last column.

 

Add:

Xbfc6(cyp71C)-5A, B, D [{0371}].

[Cyp71C6-5A,B,D {0371}].

CYP71C6.

 

Xbfc7v2(cyp71C)-5A, B, D [{0371}].

[Cyp71C7v2-5A,B,D {0371}].

CYP71C7v2.

 

Xbfc8v2(cyp71C)-5A, B, D [{0371}].

[Cyp71C8v2-5A,B,D {0371}].

CYP71C8v2

 

Xcfd2-2A {0349}.

 

CFD 2F/CFD 2R.

(4A, 5B).

Xcfd3-5D {0349}.

 

CFD 3F/CFD 3R.

 

Xcfd8-5D {0349}.

 

CFD 8F/CFD 8R.

 

Xcfd10-5D {0349}.

 

CFD 10F/CFD 10R.

 

Xcfd12-5D {0349}.

 

CFD 12F/CFD 12R.

 

Xcfd18-5D {0349}.

 

CFD 18F/CFD 18R.

 

Xcfd19-5B {0349}.

 

CFD 19F/CFD 19R.

(1D, 6D).

Xcfd26-5D {0349}.

 

CFD 26F/CFD 26R.

 

Xcfd29-5D {0349}.

 

CFD 29F/CFD 29R.

 

Xcfd40-5D {0349}.

 

CFD 40F/CFD 40R.

 

Xcfd52-5D {0349}.

 

CFD 52F/CFD 52R.

 

Xcfd57-5D {0349}.

 

CFD 57F/CFD 57R.

 

Xcfd67-5D {0349}.

 

CFD 67F/CFD 67R.

 

Xcfd78-5D {0349}.

 

CFD 78F/CFD 78R.

 

Xcfd81-5D {0349}.

 

CFD 81F/CFD 81R.

 

XDuPw115-5B {0366}.

 

DUPW 115F/DUPW 115R.

 

XDuPw205-5B {0366}.

 

DUPW 205F/DUPW 205R.

 

XgbxR866-5A [{0354}].

[XgbxR866-5A {0354}].

gbxR866.

(4A,B).

Xscu6394-5D [{0368}].

 

PSR6394 F/PSR6394 R.

 

Xwmc27-5B {0348}.

 

WMC 27F/WMC 27R.

 

 

Group 6S

Amendments:

Xabg466-6A,D. Revise the first column to ‘Xabg466-6A {282}3, 6B {0351}1, 6D {900}1.’.

Xbcd1383-6B. Revise the first column to ‘Xbcd1383-6B {900}, 6D {0351}.’.

Xbcd1495-6B. Revise the first column to ‘Xbcd1495-6A,B,D {0351}, 6B {865}.’.

Xbcd1882-6B. Revise the first column to ‘Xbcd1882-6A,B,D {0351}, 6B {865}.’.

Xcdo476-6A,B. Revise the first column to ‘Xcdo476-6A,B {900}, 6D {0351}.’.

Xcdo524-6B. Revise the first column to ‘Xcdo524-6A,B,D {0351}, 6B {900}.’.

Xcdo1380-6B. Revise the first column to ‘Xcdo1380-6A {0351}, 6B {9927}2,{0351}.’ and add ‘(6BL).’ in the last column.

Xfba148-6A,D. Revise the first column to ‘Xfba148-6A {900}, 6B {0351}, 6D {0081}.’.

Xfba399-6B. Revise the first column to ‘Xfba399-6A,B,D {0351}, 6B {900}.’.

Xfbb194-6A. Revise the first column to ‘Xfbb194-6A {900}, 6D {0351}.’.

Xgbx3165-6B,D. Revise the first column to ‘Xgbx3165-6A [{0354}], 6B,D [{9958}].’ and revise the second column to ‘[Xgbx3165a-6A {0354}, Xgbx3165a,b-6B,D {9958}].’.

XgbxG36-6A. Revise the last column to ‘(2A, 4A, 7B).’.

XgbxG83-6B. Add ‘(3D, 4D, 5D).’ in the last column.

XgbxR593-6A. Revise the first column to ‘XgbxR593-6A {9958}, 6B {0354}.’.

Xgwm82-6A. Add ‘(2A).’ in the last column.

XksuI28-6B,D. Revise the first column to ‘XksuI28-6A {0351}1, 6B {444,860}1, 6D {448}4, {444}1.’.

Xmwg59-6A,B. Revise the first column to ‘Xmwg59-6A,B {9926}2,{0351}1, 6D {0351}1.’.

Xmwg887-6A.1. Revise the first column to ‘Xmwg887-6A.1 {9927}2,[{0351}]1, 6D {0351}1.’ and the second column to ‘[Xmwg887-6A {0351}].’.

Xmwg916-6A,D. Revise the first column to ‘Xmwg916-6A {9927}2,{0351}1, 6B {0351}1, 6D {900}1.’.

Xmwg966-6A,B. Revise the first column to ‘Xwmg966-6A {9927}2, 6B {0081}1, 6D {0351}1.’.  

Xpsr962-6B,D. Revise the first column to ‘Xpsr962-6A {0351}, 6B,D {598}.’.

Xtam60-6A,B. Revise the first column to ‘Xtam60-6A {187}2,{0351}1, 6B {187}2, {245}1, 6D {0351}.’.

 

Add:

Xfba340-6B [{0354}].

[Xfba340b-6B {0354}].

FBA340.

(5D, 7A).

Xfbb283-6D {0351}.

 

FBB283.

(3B, 6AL).

XgbxG367-6B [{0354}].

[XgbxG367b-6B {0354}].

gbxG367.

(4B, 4D, 6BL, 7A).

XksuM95-6A,B,D {0351}.

 

pTtksuM95.

 

Xmwg2218-6B,D {0351}.

 

MWG2218.

 

Xwg241-6B [{0354]].

[Xwg241d-6B {0354}].

WG241.

(1A,B,D, 7D).

Xwmc95-6B {0248}.

 

WMC 95F/WMC 95R.

 

Xwmc105-6B {0348}.

 

WMC 105F/WMC 105R.

 

 

Group 6L

Amendments:

Xbcd102-6A,B. Revise the last column to ‘(2D, 5A).’.

Xcdo1380-6B. Add ‘(6AS,BS).’ in the last column.

Xfba127-6B. Revise the last column to ‘(2B, 3A, 5B, 7A).’.

Xfbb283-6B. Revise the last column to ‘(3B, 6DS).’.

Xgbx3864-6A. Revise the last column to ‘(3B,D).’.

Xgbx3317-6D. Revise the first column to ‘Xgbx3317-6A {0354}, 6D {9958}.’.

Xgbx4071-6A. Revise the first column to ‘Xgbx4071-6A {9958}, 6D [{0354}].’ and add ‘[Xgbx4071a-6D {0354}].’ in the second column.

Xmwg887-6A.2. Revise the last column to ‘(6AS,DS).’.

 

Add:

XgbxG367-6A [{0354}].

[XgbxG367b-6A {0354}].

gbxG367.

(4B, 4D, 6BS, 7A).

Xgwm494-6A {9929},[{0354}]..

[Xgwm494a,b-6A {0354}].

WMS 494F/WMS 494R.

 

Xwmc182-6B {0348}.

 

WMC 182F/WMC 182R.

 

 

Group 6

Amendments:

Xcdo1380-6B. Add ‘(6AS,BS, 6BL).’ in the last column.

Xgbx3321-6A,B. Add ‘(1A,B).’ in the last column.

XgbxR4-6A. Revise the first column to ‘XgbxR4-6A [{9958}], 6B [{0354}].’ and revise the second column to ‘[XgbxR004-6A {9958}, XgbxR004-6B {0354}].’.

Xgwm325-6D. Add ‘(1D).’ in the last column.

Xgwm494-6A. Delete (moved to 6L).

 

Add:

Xcfd1-6A {0349}.

 

CFD 1F/CFD 1R.

 

Xcfd5-6D {0349}.

 

CFD 5F/CFD 5R.

 

Xcfd13-6B {0349}.

 

CFD 13F/CFD 13R.

 

Xcfd19-6D {0349}.

 

CFD 19F/CFD 19R.

(1D, 5B).

Xcfd30-6A {0349}.

 

CFD 30F/CFD 30R.

 

Xcfd33-6D {0349}.

 

CFD 33F/CFD 33R.

 

Xcfd37-6D {0349}.

 

CFD 37F/CFD 37R.

 

Xcfd38-6D {0349}.

 

CFD 38F/CFD 38R.

 

Xcfd42-6D {0349}.

 

CFD 42F/CFD 42R.

 

Xcfd45-6D {0349}.

 

CFD 45F/CFD 45R.

 

Xcfd47-6D {0349}.

 

CFD 47F/CFD 47R.

 

Xcfd49-6D {0349}.

 

CFD 49F/CFD 49R.

 

Xcfd60-6D {0349}.

 

CFD 60F/CFD 60R.

 

Xcfd75-6D {0349}.

 

CFD 75F/CFD 75R.

 

Xcfd76-6D {0349}.

 

CFD 76F/CFD 76R.

 

Xcfd80-6D {0349}.

 

CFD 80F/CFD 80R.

 

Xcfd82-6A {0349}.

 

CFD 82F/CFD 82R.

 

XDuPw167-6A {0366}.

 

DUPW 167F/DUPW 167R.

 

XDuPw216-6B {0366}.

 

DUPW 216F/DUPW 216R.

 

XDuPw217-6B {0366}.

 

DUPW 217F/DUPW 217R.

 

Xscu1-6D [{0368}].

 

HWM001.F10 F/R.

 

Xscu4-6D [{0368}].

 

HWM004.B10 F/R.

 

 

Group 7S

Amendments:

Xabc158-7A,B. Add ‘(3D}.’ in the last column.

Xcdo57-7A,B,D. Revise the last column to ‘(1A, 2A, 5A,B,D).’.

Xfba248-7A. Add ‘(4B).’ in the last column.

Xfba340-7A. Add ‘(5D, 6B).’ in the last column.

Xgbx3110-7B. Revise the first column to ‘Xgbx3110-7A [{0354}], 7B {9958}.’, add ‘[Xgbx3110b-7A {0354}]’ in the second column, and add ‘(2A).’ in the last column.

XgbxG367-7A. Revise the last column to ‘(4B, 4D, 6A, 6B).’.

Xgwm44-7D. Add ‘(5A).’ in the last column.

Xwg180-7B. Revise the last column to ‘(1A,B, 4B, 7BL).’.

 

Add:

Xbcd130-7B {0354}.

 

BCD130.

(4A,7A,D).

 

7AS:4AL:7DS

Amendments:

Xbcd130-7A,4A,7D. Add ‘(7B).’ in the last column.

Xbcd135-7A,4A. Revise the last column to ‘(2A,B,D, 5D).’.

Xcdo475-7A,4A,7D. Add ‘(5B).’ in the last column.

Xfba109-7A. Revise the first column to ‘Xfba109-7A {1059}, 4A {0354}.’.

Xfbb67-7A. Revise the last column to ‘(2A, 4B, 7BL).’.

Xfbb194-4A. Revise the last column to ‘(6A,D).’.

Xgbx3832-4A. Revise the last column to ‘(2A, 2D, 5A).’.

XgbxG141-4A. Add ‘(7B).’ in the last column.

Xksu919(Lpx)-4A. Delete (modified and moved to 4AL:4BS:4DS).

Xwg834-7A,D. Revise the first column to ‘Xwg834-4A {0354}, 7A,D {553}.’.

 

Add:

Xbcd200-7A {0354}.

 

BCD200.

(1A,B).

Xwmc168-7A {0348}.

 

WMC 168F/WMC 168R.

 

Xwmc232-4A {0348}.

 

WMC 232F/WMC 232R.

 

 

Group 7L

Amendments:

Xabc310-7A,B. Revise the last column to ‘(1B, 3B, 4A,5B).’.

Xcdo347-7A. Revise the first column to ‘Xcdo347-7A {1059}, 7D [{0354}].’ and revise the second column to ‘[Xcdo347a-7D {0354}].’.

Xfba127-7A. Revise the last column to ‘(2B, 3A, 5B, 6B).’.

Xfbb67-7B. Revise the last column to ‘(2A, 4B, 7AS).’.

Xgbx4046-7B. Revise the first column to ‘Xgbx4046-7A {0354}, 7B {9958}.’.

XgbxG218-7A,B. Revise the first column to ‘XgbxG218-7A,B [{9958}], 7D [{0354}].’ and revise the second column to ‘[XgbxG218c,a-7A,B {9958}, XgbxG218b-7D {0354}].’.

XgbxR35-7A. Revise the first column to ‘XgbxR35-7A [{9958}], 7B,D [{0354}].’ and revise the second column to ‘[XgbxR035b-7A {9958}, XgbxR035b,a-7B,D {0354}].’.

XgbxR138-7B. Revise the first column to ‘XgbxR138-7A {9958}, 7B,D [{0354}].’ and add ‘[XgbxR138a,b-7B {0354}].’ in the second column.

Xutv1518-7A. Revise the last column to ‘(1A,B,D).’.

Xwg180-7B. Revise the last column to ‘(1A,B, 4B, 7BS).’.

Xwg514-7B. Revise the first column to ‘Xwg514-7A {0354}, 7B {1059}.’.

 

Add:

Xcdo412-7B {0354}.

 

CDO412.

(5A,B,D).

Xcnl1-7B [{0354}].

[XPDAC01-7B {0354}].

CNL 1F/CNL 1R.

 

Xcnl2-7B [{0354}].

[XBDAC14-7B {0354}].

CNL 2F/CNL 2R.

 

XgbxG36-7B [{0354}].

[XgbxG026a-7B {0354}].

gbxG036.

(2A, 4A, 6A).

XgbxG141-7B {0354}.

 

gbxG141.

(4A).

XgbxR570-7D [{0354}].

[XgbxR570b-7D {0354}].

gbxR570.

(5B).

Xpur1-7A [{0323}].

[STS637-7A {0323}].

STS638-L/STS638-R {570}.

 

Xrgc607-7A [{0323}].

[C607-7A {0323}].

RGC607.

 

Xrgs11239-7A [{0323}].

[S11239-7A {0323}].

RGS11239.

 

Xrz884-7A [{0323}].

[RZ884-7A {0323}].

RZ884.

 

Xsfr325-7A [{0323}].

[325D4L-7A {0323}].

325D4L.

 

Xwg241-D [{0354}].

[Xwg241a-7D {0354}].

WG241.

(1A,B,D, 6B).

Xwhs178-7A [{0323}].

[WHS178-7A {0323}].

WHS178.

 

Xwmc94-7D {0242,0348}.

[Xwmc094-7D {0242}].

WMC 94F/WMC 94R.

 

Xwmc166-7B {0348}.

 

WMC 166F/WMC 166R.

(2D).

Xwmc273-7A {0348}.

 

WMC 273F/WMC 273R.

 

Xwmc276-7B {0348}.

 

WMC 276F/WMC 276R.

 

 

Group 7

Amendments:

XgbxG161-7D. Revise the first column to ‘XgbxG161-7B {0354}, 7D {9958}.’ and add ‘{XgbxG161b-7B {0354}].’ in the second column.

XgbxG732-7A. Revise the first column to ‘XgbxG732-7A {9958}, 7B {0354}.’.

Xwmc94-7D. Delete (moved to 7L).

Xwmc216-7B. Add ‘(1D).’ to the last column.

Add:

Xcfd6-7A {0349}.

 

CFD 6F/CFD 6R.

 

Xcfd14-7D {0349}.

 

CFD 14F/CFD 14R.

 

Xcfd21-7D {0349}.

 

CFD 21F/CFD 21R.

(1D).

Xcfd31-7D {0349}.

 

CFD 31F/CFD 31R.

 

Xcfd41-7D {0349}.

 

CFD 41F/CFD 41R.

 

Xcfd46-7D {0349}.

 

CFD 46F/CFD 46R.

 

Xcfd62-7A {0349}.

 

CFD 62F/CFD 62R.

(2D).

Xcfd66-7D {0349}.

 

CFD 66F/CFD 66R.

 

Xcfd68-7D {0349}.

 

CFD 68F/CFD 68R.

 

Xcfd69-7D {0349}.

 

CFD 69F/CFD 69R.

 

Xcfd74-7B {0349}.

 

CFD 74F/CFD 74R.

 

XDuPw254-7A {0366}.

 

DUPW 254F/DUPW 254R.

 

XDuPw398-7B {0366}.

 

DUPW 398F/DUPW 398R.

 

XgbxR53-7A [{0354}].

[XgbxR053b-7A {0354}].

gbxR053.

 

Xscu55-7D [{0368}].

[55-TH.2e7-7D {0368}].

55-TH.2e7 F/R.

 

 

Dormancy (seed)

Amendments:

Delete Phs 7D {9960} and associated text and replace with:

Phs {9960}.

4AL

v:

Soleil {0346}.

 

ma:

Associated with Xpsr1327-4A {0346}.

Add:

QTL:

QTL for preharverst sprouting were identified on chromosomes 3A (associated with Xfbb293-3A at P≤0.01), 3B (associated with Xgwm403-3B and Xbcd131-3B at P≤0.001), 3D (associated with Xgwm3-3D at P≤0.001) and 5A (associated with Xbcd1871-5A at P≤0.001) in the population Renan x Récital {0347}.  The resistant alleles on the group 3 chromosomes and on 5A were contributed by Renan and Récital, respectively.  All QTL for preharvest sprouting co-located with QTL for grain colour {0347}.

 

Earliness per se

Eps-1Am {0364}.

1AL {0364} [Eps-Am1].

dv:

T. monococcum {0364}. DV92 allele for late flowering, G3116 early flowering.

 

ma:

0.8 cM distal to Xwg241 {0364}.

 

Grain Hardness / Endosperm texture

This section was revised by Craig F. Morris, and is included in its entirety below.

 

Grain hardness or endosperm texture significantly influences flour milling, flour properties and end-use. The difference in particle size index between a hard wheat (Falcon) and a soft wheat (Heron) was reported by Symes {1452} to be due to a single major gene.  Symes {1452} also found evidence for “different major genes or alleles” which explained differences amongst the hard wheats Falcon, Gabo and Spica.  Using Cheyenne (CNN) substitution lines in CS and a Brabender laboratory mill, Mattern et al. {915} showed that the hard wheat milling and flour properties of Cheyenne were associated with 5D. Using Hope 5D substitution line in CS [CS(Hope 5D)] crossed to CS, and CS(Hope 5D) crossed to CS ditelosomic 5DL, Law et al. {777} showed that grain hardness was controlled by alleles at a single locus on 5DS. The dominant allele, Ha, controlling softness was present in Chinese Spring and the allele for hardness, ha, was present in the other varieties mentioned.  A similar study using CS (CNN5D) x CS recombinant inbred lines was reported by Morris et al. {03106}.

A pleiotropic result of hardness is the decreased level of a 15 kD starch granule protein, friabilin, on the surface of water-isolated starch {470}.  In endosperm, soft and hard wheats have similar amounts of friabilin, consequently the distinction between the two textural types depends upon the manner in which the friabilin co-purifies with starch.  Friabilin is also referred to by the name ‘Grain Softness Protein’ (GSP) {0380}, and was later shown to be comprised primarily of puroindoline a and puroindoline b {0295}.  Grain hardness of reciprocal soft x hard F1 kernels was well correlated with friabilin occurrence on starch in triploid endosperm {0381}. See IV, Proteins: 5.8 Puroindoline.  GSP-1 genes, which are closely related to puroindolines, are also listed in section 5.8.

 

 

Ha {777}.

5DS {777}.

Soft phenotype

 

i: 

Falcon/7*Heron, Heron/7*Falcon {03109}; Paha*2//Early Blackhull/5*Paha {0203,0298}; Early Blackhull Derivative/5*Nugaines {0203,0298}.

 

v:

Chinese Spring {777,03106}; Cappelle Desprez {470}; Heron {1452,470}; Paha, Nugaines {0203,0298}; NY6432-18 {0241}.

 

ha {777}.

 

Hard phenotype.

 

i:

Falcon/7*Heron, Heron/7*Falcon {03109}; Paha*2//Early Blackhull/5*Paha {0203,0298}; Early Blackhull Derivative/5*Nugaines {0203,0298}.

 

s:

CS*6/Cheyenne 5D {915}; CS*6/Hope 5D {777}. Cappelle Desprez(Besostaya 5D) {470}.

 

v:

Falcon {1452,470}; Holdfast {470}; Early Blackhull, Early Blackhull Derivative {0203,0298}; Cheyenne {03106}; Clark’s Cream {0241}.

 

ma:

Ha was closely linked to Xmta9(Puil)‑5D {1414}.

 

Single‑factor effects on hardness were found for chromosome 2A, 2D, 5B and 6D, and interactive effects were found for chromosomes 5A, 6D and 7A {1414}.

The addition of King II rye chromosome 5R converted Holdfast wheat from hard to soft {470}. A 14.5 kD rye analogue was also isolated from 6x triticales which have soft texture {470}. All ryes are thought to have soft texture.

Two genes for grain hardness were reported in {055}.

Hard and soft NILs are listed in {0298}.

 

QTL:

In a DH population of Courtot/CS a major locus in chromosome 5DS coincided with Ha; minor QTLs mapped in chromosomes 1A (associated with Xfba92) and 6D (associated with Xgwm55) {0141}.

Ten QTLs for kernel hardness (54 % of the variation) were mapped in a cross ‘Forno’/ ‘Oberkulmer’ spelt {0280}.

 

Grain Quality Parameters

2. Flour colour    

Revise title ‘Flour colour’ to ‘Flour, semolina and pasta colour’.

QTL:

A major QTL was detected in the distal region of chromosome 7BL in the cross Omrabi5 x T. dicoccoides 600545. The QTL explained 53% of the variation and was completely linked to microsatellite marker Xgwm344-7B. Omrabi5 contributed the allele for high level of yellow pigment. Two additional small QTLs were detected on 7AL {0365}.

 

7. Starch Characteristics (new category)

QTL:

QTLs for starch viscosity and swelling were associated with the Wx-B1 locus in the cross Cranbrook (Wx-B1a) x Halberd (null Wx-B1b). An additional QTL for starch viscosity was found on 7BL between markers Xgwm344-7B and Xwg420-7B  in the first cross. This QTL disappeared when amylase activity was inhibited indicating that it was determined by the late maturing a-amylase activity contributed by Cranbrook. A QTL for starch viscosity was associated with the Wx-A1 locus in the cross CD87 x Katepwa {0362}.

 

Hairy leaf

Hl1 {0316}.

Hl.

 

Hl2 {0316}.

7BS {0316}.

 v: 

Hong-mang-mai {0316}.

 

Heat Tolerance (new category)

QTL:

QTLs contributing to grain-filling duration (GFD) under high temperatures were associated with Xgwm11-1BS (11% of variability) and Xgwm293-5AS (23% of variability) in Ventnor (tolerant)/Karl 92 (Non-tolerant) {0327}.

 

Height

Reduced Height

Rht-B1

Rht-B1b.

Add: ‘The development of allele-specific primers for Rht-B1b has been reported in {0378}.’.

 

QTL:

QTL for reduced plant height, peduncle length and coleoptile length contributed by Cranbrook were associated with XcsMe1-4B  (up to 49% of variability for plant height and peduncle length and 27-45% of variability for coleoptile length) in the cross Cranbrook (dwarf) x Halberd (tall).  The dwarfing effect underlying the QTL is caused by the Rht-B1b allele {0379}.

 

 

Rht-D1b.

Add: ‘The development of allele-specific primers for Rht-D1b was reported in {0378}.’.

 

Rht8

Rht8a.  Integrate alphabetically in the v: section:

Klasic {0341}; Hartog {0341}; Neepawa {0341}; Millbrook {0341}; Otane {0341}; Monad {0341}; Karamu {0341}; Puma Rye {0341}; Oberkulmer {0341}; CAH106 {0341}; TAM107 {0341}; Pioneer Var25W33 {0341}; Karl {0341}; Thatcher {0341}; Century {0341}; Grandin {0341}; AC Reed {0341}; Opata {0341}; Elite Lepeuple {0341}.

 

Rht8b. Integrate alphabetically in the v: section:

Devoy {0341}; Era {0341}; Regency {0341}; Augusta {0341}; NYBatavia {0341}; Mendon {0341}; Geneva {0341}; Stephens {0341}; Bavaria {0341}; Houser {0341}; NY6432-18 {0341}; Foster {0341}; Caledonia {0341}; Ramrod {0341}; Chelsea {0341}; Frankenmuth {0341}; Cayuga {0341}; Yorkstar {0341}; NY85020-395 {0341}; NY85020-139 {0341}; NY87048W-7387 {0341}; Greer {0341}; Pioneer Var2548 {0341}; Superior {0341}; Cornell 595 {0341}; NY86003-106 {0341}; Clarks Cream {0341}; Genesee {0341}; Brevor {0341}; Losprout {0341}; Marilee {0341}; Harus {0341}; OAC Ariss {0341}; Cadoux {0341}; Heines VIII {0341}; Jennah Katifa {0341}.

 

Rht8c Integrate alphabetically in the v: section:

Pioneer Var2510 {0341}; Bai Huo {0341}; Kanto {0341};

Add:

Rht8i. Associated with a 180-bp fragment of WMS261 {0341}. v: Madison {0341}.

 

Rht8j. Associated with a 198-bp fragment of WMS261 {0341}. v: W7984 Synthetic {0341}; TAM200 {0341}.

 

Rht8k. Associated with a 200-bp fragment of WMS261 {0341}. v: Tiritea {0341}.

 

Rht8l. Associated with a 204-bp fragment of WMS261 {0341}. v: Pioneer Var2550 {0341}; Pioneer Var2545 {0341}; Pioneer Var2737W {0341}.

 

QTL:

QTL for reduced plant height, peduncle length and coleoptile length corresponding to Rht-B1 were identified in the cross Cranbrook (dwarf) x Halberd (tall).   These QTL explained up to 49% of variability for plant height and peduncle length and 27-45% of variability for coleoptile length.  A QTL for coleoptile length (reduced coleoptile length was contributed by Cranbrook) was also identified on 4BL, associated with XksuC2-4B and explaining 15-27% of the phenotypic variation.  The influence of this QTL was greatest at 190C and decreased with cooler temperatures.  This QTL also affected leaf size, and coleoptile tiller size and presence.  QTL of smaller effect were identified on 2D, 3D and 6B for peduncle length and 2B, 3B, 5A and 6B for coleoptile length {0379}.   

 

Male Sterility

Chromosomal

Sterility in hybrids with Wheat

Shw {0331}.

1HL {0331}.

ad:  

Additions of 1H and 1HL to wheat and certain translocation lines {0331}.

 

ma:

Located in a 16.4 cM interval flanked by Xmwg800 and Xmwg943 {0331}.  A possible relationship with Ncc genes is discussed {0331}.

 

Manganese efficiency (new category)

1.  Mangenese deficiency

QTL:

Variation associated with Xcdo583-4B explained 42% of the variation for Mn efficiency in the durum cross Stojocri 2 (Mn efficient)/Hazar (MN inefficient) {0320}.

 

Meiotic characters

2. Pairing homoeologous

Ph1.        ma:  Add {0359} as reference for ‘PCR-based assays for presence and absence of Ph1 were described {0214, 0217, 9965}’.

 

Polyphenol oxidase (PPO) activity (new category)

3,4 dihydroxyphenylalanine (L-DOPA) was used as a substrate in a non-destructive test of polyphenol oxidase activity in seeds.  Chromosome 2D was shown to carry PPO gene(s) based on Langdon/Chinese Spring (2D) substitution lines and nullisomic-tetrasomic analysis {0342}.

 

QTL:

A QTL on 2D, associated with Xfba314-2D was identified in an M6/Opata 85 population using the L-DOPA assay.  The high PPO activity was contributed by M6 {0344}.  Markers significantly associated with PPO activity were also detected on chromosomes 2A, 2B, 3B, 3D and 6B in the population NY18 x Clark’s Cream {0344}.

 

Proteins

1. Grain Protein Content

Amendments:

QPro.mgb-5A: Add ‘and Xcdo412-5A {0343}2.’.

QPro.mgb-6A.2: Add ‘and Xpsr627-6A {0343}2.’.

QPro.mgb-6B: Add ‘and Nor-2 {0343}2.’.

QPro.mgb-7B: Add ‘and Xutv913-7B {0343}2.’.

 

New:

QPro.mgb-7A associated at P≤0.01 with Pan2 {0343}2.’.

 

2. Enzymes

2.11 Lipoxygenase

Lpx-A1 [{516}].

ma:

Xksu919(Lpx-1)-4A {0091}.

Lpx-B1 [{516}].

ma:

Xcn110(Lpx-1)-4B {0269} {0367}.

Lpx-A2 [{516}].

ma:

Xksu919(Lpx-2)-5A {0091}.

Lpx-B2 [{516}].

ma:

Xksu919(Lpx-2)-5B {0091}, Xcn111(Lpx-2)-5B {0269}.

 

2.22. NADH dehydrogenase

Add at the bottom of the Ndh-1 section:

‘Based on the correspondence of the electrophoretic patterns, isoelectric points (pIs) and chromosomal location, it was proposed that the Ndh1 (NADH dehydrogenase) and Dia3 (diaphorase) represent the same locus {0356}.’

 

Add at the bottom of the Ndh-2 section:

‘Based on the correspondence of the electrophoretic patterns, isoelectric points (pIs) and chromosomal location, it was proposed that the Ndh2 (NADH dehydrogenase) and Dia2 (diaphorase) represent the same locus {0356}.’

 

Add at the bottom of the Ndh-3 section:

‘Based on the correspondence of the electrophoretic patterns, isoelectric points (pIs) and chromosomal location, it was proposed that the Ndh3 (NADH dehydrogenase), Dia1 (diaphorase) and Mnr1 (menadione reductase) represent the same locus {0356}.’

 

3. Endosperm Storage Proteins

3.1 Glutenins

Add to the end of the preamble:

‘Using proteomic analysis of 2D gels of seed storage proteins in 39 ditelocentric lines of cv. Chinese Spring, 105 protein spots were resolved {03129}. Locations of structural genes controlling 26 spots were identified in 10 chromosomal arms (4 on 1BL, 5 on 1BS, 4 on 1DL, 4 on 1DS, 2 on 6AS, 3 on 6BS, 1 on 6DL, 1 on 6DS, 1 on 3BS and 1 on 3BL). Multiple regulators of the same protein located on various chromosome arms were observed. Two novel subunits, named 1Bz and 1BDz, were found to have very similar structures to HMW glutenin subunit 12 (encoded by Glu-D1-2a – see the relevant list below) and were located to chromosome arms 1BL and 1DL, respectively.’

 

Glu-A1

Add:

Glu-A1v [{03137}].

[Glu-A1-VII {03137}].

VII {03137}.

v:

PI-308879 emmer wheat accession {03137}.

 

Glu-B1

Replace:

Glu-B1e {1116}.

 

20 {1116}.

v:

Federation.

with:

Glu-B1e {1116}.

 

20 {1116}; 20+20y {03133}.

v:

Federation.

 

Replace:

Glu-B1j {1116}.

 

21 {1116}.

v:

Dunav (rare).

with:

Glu-B1j {1116}.

 

21 {1116}; 21x+21y {03116}

v:

Dunav (rare); Foison {03116}.

 

Add:

Glu-B1av [{03116}].

[Glu-B1r {03116}].

7-18 {03116}.

v:

Triticor Hexaploid Triticale {03116}.

Glu-B1aw [{03116}].

[Glu-B1s {03116}].

6.8-20y {03116}.

v:

Carnac Hexaploid Triticale {03116}.

Glu-B1ax [{03137}].

[Glu-B1-XV {03137}].

XV {03137}.

v:

PI-190922, BG-012302 emmer wheat accessions {03137}.

Glu-B1ay [{03137}].

[Glu-B1-XVI {03137}].

XVI {03137}.

v:

PI-277681 emmer wheat accession {03137}.

Glu-B1az [{03137}].

[Glu-B1-XVII {03137}].

XVII {03137}.

v:

PI-348620 emmer wheat accession {03137}.

Glu-B1ba [{03122}].

[Glu-B1-XVIII {03122}].

13*+16 {03122}.

v:

PI-348767 spelt wheat accession {03122}.

Glu-B1bb [{03122}].

[Glu-B1-XIX {03122}].

6+18´ {03122}.

v:

PI-348631 spelt wheat accession {03122}.

Glu-B1bc [{03138}].

 

6+17 {03138}.

v:

ICDW 20975 {03138}.

Glu-B1bd [{03140}].

 

20+8 {03140}.

v:

Abadía {03140}.

 

Glu-D1

Replace:

Glu-D1w [{755}].

 

2+T1+T2 {755}.

dv:

T. tauschii.

with:

Glu-D1w [{03124}].

 

5*+10 {03124}.

v:

Fiorello {03124}.

 

Replace:

Glu-D1x [{755}].

 

2+T2 {755}.

dv:

T. tauschii.

with:

Glu-D1x [{755}].

 

2+T2 {755}; 2t+12.2t {03124}.

dv:

T. tauschii.

 

Replace:

Glu-D1y [{755}].

 

3+T2 {755}.

dv:

T. tauschii.

with:

Glu-D1y [{755}].

 

3+T2 {755}; 3t+12.2t {03124}.

dv:

T. tauschii.

 

Replace:

Glu-D1ae [{1578}].

 

2.1+T1+T2 {1578}.

dv:

T. tauschii.

with:

Glu-D1ae [{1578}].

 

2.1+T2 [{1578}]; 2.1t+12.2t {03124}.

dv:

T. tauschii.

 

Delete:

Glu-D1af [{1578}].

 

3+T1+T2 {1578}.

dv:

T. tauschii.

Designation reserved by WJR.

 

Replace:

Glu-D1ag [{1578}].

 

1.5+T1+T2 {1578}.

dv:

T. tauschii.

with:

Glu-D1ag [{1578}].

 

1.5+T2 [{1578}]; 1.5t+12.2t {03124}.

dv:

T. tauschii.

 

Add:

Glu-D1am [{03122}].

[Glu-D1-I {03122}].

2+12´ {03122}.

v:

PI-348495 spelt wheat accession {03122}.

Glu-D1an [{03122}].

[Glu-D1-II {03122}].

2+12* {03122}.

v:

PI-348672 spelt wheat accession {03122}.

Glu-D1ao [{03122}].

[Glu-D1-III {03122}].

2.4+12 {03122}.

v:

PI-348473 spelt wheat accession {03122}.

Glu-D1ap [{03122}].

[Glu-D1-IV {03122}].

2.5+12 {03122}.

v:

PI-348572 spelt wheat accession {03122}.

Glu-D1aq [{03124}].

 

1.5t+10.1t {03124}.

dv:

T. tauschii.

Glu-D1ar [{03124}].

 

2t+10.1t {03124}.

dv:

T. tauschii.

Glu-D1as [{03124}].

 

1.5t+10.2t {03124}.

dv:

T. tauschii.

Glu-D1at [{03124}].

 

3t+10.1t {03124}.

dv:

T. tauschii.

Glu-D1au [{03124}].

 

2.1t+10.2t {03124}.

dv:

T. tauschii.

Glu-D1av [{03124}].

 

2t+12.3t {03124}.

dv:

T. tauschii.

Glu-D1aw [{03124}].

 

1t+10t {03124}.

dv:

T. tauschii.

Glu-D1ax [{03124}].

 

1t+12t {03124}.

dv:

T. tauschii.

Glu-D1ay [{03124}].

 

1t+10.1t {03124}.

dv:

T. tauschii.

Glu-D1az [{03124}].

 

4t+12.2t {03124}.

dv:

T. tauschii.

Glu-D1ba [{03124}].

 

1t+12.3t {03124}.

dv:

T. tauschii.

Glu-D1bb [{03124}].

 

1.5t+11t {03124}.

dv:

T. tauschii.

Glu-D1bc [{03124}].

 

1.5t+10.3t {03124}.

dv:

T. tauschii.

Glu-D1bd [{03124}].

 

1t+11t {03124}.

dv:

T. tauschii.

Glu-D1be [{03124}].

 

2.1t+12.4t {03124}.

dv:

T. tauschii.

Glu-D1bf [{03124}].

 

2t+12.1t {03124}.

dv:

T. tauschii.

Glu-D1bg [{03124}].

 

3t+10.2t {03124}.

dv:

T. tauschii.

Glu-D1bh [{03124}].

 

4t+10.1t {03124}.

dv:

T. tauschii.

Glu-D1bi [{03124}].

 

4t+10.2t {03124}.

dv:

T. tauschii.

Glu-D1bj [{03124}].

 

5t+11t {03124}.

dv:

T. tauschii.

Glu-D1bk [{03124}].

 

5t+10.1t {03124}.

dv:

T. tauschii.

Glu-D1bl [{03124}].

 

5t+12.2t {03124}.

dv:

T. tauschii.

Glu-D1bm [{03124}].

 

5*t-null {03124}.

dv:

T. tauschii.

Glu-D1bn [{03124}].

 

5*t+12 {03124}.

dv:

T. tauschii.

 

To the end of the paragraph at the end of the Glu-D1 section concluding, after an amendment in the 2002 Supplement, with the sentence ‘The authors named the locus Gli-DT1 (see below, section ‘3.2 Gliadins’).’, add this sentence:

‘Reference to T1 has, consequently, been removed from the Glu-D1 list.’

 

After this change, add the following paragraphs:

‘In {03124}, null alleles were observed for both Glu-D1-1 and Glu-D1-2, which, naturally, are not necessarily the same as those previously reported for this locus, meaning that composite alleles involving them in this study and corresponding to combinations apparently already listed in the Catalogue, may, in fact, represent novel alleles. It was also found that certain subunits of apparently identical relative mobility in SDS-PAGE showed different surface hydrophobicities in RP-HPLC; and the reverse situation was also observed (the same hydrophobicity but different electrophoretic mobilities).

 

It has been shown {03126} that the relatively small size of a y-type HMW glutenin subunit, named 12.4t (encoded by Glu-D1-1t [{03124}] – see the relevant list below) and carried by accession CPI110750 of T. tauschii, is due to the deletion of blocks of repetitive motifs, amounting to approximately 200 amino acids, probably caused by unequal crossing-over.

 

Note that the cultivar Fiorello is given as a standard for Glu-D1h encoding subunits 5+12 and for Glu-D1w encoding subunits 5*+10. An attempt to resolve this apparent conflict will be made in a future update.’

 

Glu-B1-1

Replace:

Glu-B1-1i.

 

21.

v:

Dunav.

with:

Glu-B1-1i.

 

21; 21x {03116}.

v:

Dunav; Foison {03116}.

 

Add:

Glu-B1-1ac [{03116}].

 

6.8 {03116}.

v:

Carnac Hexaploid Triticale {03116}.

Glu-B1-1ad [{03122}].

 

13* {03122}.

v:

PI-348767 spelt wheat accession {03122}.

 

Glu-B1-2

Add:

Glu-B1-2z [{03116}].

 

20y {03116}.

v:

Carnac Hexaploid Triticale {03116}.

Glu-B1-2aa [{03122}].

 

18´ {03122}.

v:

PI-348631 spelt wheat accession {03122}.

Glu-B1-2ab [{03116}].

 

21y {03116}.

v:

Foison {03116}.

 

Glu-D1-1

Add:

Glu-D1-1n [{03122}].

 

2.4 {03122}.

v:

PI-348473 spelt wheat accession {03122}.

Glu-D1-1o [{03122}].

 

2.5 {03122}.

v:

PI-348572 spelt wheat accession {03122}.

Glu-D1-1p [{03124}].

 

1t {03124}.

dv:

T. tauschii.

Glu-D1-1q [{03124}].

 

5*t {03124}.

dv:

T. tauschii.

 

Glu-D1-2

Add:

Glu-D1-2q [{03122}].

 

12´ {03122}.

v:

PI-348495 spelt wheat accession {03122}.

Glu-D1-2r [{03124}].

 

12.1t {03124}.

dv:

T. tauschii.

Glu-D1-2s [{03124}].

 

12.3t {03124}.

dv:

T. tauschii.

Glu-D1-2t [{03124}].

 

12.4t {03124}.

dv:

T. tauschii.

 

Glu-Hch1.

Add:

Glu-Hch1a {03114}.

 

1Hch {03114}.

al:

Accession H1 H. chilense {03114}.

Glu-Hch1b {03114}.

 

2Hch {03114}.

al:

Accession H11 H. chilense {03114}.

Glu-Hch1c {03114}.

 

3Hch {03114}.

al:

Accession H7 H. chilense {03114}.

Glu-Hch1d {03114}.

 

4Hch {03114}.

al:

Accession H16 H. chilense {03114}.

Glu-Hch1e {03114}.

 

5Hch {03114}.

al:

Accession H47 H. chilense {03114}.

Glu-Hch1f {03114}.

 

6Hch {03114}.

al:

Accession H220 H. chilense {03114}.

Glu-Hch1g {03114}.

 

7Hch {03114}.

al:

Accession H293 H. chilense {03114}.

Glu-Hch1h {03114}.

 

8Hch {03114}.

al:

Accession H297 H. chilense {03114}.

Glu-Hch1i {03114}.

 

9Hch {03114}.

al:

Accession H252 H. chilense {03114}.

Glu-Hch1j {03114}.

 

10Hch {03114}.

al:

Accession H210 H. chilense {03114}.

 

Follow this entry with the paragraph:

‘38 accessions (natural populations) of Hordeum chilense carrying these 10 subunits have been used as the maternal parents of 121 lines of primary tritordeum, and evaluations for associations with bread-making quality initiated {03114}. Subunits 1Hch, 2Hch and 3Hch were previously referred to as Hcha, Hchb and Hchc {03112}.’

 

Glu-R1

Add:

Glu-R1a {03116}.

 

1r-4r {03116}.

v:

Indiana Hexaploid Triticale {03116}.

Glu-R1b {03116}.

 

2r-6.5r {03116}.

v:

Graâl Hexaploid Triticale {03116}.

Glu-R1c {03116}.

 

6r-13r {03116}.

v:

Alamo Hexaploid Triticale {03116}.

Glu-R1d {03116}.

 

2r-9r {03116}.

v:

Olympus Hexaploid Triticale {03116}.

Glu-R1e {03116}.

 

6.5r {03116}.

v:

Clercal Hexaploid Triticale {03116}.

Glu-R1f {03115}.

 

0.8r-6r {03115}.

v:

Carmara Hexaploid Triticale {03115}.

Glu-R1g {03115}.

 

5.8r {03115}.

v:

Arrayan Hexaploid Triticale {03115}.

 

Add the following two lists after the Glu-R1 list:

Glu-R1-1.

1R, 1RL.

 

 

 

Glu-R1-1a {03116}.

1r {03116}.

v:

Indiana Hexaploid Triticale {03116}.

 

Glu-R1-1b {03116}.

2r {03116}.

v:

Graâl Hexaploid Triticale {03116}.

 

Glu-R1-1c {03116}

6r {03116}.

v:

Alamo Hexaploid Triticale {03116}.

 

Glu-R1-1d {03115}.

0.8r {03115}.

v:

Carmara Hexaploid Triticale {03115}.

 

Glu-R1-1e {03115}.

5.8r {03115}.

v:

Arrayan Hexaploid Triticale {03115}.

 

Add:

Glu-R1-2.

1R, 1RL.

 

 

 

Glu-R1-2a {03116}.

4r {03116}.

v:

Indiana Hexaploid Triticale {03116}.

 

Glu-R1-2b {03116}.

6.5r {03116}.

v:

Graâl Hexaploid Triticale {03116}.

 

Glu-R1-2c {03116}.

13r {03116}.

v:

Alamo Hexaploid Triticale {03116}.

 

Glu-R1-2d {03116}.

9r {03116}.

v:

Olympus Hexaploid Triticale {03116}.

 

Followed by:

‘There is a difficulty in the assignment of subunit 6r in the Glu-R1-1 and Glu-R1-2 lists, since it appears as an x-type subunit in allele Glu-R1c and as a y-type subunit in allele Glu-R1f. It is currently provisionally assigned to the Glu-R1-1 list since, based upon its relative electrophoretic mobility, it is considered more likely to be an x-type subunit. Some of the remaining designations should also be considered as provisional since they too are not free of ambiguity.

 

From study of chromosome substitutions in bread wheat {03117}, it was found that a chromosome 1R carrying HMW secalin subunit 6.5r (Glu-R1e), originally derived from the ‘Petkus’ rye population, was associated with bread-making quality (i) intermediate between chromosome 1A carrying the null allele Glu-A1c and chromosome 1A carrying HMW glutenin subunit 2* encoded by Glu-A1b; (ii) equivalent to a chromosome carrying HMW glutenin subunit 7 encoded by Glu-B1a; and (iii) inferior to chromosomes 1D with distinct alleles.

 

A nomenclature system for prolamin banding patterns of triticale has been proposed in {03139}. Extensive allelic variation in triticale at the Glu-A1, Glu-B1, Glu-R1 and Gli-R2 loci has been reported in {03121}.’

 

At the end of the preamble to the Glu-3 section, which reads: ‘…it has now been demonstrated that, although the majority of the subunits are indeed controlled by genes on this group, some of the C subunits must be controlled by loci elsewhere in the genome {482}.’, add the following paragraphs:

 

‘A novel type of polymeric protein (Mr approx. 71000) has been reported in the Australian advanced breeding line DD-118 {03125}. It participates in the polymeric structure of glutenin (possibly as a chain terminator), and, with an Mr of approximately 71000, could be considered as a D-subunit of LMW glutenin. However, N-terminal sequencing suggests it to be a Gli-B1 type ω-gliadin that has acquired a cysteine residue through mutation.

 

In an electrophoretic survey of 51 primary tritordeums {03113}, 20 distinct whole banding patterns (a-t), each consisting of between one and three bands, were observed for D-zone prolamins exhibiting glutenin-like solubility characteristics.

 

In 85 Japanese bread wheat cultivars and 61 elite F6 breeding lines, 3 alleles were observed at each of Glu-A3 and Glu-B3, and 2 alleles at Glu-D3, named according to their parental origin in three doubled haploid mapping populations {03135}.

 

C-type LMW glutenin subunits in Chinese Spring have been assigned to chromosome groups 1 and 6, and shown to have sequences very similar to those of α-and γ-gliadins {03134}. The authors suggest that they may be encoded by novel genes at loci tightly linked or present within the Gli-1 and Gli-2 loci, unlike other LMW glutenin subunits encoded by the Glu-3 loci.

 

The HMW and LMW glutenin subunits carried by chromosome 1Am of T. monococcum accession G1777 have been characterised electrophoretically and evaluated for quality characteristics using recombinant chromosome substitution lines with chromosome 1A of Chinese Spring {03142}. The HMW subunits from G1777 are promising for bread-making quality, while its LMW subunits are promising for biscuit-making quality.

 

The bread wheat cv. Salmone has been shown to carry two DNA fragments designated as SF720 and SF750 located on the chromosome 1B satellite and associated with the presence of two LMW glutenin subunits {03143}. However, the authors suggest that they occur at a locus other than Glu-B3 due to their relatively high frequency of recombination with Gli-B3.

 

A naming system in which roman numerals are assigned to whole banding patterns for the LMW glutenin subunits is given in {03131} as an alternative to the LMW-1/-2 system described in {03136}. A further system naming whole banding patterns from LMW-1 to LMW-23 in emmer wheat is described in {03137}.’

 

Glu-A3 (original bread wheat listing)

Add:

Glu-A3g {00113}.

 

 

v:

 

Glu-A3h [{03116}].

[Glu-A3d´ {03116}].

 

v:

Magistral Hexaploid Triticale {03116}.

 

Add after this Glu-A3 list:

In 112 bread wheat cultivars from Argentina, 11 microsatellite alleles plus a null allele were found at the Glu-A3 locus {03123}.’

 

Glu-B3 (original bread wheat listing)

Add:

Glu-B3m [{03120}].

[Glu-B3b´ {03120}].

 

v:

Soissons {03120}.

Glu-B3n [{03120}].

[Glu-B3c´ {03120}].

 

v:

Courtot {03120}.

Glu-B3o [{03116}].

[Glu-B3i´ {03116}].

 

v:

Olympus Hexaploid Triticale {03116}.

Glu-B3p [{03116}].

[Glu-B3k {03116}].

 

v:

Alamo Hexaploid Triticale {03116}.

Glu-B3q [{03115}].

[Glu-B3h´ {03115}].

 

v:

Torote Hexaploid Triticale {03115}.

 

Add after this Glu-B3 list:

‘Currently there are two nomenclature systems described in the Catalogue for the B-LMW glutenin subunits encoded by Glu-A3 and Glu-B3, one for bread wheat and triticale (above) and one for durum wheat {00114, 02110} (see separate lists below). In {03116}, it has been suggested that Glu-B3d in bread wheat is equivalent to Glu-B3a in durum wheat, and that (referring to article {03127}) B-LMW subunits observed in some Portuguese triticales can be of the durum type. There would appear, therefore, to be room for unifying the distinct nomenclature systems currently in use.’

 

Glu-D3.

Add at the bottom of the section:

‘The isolation of a new low-molecular-weight glutenin subunit gene, located on chromosome 1D, was reported in {0350}.’.

 

3.2. Gliadins

 

At the end of the preamble, which, after an amendment made in the 2001 Supplement, reads: ‘The authors placed some of the results in the context of the possible ancestor of the B-genome and relationships with the barley C-hordeins and rye w-secalins.’, add the following paragraph:

‘11 new gliadin alleles have been found in a collection of 52 Spanish landraces of bread wheat {03141}; these will be incorporated into the Gli-1 and Gli-2 allelic lists in the next Supplement.’

 

After the Gli-A1 list, add:

‘An allele Gli-A1f* is mentioned in {03130}.’

 

After the Gli-B1 list, add:

‘In 112 bread wheat cultivars from Argentina, 12 microsatellite alleles plus a null allele were found at the Gli-B1 locus tightly linked to Glu-B3 {03123}.’

 

After the entry for Gli-R1, add the comment:

Sec-12 and Sec-13 are given as allelic alternatives in 1BL.1RS translocation lines by {03132}.’

 

Gli-R2

Add:

Gli-R2a {03116}.

 

d1 {03116}.

v:

Carnac Hexaploid Triticale {03116}.

Gli-R2b {03116}.

 

d2 {03116}.

v:

Mostral Hexaploid Triticale {03116}.

Gli-R2c {03116}.

 

t1 {03116}.

v:

Alamo Hexaploid Triticale {03116}.

Gli-R2d {03116}.

 

null {03116}.

v:

Triticor Hexaploid Triticale {03116}.

Gli-R2e {03115}.

 

t2 {03115}.

v:

Tornado Hexaploid Triticale {03115}.

 

5. Other proteins

5.6. Waxy proteins

Wx-A1b.

tv:

MG 826 {03101}.

Add at the end of Wx-A1 section: ‘A variant allele was present in one Iranian and one Italian accession {03101}.’.

 

Wx- B1.

tv:

A variant allele was present in three accessions {03101}.

Wx-D1d.

v:

One Iranian and one Italian accession {03101}.

 

At the end of section insert: ‘Various hard and soft wheats with the alleles Wx-A1b, Wx-B1b and Wx-D1b are listed in {0304}.

 

5.8. Puroindolines and Grain Softness Protein

This section was revised by Craig F. Morris, and is included in its entirety below.

 

Puroindoline a and b are the major components of friabilin, a protein complex that is associated with grain texture (see ‘Grain Hardness’). The name ‘puroindoline’ and the complete amino acid sequence of puroindoline a were given in {0382} from cv Camp Rémy.  Hard grain texture in hexaploid wheat results from unique changes in the puroindoline amino acid sequence or, currently, four null forms {0295} of the completely linked genes (max. map distance 4.3 cM) {452}.  Tetraploid (AABB, AAGG) wheats lack puroindolines and are consequently very hard {03103}.  A searchable database of wheat varieties and their puroindoline genotype is available at http://www.wsu.edu/~wwql/php/puroindoline.php.  Grain softness protein-1 is a closely related gene which is closely located to the puroindoline genes {03111, 1185}.  ‘GenBank’ and ‘dbEST’ refer to sequence databases available at NCBI (also available through EMBL and DDBJ).

 

Pina-A1 {03103, 03108, 03104}.

dv:

T. urartu unspecified accession {03103}; TA763 (GenBank AJ302094) {03108,03104}; TA808 (GenBank AJ302095) {03108,03104}.

Pina-D1.

5DS {452}. 

v: 

CS {452}; Capitole (GenBank X69914) {03110}.

 

Pina-D1a {452}.

v:

Aurelio Pinb-D1a {0249}; Bellevue {0249}; Bezostaja Pinb-D1b {0249}; Bilancia Pinb-D1a {0249}; Bolero Pinb-D1a {0249}; Brasilia Pinb-D1b {0249}; Centauro Pinb-D1a {0249}; Cerere Pinb-D1b {0249}; Chinese Spring Pinb-D1a {452,0249}; Colfiorito Pinb-D1b {0249}; Cologna 21 Pinb-D1b {0249}; Courtot {0249}; David Pinb-D1b {0249}; Democrat Pinb-D1b {0249}; Etruria Pinb-D1b {0249}; Fortuna {0249}; Francia Pinb-D1b {0249}; Galaxie {0249}; Gemini Pinb-D1b {0249}; Genio Pinb-D1b {0249}; Gladio Pinb-D1b {0249}; Heron {1035}; Lampo Pinb-D1a {0249}; Leone Pinb-D1a {0249}; Leopardo Pinb-D1a {0249}; Libero Pinb-D1a {0249}; Livio Pinb-D1a {0249}; Marberg Pinb-D1b {0249}; Mentana Pinb-D1a {0249}; Mieti Pinb-D1b {0249}; Mosè Pinb-D1a {0249}; Neviana Pinb-D1a {0249}; Newana Pinb-D1b {0249}; Oscar Pinb-D1a {0249}; Pandas Pinb-D1b {0249}; Pascal Pinb-D1b {0249}; Penawawa Pinb-D1a {03104}; Sagittario Pinb-D1b {0249}; Salgemma Pinb-D1b {0249}; Saliente Pinb-D1b {0249}; Salmone Pinb-D1b {0249}; Serena Pinb-D1a {0249}; Serio Pinb-D1b {0249}; Soissons {0249}; Veda Pinb-D1b {0249}; Zena Pinb-D1b {0249}.

 

 

Pina-D1a is present in all soft hexaploid wheats and possibly all hard hexaploid wheats that carry a hardness mutation in puroindoline b {452, 1035, 0082, 0204, 0295}.

 

 

dv:

Ae. tauschii unspecified accession (GenBank AJ249935) {03103}; TA1583 (GenBank AY252029) Pinb-D1a, Gsp-D1b {03105}; TA2475 (GenBank AY252037) Pinb-D1i, Gsp-D1b {03105}; TA1599 (GenBank AY252011) Pinb-D1j, Gsp-D1g {03105}; TA1691 (GenBank AY252013) Pinb-D1j, Gsp-D1h {03105}.

 

Pina-D1b {1035}. 

Null allele

 

v:

Amidon Pinb-D1a {0249}; Barra Pinb-D1a {0249}; Butte 86 {1035}; Ciano Pinb-D1a {0249}; Dorico Pinb-D1a {0249}; Eridano {0249}; Falcon {1035}; Fortuna (USA) Pinb-D1a {0249}; Glenman Pinb-D1a {0249}; Golia Pinb-D1a {0249}; Guadalupe Pinb-D1a {0249}; Inia 66 Pinb-D1a {0249}; Jecora Pinb-D1a {0249}; Indice Pinb-D1a {0249}; Kalyansona {0249}; Manital Pinb-D1a {0249}; Mendos Pinb-D1a {0249}; Padus Pinb-D1a {0249}; Prinqual Pinb-D1a {0249}; Sibilia Pinb-D1a {0249}; Super X {0249}; Yecora Rojo {0204}.

 

 

i:

Falcon/7*Heron, Heron/7*Falcon {03109}; Heron/7*Falcon sel.{0298,0203}; Gamenya sib {0298,0203}.

 

 

Present only in some hard hexaploid wheats.  Pina-D1b is associated with harder texture than Pinb-D1b {0177, 0206}.

 

Pina-D1c {03105}.

dv:

Ae. tauschii TA2369 (GenBank AY252031) Pinb-D1h, Gsp-D1c; TA2527 (GenBank AY252015) Pinb-D1h, Gsp-D1e; TA2536 (GenBank AY251998) Pinb-D1i,Gsp-D1d {03105}.

 

Pina-D1d {03105}.

dv: 

Ae. tauschii PI452131 (GenBank AJ302098) Pinb-D1i {03104}; PI554318 (GenBank AJ302099) Pinb-D1k {03104}; TA1649 (GenBank AY251963) Pinb-D1h, Gsp-D1f {03105}; TA2374 (GenBank AY251948) Pinb-D1i, Gsp-D1d {03105}; TA2512 (GenBank AY252042) Pinb-D1i, Gsp-D1e {03105}; TA2455 (GenBank AY252022) Pinb-D1i, Gsp-D1f {03105}.

 

Pina-D1e {03105}.

dv: 

Ae. tauschii TA2458 (GenBank AY252034) Pinb-D1i, Gsp-D1d {03105}; TA2495 (GenBank AY252041) Pinb-D1i, Gsp-D1e {03105}.

 

Pina-D1f {03105}.

dv:

Ae. tauschii  TA2436 (GenBank AY1998) Pinb-D1i, Gsp-D1d {03105}.

Pina-Am1 {0083}.

5AmS {0083}.

dv:

T. monococcum DV92 (cultivated), G3116 (spp. aegilopoides) (GenBank AJ242715) {0083}; unspecified accession (GenBank AJ249933) {03103}; PI277138 (GenBank AJ302093) {03104}; PI418582 (GenBank AJ302092) {03104}; T. monococcum spp. monococcum TA2025, TA2026, TA2037 {03108};  T. monococcum spp. aegilopoides TA183, TA291, TA546, TA581 {03108}.

 

 

In T. monococcum Pina-Am1 is completely linked to Gsp-Am1 {0083}.

Pina-S1 {03108}.

dv:

Ae. speltoides PI393494 (GenBank AJ302096) {03104}; PI369616 (GenBank AJ302097) {03104}; Ae. speltoides spp. speltoides TA2368, TA1789 {03108}; Ae. speltoides spp. ligustica  TA1777 {03108}.

Pina-Sb1 {03108}.

dv: 

Ae. bicornis spp. typica  TA1954, TA1942 {03108}.

Pina-Sl1 {03108}.

dv: 

Ae. longissima spp. longissima TA1912 {03108}; Ae. longissima spp. nova TA1921 {03108}.

Pina-Ss1 {03108}.

dv:

Ae. searsii TA1837, TA1355 {03108}.

Pina-Ssh1 {03108}.

dv: 

Ae. sharonensis TA1999 {03108}.

 

Pinb-A1 {03108,03104}.

dv:

T. urartu TA763 (GenBank AJ302103) {03108, 03104}; TA808 (GenBank AJ302104){03108, 03104}

 

Pinb-D1.

5DS {452}.

v:

CS {452}; Capitole (GenBank X69912) {03110}.

 

Pinb-D1a {452}.

v:

Adder Pina-D1a {0317}; Amidon Pina-D1b {0249}; Aurelio Pina-D1a {0249}; Barra Pina-D1b {0249}; Bilancia Pina-D1a {0249}; Bolero Pina-D1a {0249}; Centauro Pina-D1a {0249}; Chinese Spring Pina-D1a {452,0249}; Ciano Pina-D1b {0249}; Dorico Pina-D1b {0249}; Fortuna (USA) Pina-D1b {0249}; Glenman Pina-D1b {0249}; Golia Pina-D1b {0249}; Guadalupe Pina-D1b {0249}; Hill 81 {452}; Inia 66 Pina-D1b {0249}; Jecora Pina-D1b {0249}; Idice Pina-D1b {0249}; Karl Pina-D1a {0317}; Lampo Pina-D1a {0249}; Leone Pina-D1a {0249}; Leopardo Pina-D1a {0249}; Libero Pina-D1a {0249}; Livio Pina-D1a {0249}; Manital Pina-D1b {0249}; Mendos Pina-D1b {0249}; Mentana Pina-D1a {0249}; Mosè Pina-D1a {0249}; Neviano Pina-D1a {0249}; Oscar Pina-D1a {0249}; Padus Pina-D1b {0249}; Penawawa Pina-D1a {03104}; Prinqual Pina-D1b {0249}; Serena Pina-D1a {0249}; Sibilia Pina-D1b {0249} Sigyn II Pina-D1a {0317}.

 

 

Pinb-D1a is present in all soft hexaploid wheats and possibly all hard hexaploid wheats carrying the Pina-D1b, -D1c, -D1d, -D1e, -D1f, and -D1g mutations {452, 1035, 0082, 0204, 0295}.

 

 

dv:  

Ae. tauschii unspecified accession (GenBank AJ249936) {03103}; TA1583 (GenBank AY1981) Pina-D1a, Gsp-D1b {03105}.

 

Pinb-D1b {452}.

5DS {452}.

 

i:

 Paha*2//Early Blackhull/5*Paha {0203,0298}; Early Blackhull der./5*Nugaines sel. {0203,0298}; hard sib sel. from Weston {03107}.

 

 

s: 

CS*7/Cheyenne 5D {452}.

 

 

v:  

Bastion Pina-D1a {0317}; Bezostaya Pina-D1a {0249};  Brasilia Pina-D1a {0249}; Cerere Pina-D1a {0249}; Colfiorito Pina-D1a {0249}; Cologna 21 Pina-D1a {0249}; David Pina-D1a {0249}; Democrat Pina-D1a {0249}; Etruria Pina-D1a {0249}; Francia Pina-D1a {0249}; Gemini Pina-D1a {0249}; Genio Pina-D1a {0249}; Gladio Pina-D1a {0249}; Marberg Pina-D1a {0249}; Mieti Pina-D1a {0249}; Newana Pina-D1a {0249}; Pandas Pina-D1a {0249}; Pascal Pina-D1a {0249}; Sagittario Pina-D1a {0249}; Salgemma Pina-D1a {0249}; Saliente Pina-D1a {0249}; Salmone Pina-D1a {0249}; Serio Pina-D1a {0249}; Thatcher {0204}; Veda Pina-D1a {0249}; Wanser {452}; Zena Pina-D1a {0249}; hard component of Turkey {0204}.

 

 

Pinb-D1b is a “loss-of-function” mutation resulting from the replacement of a glycine by a serine at position 46 {452}.

 

Pinb-D1c {0082}.

v:

Avle {0082}; Reno {0082}; Tjalve {0082}; Bjorke {0082}; Portal {0082}.

 

 

Pinb-D1c is a “loss-of-function” mutation resulting from the replacement of a leucine by a proline at position 60 {0082}.

 

Pinb-D1d {0082}.

v:

Bercy {0082}; Mjolner {0082}.

 

 

 

Pinb-D1d is a “loss-of-function” mutation resulting from the replacement of a tryptophan by a arginine at position 44 {0082}.

 

Pinb-D1e {0204}.

v:

Gehun {0204}; Canadian Red {0204}; Chiefkan {0204}.

 

 

Pinb-D1e is a “loss-of-function” mutation resulting from the replacement of a tryptophan by a stop codon at position 39 {0204}.

 

Pinb-D1f {0204}.

v:

The hard component of Utac {0204}.

 

 

 

Pinb-D1f is a “loss-of-function” mutation resulting from the replacement of a tryptophan by a stop codon at position 44 {0204}.

 

 

Pinb-D1g {0204}.

v:

Andrews {0204}.

 

 

Pinb-D1g is a “loss-of-function” mutation resulting from the replacement of a cysteine by a stop codon at position 56 {0204}.

 

Pinb-D1h {03105}.

dv:  

Ae. tauschii TA2369 Pina-D1c, Gsp-D1c {03105}; TA2527 Pina-D1c, Gsp-D1e {03105}; TA1649 Pina-D1d, Gsp-D1f {03105}.

 

Pinb-D1i {03105}.

dv:  

Ae. tauschii TA2475 (GenBank AY251989) Pina-D1a, Gsp-D1b {03105}; TA2536 (GenBank AY251993) Pina-D1c, Gsp-D1d {03105}; TA2374 (GenBank AY1948) Pina-D1d, Gsp-D1d {03105}; TA2512 (GenBank AY251992) Pina-D1d, Gsp-D1e {03105}; TA2455 (GenBank AY251972) Pina-D1d, Gsp-D1f {03105}; TA2458 (GenBank AY1986) Pina-D1e, Gsp-D1d {03105}; TA2495 (GenBank AY1991) Pina-D1e, Gsp-D1e; TA2436 Pina-D1f, Gsp-D1d {03105}.

 

 

Pinb-D1j {03105}.

dv:  

Ae. tauschii TA1599 Pina-D1a, Gsp-D1g {03105}; TA1691 Pina-D1a, Gsp-D1h {03105}.

 

Pinb-D1k.

dv:  

Ae. tauschii PI554318 (GenBank AJ302108) Pina-D1d {03104}.

Pinb-Am1 {0083}.

5AmS {0083}.

dv:

T. monococcum DV92 (cultivated), G3116 (spp. aegilopoides) (GenBank AJ242716){0083}; unspecified accession (GenBank AJ249934){03103} is identical to allele Pina-D1h {03105}; PI277138 (GenBank AJ302102) {03104}; PI418582 (GenBank AJ302101) {03104}.

 

In T. monococcum Pinb-Am1 is 0.1 cM proximal to Pina-Am1 and both loci are less than 36 kb apart {0083}.

Pinb-S1 {03108}.

dv:

Ae. speltoides PI393494 (GenBank AJ302105) {03104}; PI369616 (GenBank AJ302106) {03104}; Ae. speltoides spp. speltoides TA2368, TA1789 {03108}; Ae. speltoides spp. ligustica  TA1777 {03108}.

Pinb-Sb1 {03108}.

dv: 

Ae. bicornis spp. typica  TA1954, TA1942 {03105}.

Pinb-Sl1 {03108}.

dv: 

Ae. longissima spp. longissima TA1912 {03108}; Ae. longissima spp. nova TA1921 {03108}.

Pinb-Ss1 {03108}.

dv: 

Ae. searsii TA1837, TA1355 {03105}.

Pinb-Ssh1 {03108}.

dv:

Ae. sharonensis TA1999 {03105}.

 

Pinb-D1b, Pinb-D1c, Pinb-D1d, Pinb-D1e, Pinb-D1f, or Pinb-D1g were present in hard hexaploid wheats not carrying the Pina-D1b (null) mutation {452, 1035, 0082, 0204, 0295}.

Wheats with Pinb-D1b were slightly softer and slightly superior to those with Pina-D1b in milling and bread-making characteristics although there was considerable overlap {0206}.

Transgenic rice with the Pina-D1a and Pinb-D1a alleles possessed softer grain {0207}.

Genotypes for a selection of North American wheats are given in {0204}.

 

Gsp-1 {1185}.

 

 

Gsp-A1 {614}.

5A {614, 0383}.  

v:

CS {614, 0383}; Rosella (GenBank AF177218){0383}.

 

 

In {1185} partial-sequence clone TSF61 from cv Soft Falcon (GenBank X80380) is identical to this allele.

Gsp-B1 {614}.

5B {614}.  

v:

CS {614}; Glenlea {0385}.

 

In {1185} sequence of clone TSF33 from cv Soft Falcon (GenBank X80379) is identical to this allele, as are ESTs for cv CS (dbEST BJ235798) and cv CNN (dbEST BE423845).

Gsp-D1 {614}.

5DS {614}.

v:

CS {614}; Glenlea {0385}.

 

ma:

Cosegregation of Gsp-D1 and Ha {614}.

 

dv:

Ae. tauschii CPI110799 (GenBank AF177219) {0383}.

 

In {1185} sequence of clone TSF69 from cv Soft Falcon (GenBank S72696) is identical, as are ESTs for cv CS (dbEST BJ237450) and cv CNN (dbEST BE422565).

 

Gsp-D1b {03105}.

dv:

Ae. tauschii TA1583 (GenBank AY252079) Pina-D1a, Pinb-D1a {03105}; TA2475 (GenBank AY252087) Pina-D1a, Pina-D1i {03105}.

 

Gsp-D1c {03105}.

dv:

Ae. tauschii TA2369 (GenBank AY252081) Pina-D1c, Pinb-D1h {03105}; CPI110799 (GenBank AF177219) {0383}.

 

Gsp-D1d.

dv:

Ae. tauschii TA2536 (GenBank AY252093) Pina-D1c, Pinb-D1i {03105}; TA2374 (GenBank AY252046) Pina-D1d, Pinb-D1i {03105}; TA2458 (GenBank AY252084) Pina-D1e, Pinb-D1i {03105}; TA2436 (GenBank AY252048) Pina-D1f, Pinb-D1i {03105}.

 

Gsp-D1e.

dv:

Ae. tauschii TA2527 (GenBank AY252066) Pina-D1c, Pinb-D1h {03105}; TA2512 (GenBank AY252092) Pina-D1d, Pinb-D1i {03105}; TA2495 (GenBank AY252091) Pina-D1e, Pinb-D1i {03105}.

 

Gsp-D1f .

dv:

Ae. tauschii TA1649 (GenBank AY252063) Pina-D1d, Pinb-D1h {03105}; TA2455 (GenBank AY252073) Pina-D1d, Pinb-D1i {03105}.

 

Gsp-D1g.

dv:

Ae. tauschii TA1599 (GenBank AY252062) Pina-D1a, Pinb-D1j {03105}.

 

Gsp-D1h.

dv:

Ae. tauschii TA1691 (GenBank AY252064) Pina-D1a, Pinb-D1j {03105}.

 

Response to Vernalization

Vrn-B1. 

At the end of the introductory paragraph add:  ‘On the other hand Japanese workers {0305} claim that Vrn-B1 corresponds only to the former Vrn2 and not to Vrn4.’.

 

At the end of the second paragraph add: ‘Vrn-Am1 was mapped to the Xcdo504-5A – Xpsr426-5A region {0312}.  In the opinion of the curators this location may not be correct.

 

At the bottom of the section add: ‘The development of a dCAPS marker from RFLP marker WG644 as a molecular tag for Vrn-B1 was reported in {0305}.’.

 

ma: 

Xwg644-5B - 1.7 cM - Vrn-B1 {0305}; Vrn-B1 – 2.5 cM – Xgwm408-5B {0337}.

 

Vrn2.   

At the end of the first paragraph add:  'Vrn-Am2 was mapped to the distally located Xwg114-5A - Xwec87-5A region {0312}.'.

 

Restorers for Cytoplasmic Male Sterility

3.  Restorers for photoperiod-sensitive Aegilops crassa cytoplasm

Rfd1. 

At end of section add:  ‘Several Japanese wheats carry a similar or equally effective gene combination {0335}.’.

 

Pathogenic Disease/Pest Reaction

Reaction to Blumeria tritici (formerly Erysiphe graminis)

Pm1.

 

 

 
Pm1a.

ma:

Complete cosegregation of several markers including Xcdo347-7A, Xpsr121-7A, Xpsr680-7A, Xpsr687-7A, Xbzh232(Tha)-7A, Xrgc607-7A and Xsts638-7A with Pm1 and Lr20 was reported in {0323}.

 
Pm1e {0322}.   

 

v:

See earlier listings under Pm22.

Pm3.

ma:

Xgdm33-1A - 2.3cM - Pm3/Xpsp2999-1A {0313}.

 

 

Genotype list:  {0313}.

 
Pm3d.
 
v:

Axona {0313}; Cornette {0313}; Indian 4 {0313}; Kadett {0313}; Kleiber {0313}.

 
Pm3g.
1AS (0363}

v:

Champêtre {0313}; Lutin {0313}; Oradian {0313}: Rubens {0313}; Soissons {0313}; Valois {0313}.

 

ma:

Add: ‘Pm3g is completely linked to microsatellite Xpsp2999 in {0363}.’.

Pm4.

 

 

 
Pm4b.

ma:

Xgwm382-2A – ±10 cM - Pm4b - ±2 cM – XgbxG303 [{0354}].

Pm22 {1134}.

1D {1134}.   

Transfer v: listings to Pm1e and delete comment at the end of Pm22 section.

Pm29.

ma:

Pm29 co-segregates with several markers {0129}.

Pm31 {0301}.   

 

v:

G-305-M/781//3*Jing 411 {0301}.  

tv:

T. dicoccoides G-305-M {0301}.

mljy {0339}.

7B {0339}.

v:

Jieyan 94-1-1 Pm8 {0339}.

 

 

 

Recessive, hemizygous-effective {0339}.

mlsy {0339}.

7B {0339}.

v:

Siyan 94-2-1 {0339}.

 

 

 

Recessive, hemizygous-effective {0339}.

 

QTL: 

QTL on chromosomes 1A, 2A, 2B, 3A, 5D, 6A and 7B were detected in a RE714/Festin population in multiple locations and over multiple years.  The QTL on chromosome 5D was detected in all environments and all years and is associated with markers Xgwm639-5D and Xgwm174-5D.  Resistance was contributed by RE714.  A QTL coinciding with MlRE on 6A was also detected in all environments.  The QTL on chromosomes 5D and 6A accounted for 45% to 61% of the phenotypic variation {0354}.

 

Reaction to Diuraphis noxia

Dn2.       ma: Add ‘XksuA1-7D – 9.9 cM – Dn2 – 2.8 cM – Xgwm437-7D {0353}.’.

Dn4.       ma: Add ‘Xgwm106-1D – 7.4 cM – Dn4 – 12.9 cM – Xgwm337-1D {0352}.’.

Dn6.       ma: Add ‘Dn6 – 3.0 cM – Xgwm111 {0352}.’.

 

Reaction to Fusarium graminearum

QFhs.ndsu-3AS {0372}.

3AS {0372}.

tv:

T. turgidum  var. dicoccoides. Recombinant substitution lines LDN and LDN(Dic-3A). The resistant allele was contributed by dicoccoides {0372}.

 

ma:

Associated with Xgwm2-3A (explained 37% of the phenotypic variation) {0372}.

 

QTL:

QTLs were located in 3BS, 2BL and 2AS in Ning 7840/Clark.  The most effective QTL was probably in an interval, flanked by deletions 3BS-3 and -8 and was close to Xgwm533-3B and Xbarc147-3B {0328}. 

 

 

 

Reaction to Heterodera avenae

CreR {0318}.

6RL.

ad:

Wheat + 6R {0318}; Wheat + 6RL {0318}; Various deletion stocks {0318}.

 

 

al:

Triticale T-701

 

ma:

Deletion mapping indicated CreR was located near Got-R2 {0318}.

 

 

Reaction to Magnaporthe grisea

M. grisea is a pathogen of blast on many graminaceous species, the best known of which is rice.  In Brazil it has become a pathogen of wheat.  The wheat pathotype(s) is different from those attacking other species such as rice, oats, millets and weeping lovegrass.

Rmg1 {0333}.   

Rwt4 {0302}.   

v:

Norin 4  {0302}.

A second gene designated Rwt3 {0302} was present in Chinese Spring and Norin 4.  Genes Rwt3 and Rwt4 were detected using hybrids of Triticum-virulent and Avena-virulent pathogen isolates.

 

Reaction to Mayetiola destructor

H21.

ma: 

A STS primer set SJ07 was developed to identify 2RL, and hence H21 {0233}.

H30 {0256}.

Derived from Ae. triuncialis  {0256}.

 

 

v: 

TR-3531 {0256}.

al: 

Ae. triuncialis {0256}. 

H31 {0332}.   

5BS {0332}.   

v:

P961696 {0332}.   

tv: 

CI3984  {0332}.   

 

ma: 

STS marker Xupw148-5B – 3 cM - H31 {0332}.

 

Reaction to Mycosphaella graminicola

Stb6.    

 

v:

 Add: ‘Bezostaya {0187}; Hereward {0187}; Shafir {0187}; Vivant {0187}.’

 

ma: 

Stb6 - 2cM - Xwgm369-3A {0187}.

 

Stb7 {0311}.   

4AL {0311}.

v:

ST6 = Estanzuela Federal {0310,0311}.

 

ma: 

Xwmc219-4A - 0.8cM - Xwmc-4A - 0.3cM - Stb7 {0311}.

 

Stb8 {0326}.   

7BL {0326}.

v:

 Synthetic hexaploid W7984 (parent of ITMI population) {0326}.   

 

ma: 

Xgwm146 - 3.5cM - Stb8 - 5.3cM - Xgwm577 {0326}.

 

Reaction to Pratylenchus spp.

1. Reaction to Pratylenchus neglectus

Rlnn1

ma: 

Mapped between markers Xpsr121-7A and Xgwm344-7A and 9 cM proximal to Lr20 {0374}.

 

Reaction to Puccinia graminis Pers.

Sr2.

ma:

Xgwm389-3B – 2.7 cM – Sr2 – 1.1 cM – Xglk683 {0358}.

Sr15. 

ma:

Associated with clustered markers {0323}.

Sr24.

3DL.

v:

At the end of section add: ‘List of Australian genotypes {0340}.’.

Sr31.

ma:

Several markers tightly linked with Sr31 were identified in {0377}.

Sr33.

ma:

Xmwg60-1D – 5.8 cM – Sr33 – 2.2 cM – Xwmg2083-1D {0360}.

SrR.

ma:

Several markers tightly linked with SrR were identified in {0377}.

 

Reaction to Puccinia striiformis Westend.

Yr5.

v:

By 33 {03102}.

 

ma:

Yr5 – 10.5 & 13.3 cM – Xgwm501-2B {03102}.

Yr9.

ma:

Several markers tightly linked with Yr9 were identified in {0377}.

Yr10.

ma:

Yr10 – 1.2 cM – Xpsp3000-1B – 4.0 cM – Gli-B1 {0321}.

Cosegregation between a RGA marker RgaYr10a and Yr10 was reported in {0376}.

Yr15.   

v: 

Add:  ‘Boson {0330}; Agrestis {0330}.’

Yr25.   

v: 

Add: ‘Tugela {0314}; Tugela-DN {0314}.’

Yr29  {0119}.

Add: ‘See Lr46.’.

Yr31 {0325}.   

2BS {0325}.    

v:

 Pastor {0325}.   

 

ma:

recombination values: Yr31 - Yr27 0.148; Yr31 - Lr23 0.295; Yr27 - Lr23 0.131 {0325}.

YrMor.

ma:

The development of an STS marker, derived from an AFLP fragment, that co-segregates with YrMor was reported in {0357}.

 

Add at the end of this section:

QTL: 

Two QTL in Camp Remy/Michigan Amber were located on chromosomes 2BL (QYR1, LOD score 12) and 2AL (QYR2, 2.2) {0304}. Four QTL were scored in the ITMI population. The most effective (QYR3, 7.4) on chromosome 2BS was probably Yr27, the others were located on 7DS (QYR4, 3.4), 5A (QYR5, 2.8), 3D (QYR6, 2.8) and 6DL (QYR7, 2.4) {0304}.

 

Reaction to Puccinia triticina (formerly P. recondita tritici)

Lr10.

v:

At the end of section add: ‘See also {0337}.’.

Lr17a.

v:

Jagger {0338}.

At the end of Lr17 section add: ‘ {0337} (European cultivars).

Lr20.

ma:

Complete cosegregation of several markers including Xcdo347-7A, Xpsr121-7A, Xpsr680-7A, Xpsr687-7A, Xbzh232(Tha)-7A, Xrgc607-7A and Xsts638-7A with Pm1 and Lr20 was reported in {0323}.

Lr21.

ma:

Add at the end of the sentence starting ‘All members of the Lr21 family …’:

XksuD14-1D was reported to map 1.8 cM proximal to Lr21 in {0375}.’

Lr21 – 0 cM – rgaYr10b – 0.6 cM  - Xgdm33-1D {0360}.

Lr24.

3DL

v:

At the end of section add: ‘List of Australian genotypes {0340}.’.

Lr26.

ma:

Several markers tightly linked with Lr26 were identified in {0377}.

Lr46.

ma:

An AFLP marker associated with Lr46 with a recombination value of about 10% was identified in {0119}.

Lr48.   

4BL {0329}.   

v:

Dove Lr34 {0329}.

Lr49.   

2AS (0329}.   

v:

Tonichi Lr34 { 0329}.

Lr51 {0308}.   

1BL {0308}.   

i: 

Express*7/T1 {0308}; Kern*7/T1 {0308}; UC1037*7/T2 {0308}.   

 

 

v:

Neepawa*6/ Ae. speltoides F-7, selections 3 and 12 {0306}.  Interstitial translocations T1AS.1AL-1S#F7-12L-1AL {0308} = T1; T1BS.1BL-1S#F7L-1BL {0306}. 

 

 

al:

Ae. speltoides F-7 selections 3 and 12 {0306}. 

 

ma:

linked with RFLP markers Xmwg710 - XAga7 {0308}.

Genotype lists:  Add {0334} to (U.S.A. cultivars).

 

Reaction to Pyrenophora tritici-repentis

2. Resistance to chlorosis induction

Tsc1. 

Add: 'Tsc1, or a closely associated gene, confers insensitivity to Ptr ToxC {see 0315}'.    Inoculation with purified toxin Ptr ToxC was used to map this locus 5.7 cM proximal to XGli-1A {0315}.

 

ma: 

Gli1 - 5.7cM - Tsc1 ('Ptr ToxC') {0315}.

 

Reaction to Schizaphis graminum

Gb3.   

7DL {0319}.   

v: 

TAM110 {0319}; TXGBE373 {0319}.   

 

ma:

Completely associated with 2 AFLP markers {0319}.  These were also present in germplasm line KS89WGRC4, implying the likelihood of Gb3 or a closely linked resistance gene {0319}.

 

Reaction to Sitodiplosis mosellana

Pest: Add at the end of the pest common names: ‘This pest should not be confused with Contarinia tritici, the yellow blossom wheat midge.’.

 

Reaction to Tapesia yallundae (formerly Pseudocercosporella herpotrichoides)

Pch2. 

Add after the present entry: ‘According to {0380}, this gene is not effective at the adult plant stage.  Instead, the adult resistance of Cappelle-Desprez was controlled by a gene on chromosome 5A with the possibility of two less effective genes on 1A and 2B.

 

 

Genetic Linkages

Chromosome 1BS

Gli-B1 -                 Xgwm11/Xgwm18-1B                  20.7 cM {0321}.

 

Chromosome 1BL

Cent - Lr51                                            0.41 {0307}, 50 - 86 cM {0308}.

 

Chromosome 7BS

Hl2 - cent                                              0.143 +/- 0,035  {0316}.

 

Chromosome 7DL

Cent…..Xgwm111-7D - Gb3                  22.5 cM {0319}.

Gb3 - Xgwm428-7D                           33.1 cM  {0319}.

Pm29 – Pm19                        Independent {0129}.          

 

Additions to Summary Table 1

CK2a

Casein Kinase 2a subunit.

Cyp71C

Cytochrome P450 mono-oxygenase CYP71C subfamily.

Msh7

DNA mismatch repair gene.

Sut-1

Sucrose transporter-1.

 

References

Amendments.

1035.       Giroux MJ & Morris CF  1998  Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proceedings of the National Academy of Science USA 95: 6262-6266.

1185.       Replace ‘puroindol-like’ with ‘puroindoline-like’ in the reference title.

1336.      Replace the year 1985 with 1984.

9960.       Flintham J, Adlam R, Bassoi M, Holdsworth M & Gale M 2002 Mapping genes for resistance to sprouting damage in wheat. Euphytica 126: 39-45.

0085.       Saini RG, Kaur M, Singh B, Sharma Shiwani, Nanda GS, Nayar SK, Gupta AK & Nagarajan S  2002  genes Lr48 and Lr49 for hypersensitive adult plant leaf rust resistance in wheat (Triticum aestivum).  Euphytica 124: 365-370.

0119.       William HM, Singh RP, Herta-Espino J, Ortiz Islas S & Hoisington D 2003 Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat.  Phytopathology 93: 153-159.

0129.       Zeller FJ, Kong L, Hartl L, Mohler V & Hsam SLK  2002  Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova. Euphytica 123: 187-194.

0187.       Brading PA, Verstappen ECP, Kema GHJ & Brown KM.  2002  A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the septoria tritici blotch pathogen.  Phytopathology 92: 439-445.

0215.                Dudnikov AJ, Gorel FL & Berdnikov VA  2002  Chromosomal location of histone H1 genes in common wheat.  Cereal Research Communications 30: 55-61.

0218.                McKenzie Lamb Aung Wise Barker & Orfert  2002  Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat. Plant Breeding 121: 383-388.

0231.       Börner A & Worland AJ 2002  Does the Chinese dwarf wheat variety ‘XN004’ carry Rht21?  Cereal Research Communications 30: 25-29.

0233.       Omitted from the Wheat Newsletter 48 version of the 2002 Supplement.   

Thomas J, Riedel E & Penner G  2001  An efficient method for assigning traits to chromosomes.  Euphytica 119: 217-221.

0237.                Ammiraju JSS, Dholakia BB, Jawdekar G, Santra DK, Gupta VS, Röder MS, Singh H, Lagu MD, Dhaliwal HS, Rao VS, & Ranjekar PK  2002  Inheritance and identification of DNA markers associated with yellow berry tolerance in wheat (Triticum aestivum L.). Euphytica 123: 229-233.

0240.                Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M & Ruckenbauer P  2002  Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theoretical & Applied Genetics 104: 84-91.

0250.                Khlestkina EK, Pestsova EG, Röder MS & Börner A  2002  Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.).  Theoretical & Applied Genetics 104: 632-737.

0254.       Wang H-J, Huang XQ, Röder MS & Börner A  2002  Genetic mapping of loci determining long glumes in the genus Triticum. Euphytica 123: 287-293. 

0255.       Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS & Weber WE  2002  Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.).  Theoretical and Applied Genetics 105: 921-936.

0256.       Delibes A  2002 Personal communication.

0290.                Klindworth DL, Williams ND & Maan SS  2002  Chromosomal location of genetic male sterility genes in four mutants of hexaploid wheat.  Crop Science 42: 1447-1450.

0295        Morris CF  2002  Puroindolines: the molecular genetic basis of wheat grain hardness.  Plant Molecular Biology 48:633-647.

02112.                 Gianibelli MC, Wrigley CW & MacRitchie F 2002 Polymorphism of low Mr glutenin subunits in Triticum tauschii. Journal of Cereal Science 35: 277-286.

 

New.

0301.       Xie CJ, Sun QX, NiZF, Yang TM, Nevo E & Fahima T  2002  Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers.  Manuscript.

0302.                Tabayashi N, Tosa Y, Oh HS & Mayama S  2002  A gene-for-gene relationship underlying the species-specific parasitism of Avena/triticum isolates of Magnaporthe grisea on wheat cultivars.    Phytopathology 92: 1182-1188.

0303.       Morris CF & Allen RE  2001  Registration of hard and soft near-isogenic lines of hexaploid wheat genetic stocks. Crop Science 41: 935-936.

0304.       Moris CF & Konzak CF  2001   Registration of hard and soft homozygous waxy wheat germplasm. Crop Sciences 41: 934-935.

0305.       Iwaki K, Nishida J, Yanagisawa T & Yoshida H  2002  Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.).  Theoretical & Applied Genetics 104: 571-576.

0306.       Dvorak  1977  Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum.  Canadian Journal of Genetics and Cytology 19: 133-141.

0307.       Dvorak L & Knott DR  1980  Chromosome location of two leaf rust resistance genes transferred from Triticum speltoides to T. aestivum. Canadian Journal of Genetics and Cytology 22: 381-389.

0308.       Dubcovsky J  2002  Personal communication.

0309.       Sourdille P, Cadalen T, Gay G, Gill BS & Bernard M  2002  Molecular and physical mapping of genes affecting awning in wheat.  Plant Breeding 121: 320-324.

0310                   McCartney CA, Brûlé-Babel AL & Lamari L  2002  Inheritance of race-specific resistance to Mycosphaerella graminicola in wheat.  Phytopathology 92: 138-144.

0311.       McCartney CA 2002 Personal communication.

0312.       Shindo C, Sasakuma T, Watanabe N & Noda K  2002  Two-gene systems of vernalization requirement and narrow-sense earliness in einkorn wheat.  Genome 45: 563-569.

0313.       Bouget Y, Lemoine J, Pavoine MT, Barloy D & Doussinault G  2002  Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat.  Plant Breeding 121: 325-329.

0314.       Boshoff WHP, Pretorius ZA & Van Niekerk BD  2002  Establishment, distribution, and pathogenicity of Puccinia striiformis f. sp. tritici in South Africa.  Plant Disease 86: 485-492.

0315.       Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JD & Francl LJ  2002  Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat.  Phytopathology 92: 527-533.

0316.       Taketa S, Chang CL, Ishii M & Takeda K  2002  Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar 'Hong-mang-mai'.  Euphytica 125; 141-147.

0317.       Lillemo M & Ringlund K  2002  Impact of puroindoline alleles on the genetic variation for hardness in soft x hard wheat crosses.  Plant Breeding 121: 210-217.

0318.       Dundas IS, Frappell DE, Crack DM & Fisher JM  2001  Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat. Crop Science 41: 1771-1778.

0319.       Weng Y & Lazar MD  2002  Amplified fragment length polymorphism - and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat.  Plant Breeding 121: 218-223.

0320.       Khabaz-Saberi H, Graham RD, Pallotta MA, Rathjen AJ & Williams KJ  2002  Genetic markers for manganese efficiency in durum wheat.  Plant Breeding 121: 224-227.

0321.       Wang LF, Ma JX, Zhou RH, Wang XM & Jia JZ  2002  Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I. 178383 (Triticum aestivum L.).  Euphytica 124: 71-73.

0322.       Singrün CH, Hsam SLK, Hartl L, Zeller FJ & Mohler V  2002  Powdery mildew resistance gene Sr22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.).  Theoretical & Applied Genetics (in press).

0323.       Neu C, Stein N & Keller B  2002  Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat.  Genome 45: 737-744.

0324.       Faris JD & Gill BS  Genomic targeting and high-resolution mapping of the domestication gene Q in wheat.  Genome 45:706-718.

0325.       Singh RP  2002  Personal communication.

0326.       Goodwin SB  2002  Personal communication.

0327.       Yang J, Sears RG, Gill BS & Paulson GM  2002  Quantitative and molecular characterization of heat tolerance in hexaploid wheat.  Euphytica 126: 275-282.

0328.       Zhou WC, Kolb FL, Bai GH, Shaner G & Domier LL  2002  Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers.  Genome 45: 719-727.

0329.       Bansal U 2002  Personal communication.

0330.        Hovmöller M  2002.  Personal communication.

0331.       Taketa S, Choda M, Ohashi R, Ichii M & Takeda K  2002  Molecular and physical mapping of a barley gene on chromosome 1HL that causes sterility in hybrids with wheat.  Genome 45: 617-625.

0332.       Williams CE  2002  Personal communication.

0333.       2003.  This publication.

0334.       Kolmer J  2002.  Virulence phenotypes of Puccinia triticina in the south Atlantic states in 1999.  Plant Disease 86:288-291.

0335.       Murai K & Tsunewaki K  1995  Photoperiod-sensitive cytoplasmic male sterility induced in Japanese wheat cultivars by transferring Aegilops crassa cytoplasm.  Breeding Science 45: 199-203.

0336.       Eliot C, Zhou FS, Spielmeyer W, Panstruga R & Schulze-Lefert P  2002  Functional conservation of wheat and rice Mlo orthologues in defense modulation to the powdery mildew fungus. Molecular Plant-Microbe interactions 15: 1069-1077

0337.       Barrett B, Bayram M & Kidwell K  2002  Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breeding 121: 400-406.

0338.       Long DL, Kolmer JA, Leonard KJ & Hughes ME  2002  Physiologic specialization of Puccinia triticina in the United States in 2000. Plant Disease 86: 981-986.

0339.       Huang XQ, Hsam SLK & Zeller FJ  2002  Chromosomal location of genes for resistance to powdery mildew in Chinese wheat lines Yieyan 94-1-1 and Siyan 94-2-1. Hereditas 136: 212-218.

0340.       Park RF, Bariana HS, Wellings CR & Wallwork H  2002  Detection and occurrence of a new pathotype of Puccinia triticina with virulence for Lr24 in Australia.  Australian Journal of Agricultural Research 53: 1068-1076.

0341.       Ahmad M & Sorrells ME  2002  Distribution of microsatellite alleles linked to Rht8 dwarfing gene in wheat. Euphytica 123: 235-240.

0342.                   Anderson JV & Morris CF  2001  An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity. Crop Science 41: 1697-1705.

0343.       Blanco A, Pasqualone A, Troccoli A, Di Fonzo N & Simeone R  2002  Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Molecular Biology 48: 615-623.

0344.       Demeke T, Morris CF, Campbell KG, King GE, Anderson JA & Chang HG  2001  Wheat polyphenol oxidase: Distribution and genetic mapping in three inbred line populations. Crop Science 41: 1750-1757.

0345.       Dong CM, Whitford R & Langridge P  2002  A DNA mismatch repair gene links to the Ph2 locus in wheat. Genome 45: 116-124.

0347.       Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F & Charmet D  2002  Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white x red grain bread-wheat cross. Theoretical and Applied Genetics 104: 39-47.

0348.       Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P & Leroy P  2002  Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical and Applied Genetics 105: 413-422.

0349.                   Guyomarc'h H, Sourdille P, Charmet G, Edwards KJ & Bernard M  2002  Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theoretical and Applied Genetics 104: 1164-1172

0350.       Ikeda TM, Nagamine T, Fukuoka H & Yano H  2002  Identification of new low-molecular-weight glutenin subunit genes in wheat. Theoretical and Applied Genetics 104: 680-687.

0351.       Weng Y & Lazar MD  2002  Comparison of homoeologous group-6 short arm physical maps of wheat and barley reveals a similar distribution of recombinogenic and gene-rich regions. Theoretical and Applied Genetics 104: 1078-1085.

0352.       Liu XM, Smith CM & Gill BS  2002  Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theoretical and Applied Genetics 104: 1042-1048.

0353.       Miller CA, Altinkut A & Lapitan NLV  2001  A Microsatellite marker for tagging Dn2, a wheat gene conferring resistance to the Russian wheat aphid. Crop Science 41: 1584-1589.

0354.       Mingeot D, Chantret N, Baret PV, Dekeyser A, Boukhatem N, Sourdille P, Doussinault G & Jacquemin JM  2002  Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breeding 121: 133-140.

0356.       Pueyo A, Figueiras AM & Benito C  2002  Is the Mnr locus of Triticeae species the same as the Ndh and Dia loci? Theoretical and Applied Genetics 104: 513-517.

0357.       Smith PH, Koebner RMD & Boyd LA 2002 The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro. Theoretical and Applied Genetics 104: 1278-1282.

0358.                   Spielmeyer W, Sharp PJ & Lagudah ES 2003 Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Science 43: 333-346.

0359.       Wang XW, Lai JR, Liu GT & Chen F  2002  Development of a scar marker for the Ph1 locus in common wheat and its application. Crop Science 42: 1365-1368.

0360.                Spielmeyer W, Huang L, Bariana H, Laroche A, Gill BS & Lagudah E  2000  NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theoretical & Applied Genetics 101: 1139-1144.

0361.      Aoki N, Whitfield P, Hoeren F, Scofield G, Newell K, Patrick J, Offler C, Clarke B, Rahman S & Furbank RT  2002  Three sucrose transporter genes are expressed in the developing grain of hexaploid wheat. Plant Molecular Biology 50: 453-462.

0362.      Batey IL, Hayden MJ, Cai S, Sharp PJ, Cornish GB, Morell MK & Appels R  2002  Genetic mapping of commercially significant starch characteristics in wheat crosses (vol 52, pg 1287, 2001). Australian Journal of Agricultural Research 52: 1087-1296.

0363.      Bougot Y, Lemoine J, Pavoine MT, Barloy D & Doussinault G  2002  Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat. Plant Breeding 121: 325-329.

0364.      Bullrich L, Appendino ML, Tranquilli G, Lewis S & Dubcovsky J  2002  Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1A(m). Theoretical and Applied Genetics 105: 585-593.

0365.      Elouafi I, Nachit MM & Martin LM  2001  Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135: 255-261.

0366.      Eujayl I, Sorrells ME, Baum M, Wolters P & Powell W  2002  Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theoretical and Applied Genetics 104: 399-407.

0367.      Hessler TG, Thomson MJ, Benscher D, Nachit MM & Sorrells ME (2002) Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Science 42: 1695-1700

0368.      Holton TA, Christopher JT, McClure L, Harker N & Henry RJ  2002  Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Molecular Breeding 9: 63-71.

0369.      Kato K, Kidou S, Miura H & Sawada S  2002  Molecular cloning of the wheat CK2 alpha gene and detection of its linkage with Vrn-A1 on chromosome 5A. Theoretical and Applied Genetics 104: 1071-1077.

0370.      Mohler V, Klahr A, Wenzel G & Schwarz G  2002  A resistance gene analog useful for targeting disease resistance genes against different pathogens on group 1S chromosomes of barley, wheat and rye. Theoretical and Applied Genetics 105: 364-368.

0371.      Nomura T, Ishihara A, Imaishi H, Endo TR, Ohkawa H & Iwamura H  2002  Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat. Molecular Genetics and Genomics 267: 210-217.

0372.      Otto CD, Kianian SF, Elias EM, Stack RW & Joppa LR  2002  Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Molecular Biology 48: 625-632.

0373.      Sandhu D, Sidhu D & Gill KS  2002  Identification of expressed sequence markers for a major gene- rich region of wheat chromosome group 1 using RNA fingerprinting-differential display. Crop Science 42: 1285-1290.

0374.                  Williams KJ, Taylor SP, Bogacki P, Pallotta M, Bariana HS & Wallwork H  2002  Mapping of the root lesion nematode (Pratylenchus neglectus) resistance gene Rlnn1 in wheat. Theoretical and Applied Genetics 104: 874-879.

0375.                Spielmeyer W & Lagudah ES  2002  Homoeologous set of NBS-LRR genes located at leaf and stripe rust resistance loci on short arms of chromosome 1 of wheat.  Functional & Integrative Genomics. In press.

0376.       Frick MM, Huel R, Nykiforuk CL, Conner RL Kusyk A & Laroche A  1998  Molecular characterisation of a wheat strip rust resistance gene in Moro wheat.  In: Slinkard AE (ed) Proceedings 9th International Wheat Genetics Symposium, Volume 3, pp 181-182.

0377.       Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG & Pryor A  2002  Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines.  Theoretical & Applied Genetics 104: 1317-1324.

0378.       Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ & Richards RA  2002  “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat.  Theoretical & Applied Genetics 105: 1038-1042.

0379.       Rebetzke GJ, Appels R, Morrison AD, Richards RA, McDonald G, Ellis MH, Spielmeyer W & Bonnett DG  2001 Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.) Australian Journal of Agricultural Research 52: 1221-1234.

0380.       Muranty H, Jahier J, Tanguy A-M, Worland AJ & Law CN  2002  Inheritance of wheat to eyespot at the adult stage. Plant Breeding 121: 539-541.

0381.       Bettge AD, Morris CF & Greenblatt GA 1995 Assessing genotypic softness in single wheat kernels using starch granule-associated friabilin as a biochemical marker. Euphytica 86: 65-72.

0382.       Blochet JE, Chevalier C, Forest E, Pebay-Peyroula E, Gautier MF, Joudrier P, Pezolet M & Marion D 1993 Complete amino acid sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat by Triton X-114 phase partitioning. Federation of European Biochemical Societies Letters 329: 336-340.

0383.       Turner M, Mukai Y, Leroy B, Charef B, Appels R & Rhaman S 1999 The Ha locus of wheat: Identification of a polymorphic region for tracing grain hardness in crosses.  Genome 42: 1242-1248.

0384.       Rahman S, Jolly CJ Skerritt JH & Wallosheck A 1994  Cloning of a wheat 15-kDa grain softness protein (GSP).  European Journal of Biochemistry 223: 917-925.

0385.       S. Cloutier  2003 Personal communication.

03101.     Urbano M, Margiotta B, Colaprico G & Lafiandra D  2002  Waxy proteins in diploid, tetraploid and hexaploid wheats. Plant Breeding 121: 465-468.

03102.     Sun Q, Wei Y, Ni C, Xie C & Yang T  2002  Micrsoatellite marker for yellow rust resistance gene Yr5 introgressed from spelt wheat. Plant Breeding 121: 539-541.

03103.     Gautier, MF, Cosson P, Guirao A, Alary R & Joudrier P 2000 Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Science 153: 81-91.

03104.     Lillemo M., Simeone MC & Morris CF 2002 Analysis of puroindoline a and b sequences from Triticum aestivum cv. ‘Penawawa’ and related diploid taxa. Euphytica 126: 321-331.

03105.     Massa AN, Morris CF & Gill BS  2003 Personal communication.

03106.     Morris CF, DeMacon VL & Giroux MJ 1999 Wheat grain hardness among chromosome 5D homozygous recombinant substitution lines using different methods of measurement. Cereal Chemistry 76: 249-254.

03107.     Morris CF & King GE 2002 Registration of soft and hard red winter wheat near-isogenic sister lines of ‘Weston’. Crop Science 42: 2218-2219.

03108.     Morris CF, Simeone MC, Gill BS, Mason-Gamer RJ & Lillemo M 2001 Comparison of puroindoline sequences from various diploid members of the triticeae and modern cultivated hexaploid wheats. (In) Cereals 2000. Proceedings 11th ICC Cereal & Bread Congress and the 50th Australian Cereal Chemistry Conference M Wootton, IL Batey & CW Wrigley (eds) Royal Australian Chemical Institute, North Melbourne, Victoria, Australia. pp. 678-681.

03109.     Symes K.J 1969 Influence of a gene causing hardness on the milling and baking quality of two wheats. Australian Journal of Agriculture Research 20: 971-979.

03110.     Gautier MF, Aleman ME, Guirao A, Marion D & Joudier P 1994 Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA analysis and developmental gene expression. Plant Molecular Biology 25: 43-57.

03111.     Jolly CJ, Rahman S, Kortt AA & Higgins TJ 1990 Characterisation of grain-softness protein, a marker of endosperm texture in wheat. Royal Australian Chemical Institute pp.92-95.

03112.   Alvarez JB, Campos LAC, Martín A, Sillero JA, Martín LM 1999 Genetic analysis of prolamins synthesised by the Hch genome and their effects on gluten strength in hexaploid tritordeum. Euphytica 107: 177-184.

03113.   Alvarez JB, Martín A, Martín LM 1999 Allelic variation of the D-prolamin subunits encoded at the Hch genome in a collection of primary hexaploid tritordeums. Theoretical and Applied Genetics 99: 296-299.

03114.   Alvarez JB, Martín A & Martín LM 2001 Variation in the high-molecular-weight glutenin subunits coded at the Glu-Hch1 locus in Hordeum chilense. Theoretical and Applied Genetics 102: 134-137.

03115.   Amiour N, Bouguennec A, Marcoz C, Sourdille P, Bourgoin M, Khelifi D & Branlard G 2002 Diversity of seven glutenin and secalin loci within triticale cultivars grown in Europe. Eupytica 123: 295-305.

03116.   Amiour N, Dardevet A, Khelifi D, Bouguennec A & Branlard G 2002 Allelic variation of HMW and LMW glutenin subunits, HMW secalin subunits and 75K gamma-secalins of hexaploid triticale. Euphytica 123: 179-186.

03117.   Amiour N, Jahier J, Tanquy AM, Chiron H & Branlard G 2002 Effect of 1R(1A), 1R(1B) and 1R(1D) substitution on technological value of bread wheat. Journal of Cereal Science 35: 149-160.

03120.   Branlard G, Dardevet M, Amiour N, Igrejas G 2003  Allelic diversity of the HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution (in press).

03121.                Brzezinski W & Lukaszewski AJ 1998 Allelic variation at the Glu-1, Sec-2 and Sec-3 in winter triticale. In: P. Juskiew (Ed.), Proc. 4th International Triticale Symposium, Alberta, Vol. II, pp 6-12.

03122.                Caballero L, Martín LM & Alvarez JB 2001 Allelic variation of the HMW glutenin subunits in Spanish accessions of spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.). Theoretical and Applied Genetics 103: 124-128.

03123.                Dubcovsky J, Bullrich L, Echaide M, Schlatter AR, Manifesto M, Tranquilli G, Pflüger L, Feingold S, Barneix AJ, Hopp EH & Suárez EY 1998 Determinantes genéticos de la calidad panadera de los trigos argentinos. RIA 29: 1-30.

03124.                Gianibelli MC, Gupta RB, Lafiandra D, Margiotta B & MacRitchie F 2001 Polymorphism of high Mr glutenin subunits in Triticum tauschii: Characterization by chromatography and electrophoretic methods. Journal of Cereal Science 33: 39-52.

03125.                 Gianibelli MC, Masci S, Larroquet OR, Lafiandra D & MacRitchie F 2002 Biochemical characterisation of a novel polymeric protein subunit from bread wheat (Triticum aestivum L.). Journal of Cereal Science 35: 265-276.

03126.                Gianibelli MC & Solomon RG 2003 A novel y-type high Mr glutenin subunit (12.4t) present in Triticum tauschii. Journal of Cereal Science 37: 253-256.

03127.   Igrejas G, Guedes-Pinto H, Carnide V & Branlard G 1999 Seed storage protein diversity in triticale varieties commonly grown in Portugal. Plant Breeding 118: 303-306.

03129.   Islam N, Woo SH, Tsujimoto H, Kawasaki H & Hirano H 2002 Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat (Triticum aestivum L.). Proteomics 2: 1146-1155.

03130.                Larroque O, Gianibelli MC & MacRitchie F 1999 Protein composition for pairs of wheat lines with contrasting dough extensibility. Journal of Cereal Science 29: 27-31.

03131.   Liu C.-Y & Shepherd KW 1996 Variation of B subunits of glutenin in durum, wild and less widely cultivated tetraploid wheats. Plant Breeding 114:

03132.   Luo C, Griffin WB, Branlard G & McNeil DL 2001 Comparison of low- and high molecular-weight wheat glutenin allele effects on flour quality. Theoretical and Applied Genetics 102: 1088-1098.

03133.                Margiotta B, Colaprico G, D’Ovidio R & Lafiandra D 1993 Characterization of high Mr subunits of glutenin by combined chromatographic (RP-HPLC) and electrophoretic separations and restriction fragment length polymorphism (RFLP) analyses of their coding genes. Journal of Cereal Science 17: 221-236.

03134.   Masci S, Rovelli L, Kasarda DD, Vensel WH & Lafiandra D 2002 Characterisation and chromosomal localisation of C-type low- molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theoretical and Applied Genetics 104: 422-428.

03135.                Nagamine T, Kai Y, Takayama T, Yanagisawa T & Taya S 2000 Allelic variation at the Glu-1 and Glu-3 loci in Southern Japanese wheats, and its effects on gluten properties. Journal of Cereal Science 32: 129-135.

03136.   Payne PI, Jackson EA & Holt LM 1984 The association between γ-gliadin 45 and gluten strength in durum wheat varieties: a direct causal effect or the result of genetic linkage? Journal of Cereal Science 2: 73-81.

03137.   Pflüger LA, Martín LM & Alvarez JB 2001 Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrank). Theoretical and Applied Genetics 102: 767-772.

03138.   Raciti CN, Doust MA, Lombardo GM, Boggini G, Pecetti L Characterization of durum wheat mediterranean germplasm for high and low molecular weight glutenin subunits in relation with quality.  European Journal of Agronomy (in press).

03139.   Rozinek B, Gunther T & Hesemann CU 1998 Gel electrophoretic investigations of prolamins in eu- and alloplasmatic octoploid primary triticale forms. Theoretical and Applied Genetics 96: 46-51.

03140.   Ruiz, M & Carrillo JM 1995 Relationships between different prolamin proteins and some quality properties in durum wheat. Plant Breeding 114: 40-44.

03141.   Ruiz M, Rodriguez-Quijano M, Metakovsky EV, Francisco Vazquez J & Carrillo JM 2002 Polymorphism, variation and genetic identity of Spanish common wheat germplasm based on gliadin alleles. Field Crops Research 79: 185-196.

03142.                 Tranquilli G, Cuniberti M, Gianibelli MC, Bullrich L, Larroque OR, MacRitchie F & Dubcovsky J 2002 Effect of Triticum monococcum glutenin loci on cookie making quality and on predictive tests for bread making quality. Journal of Cereal Science 36: 9-18.

03143.   Vaccino P, Redaelli R, Metakovsky EV, Borghi B, Corbellini M & Pogna NE 2002 Identification of novel low M-r glutenin subunits in the high quality bread wheat cv Salmone and their effects on gluten quality. Theoretical and Applied Genetics 105: 43-49.