CATALOGUE OF GENE SYMBOLS FOR WHEAT: 2001 Supplement

R.A. McIntosh1, K.M. Devos2, J. Dubcovsky3 and W.J. Rogers4

1Plant Breeding Institute, The University of Sydney, 107 Cobbitty Road, Cobbitty, N.S.W., Australia, 2570.

2John Innes Centre, Norwich Research Park, Colney, Norwich, Norfolk, NR4 7UH, U.K.

3Department of Agronomy and Range Science, University of California, Davis, 95616 CA, U.S.A.

4Catedra de Genetica y Fitotecnia, Universidad Nacional del Centro de la Provincia de Buenos Aires, 7300 Azul, Argentina.

The most recent edition of the Catalogue appeared in the Proceedings of the 9th International Wheat Genetics Symposium Vol. 5 (A.E. Slinkard ed., University Extension Press, University of Saskatchewan, Saskatoon, Canada).  A modified version is displayed on the Graingenes Website: http://wheat.pw.usda.gov/.  The 1999 and 2000 Supplements are included in Annual Wheat Newsletters and Wheat Information Service and are listed in the Graingenes Website.  The present Supplement will be offered to editors/curators for similar listing.

 

10. Laboratory Designators for DNA markers

ccsu

Gupta, P.K.

Molecular Biology Laboratory

Dept. of Agricultural Botany

Ch. Charan Singh University*

Meerut-250004

India

 

 

gdm

Roder, M.S.

(Gatersleben D-genome microsatellite*)

Institut fuer Pflanzengenetik und Kulturpflanzenforschung (IPK)

Corrensstr. 3

06466 Gatersleben

Germany

 

 

ycu

Ogihara, Y.

Kihara Institute for Biological Research Yokohama City University*

Nakamura-cho 2-120-3, Yokohama Kanagawa Pref., 232

JAPAN

ogihara@yokohama-cu.ac.jp

 

 

 

Morphological, Physiological, Molecular and DNA Traits

 

To reference {0066} given in the first paragraph in the 2000 Supplement add {0109}.

 

Gross Morphology : Spike characteristics

1. Squarehead/spelt

 

Q.

ma :  Complete linkage with cDNA clone PtAq22 {0127}.

 

q.

At end of section add : ‘The speltoid phenotype of at least some spelts may be caused by genes at other loci {0140}.’.

 

2. Club/Compact spike

QTL:  Six QTLs for spike compactness were detected in Courtot/Chinese Spring {0114} but only 4 on chromosome arms 1AL, 2BS, 2DS and 4AS were consistent for at least two years.

 

Aluminium Tolerance

Alt2.

v : 

BH1146 {1213,0115}; IAC-24 }0115}; IAC-60 {0115}; 13 induced mutants of Anahuac {0115}.

 

Brittle Rachis

Br2 {0130}.

3A {0130}.

Su:tv : 

LDN(DIC 3A) {0130}.

 

Br3 {0130}.

3B {0130}.

Su:tv :

LTN(DIC 3B) {0130}.

 

 

Evidence for a homoeologous series extending to many related  species is discussed in {0130}.

 

Crossability with Rye, Hordeum and Aegilops spp.

1. Common wheat

 

QTL :

65% of the variability in a Courtot/CS population was associated with Xfba367-5A (5BS), Xwg583-5B (5BL) and Xtam51-7A {0134}.  Only the second QTL appears to coincide with known locations of Kr genes.

 

 

DNA Markers

Group 1S

Amendments:

Xgwm273-1B. Add ‘(3A,B).’ in the last column.

Xgwm550-1B. Add ‘(7A).’ in the last column.

Xgwm582-1B. Add ‘(2A, 6B).’ in the last column.

 

Add:

Xgdm33-1A {0173}.

 

DMS F33/DMS R33.

(1D).

Xgdm33-1D {0173}.

 

DMS F33/DMS R33.

(1A).

Xgdm60-1D {0173}.

 

DMS F60/DMS R60.

 

Xgwm359-1B [{0170}].

[Xgwm359b-1B {0170}].

WMS F359/WMS R359.

(2A).

Xgwm911-1B {0171}.

 

WMS F911/WMS R911.

 

Xmwg2245-1D {0135}.

 

MWG2245.

 

Xwmc333-1A {0165}.

 

WMC 333F/WMC333R {0166}.

 

 

Group 1L

Amendments:

Xfbb255-1A,B. Add ‘(5A,B).’ in the last column.

Xgwm274-1B. Revise last column to ‘(5B, 7B).’.

Xgwm403-1B. Add ‘(2B).’ in the last column.

Xgwm497-1A. Revise the last column to ‘(2A, 3A,D, 5B).’.

 

Add:

Xgdm19-1D {0173}.

 

DMS F19/DMS R19.

(2D).

Xgdm111-1D {0173}.

 

DMS F111/DMS R111.

 

Xgdm126-1D {0173}.

 

DMS F126/DMS R126.

 

Xgwm633-1A {0171}.

 

WMS F633/WMS R633.

 

                               

Group 1

Amendments:

Xabc155-1D. Add ‘(5A,B,D).’ in the last column.

Add:

Xgdm28-1B {0173}.

 

DMS F28/DMS R28.

(6A).

Xgwm376-1A [{0171}].

[Xgwm376d-1Ai {0171}].

WMS F376/WMS R376.

(3B, 7A).

Xgwm408-1B [{0170}].

[Xgwm408b-1B {0170}].

WMS F408/WMS R408.

(5B).

Xgwm558-1A [{0171}].

[Xgwm558c,d-1A {0171}].

WMS F558/WMS R558.

(2A).

Xgwm903-1B {0171}.

 

WMS F903/WMS R903.

 

Xgwm934-1B {0171}.

 

WMS F934/WMS R934.

 

Xwmc44-1B {0153}.

 

WMC 44F/WMC 44R {0154}.

 

Xwmc120-1A {0153}.

 

WMC 120F/WMC 120R {0155}.

 

 

Group 2S

Amendments:

Xgwm55-2B. Revise the last column to ‘(3B, 6D).’.

Xgwm359-2A. Add ‘(1B).’ in the last column.

Xgwm374-2B. Add ‘(3A).’ in the last column.

Xgwm497-2A. Revise the last column to ‘(1A, 3A,D, 5B).’.

Xgwm630-2B. Add ‘(2A).’ in the last column.

Xpsr131-2A,B,D. Revise the last column to ‘(5A,D).’.

Xpsr801(Rbcs)-2A,B,D. Add ‘pW4.3 {139}’ to the third column and add the following note : ‘The development of probes specific to two of the three gene subfamilies on chromosome arms 2S and to the subfamily on chromosome arm 5L have been reported in {0149}.’.

Xrz395-2A. Revise the last column to ‘(5A,B,D).’.

 

Add:

Xgdm5-2A {0173}.

 

DMS F5/DMS R5.

(2D).

Xgdm5-2D {0173}.

 

DMS F5/DMS R5.

(2A).

Xgdm19-2D {0173}.

 

DMS F19/DMS R19.

(1D).

Xgdm35-2D {0173}.

 

DMS F35/DMS R35.

 

Xgdm107-2D {0173}.

 

DMS F107/DMS R107.

 

Xgwm68-2A [{0171}].

[Xgwm68a-2A {0171}].

WMS F68/WMS R68.

(5B, 7B).

Xgwm297-2A [{0171}].

[Xgwm297b-2A {0171}].

WMS F297/WMS R297.

(4A, 7B).

Xgwm630-2A [{0171}].

[Xgwm630c-2A {0171}].

WMS F630/WMS R630.

(2B).

 

Group 2L

Amendments:

Xbcd266-2D. Revise the first column to ‘Xbcd266-2B {0164}, 2D {864}.’.

Xgwm558-2A. Add ‘(1A).’ in the last column.

 

Add:

Xgdm6-2D {0173}.

 

DMS F6/DMS R6.

 

Xgdm87-2B {0173}.

 

DMS F87/DMS R87.

(2D).

Xgdm87-2D {0173}.

 

DMS F87/DMS R87.

(2B).

Xgdm93-2A {0173}.

 

DMS F93/DMS R93.

(2D, 4B).

Xgdm93-2D {0173}.

 

DMS F93/DMS R93.

(2A, 4B).

Xgdm114-2B {0173}.

 

DMS F114/DMS R114.

 

Xgwm88-2B [{0171}].

[Xgwm88b-2B {0171}].

WMS F88/WMS R88.

(6B).

 

Group 2

Add:

Xgdm29-2D {0173}.

 

DMS F29/DMS R29.

 

Xgdm77-2D {0173}.

 

DMS F77/DMS R77.

 

Xgdm86-2B {0173}.

 

DMS F86/DMS R86.

(7D).

Xgdm124-2B {0173}.

 

DMS F124/DMS R124.

 

Xgdm148-2D {0173}.

 

DMS F148/DMS R148.

 

Xgwm403-2B [{0171}].

[Xgwm403b-2B {0171}].

WMS F403/WMS R403.

(1B).

Xgwm582-2A [{0171}].

[Xgwm582-2A {0171}].

WMS F582/WMS R582.

(1B, 6B).

Xwmc24-2A {0153}.

 

WMC 24F/WMC 24R {0162}.

 

Xwmc25-2D {0153}.

 

WMC 25F/WMC 25R {0162}.

 

Xwmc149-2B {0153}.

 

WMC 149F/WMC 149R {0156}.

 

Xwmc167-2D {0153}.

 

WMC 167F/WMC 167R {0157}.

 

Xwmc170-2A {0153}.

 

WMC 170F/WMC 170R {0157}.

 

Xwmc245-2D {0153}.

 

WMC 245F/ WMC 245R {0159}.

 

 

 

 

 

 

Group 3S

Amendments:

Xfbb166-3B. Add ‘(5B).’ in the last column.

Xgwm376-3B. Add ‘(1A, 7A).’ in the last column.

XksuF34-3D. Revise the first column to ‘XksuF34-3B {0152}2, -3D [{448}]4, {233}1.’

 

Add:

Xgdm72-3D {0173}.

 

DMS F72/DMS R72.

 

Xgwm107-3B [{0171}].

[Xgwm107a-3B {0171}].

WMS F107/WMS R107.

(4B, 6B).

Xgwm374-3A [{0171}].

[Xgwm374b-3A {0171}].

WMS F374/WMS R374.

(2B).

XksuD30-3B {0152}.

 

pTtksuD30.

(5A,B,D).

 

Group 3L

Amendments:

Xabc172-3A.1,.2. Revise the first column to 'Xabc172-3A.1,.2 {1061},3D {0173}.'.

Xfbb237-3A,D. Revise the last column to ‘(5B,D).’.

Xgwm108-3B. Add ‘(6B).’ in the last column.

Xgwm247-3B. Add ‘(3A).’ in the last column.

Xgwm340-3B. Add ‘(3A).’ in the last column.

 

Add:

Xgdm8-3D {0173}.

 

DMS F8/DMS R8.

 

Xgdm38-3D {0173}.

 

DMS F38/DMS R38.

 

Xgdm128-3D {0173}.

 

DMS F128/DMS R128.

 

Xgdm134-3A {0173}.

 

DMS F134/DMS R134.

 

Xgwm55-3B [{0171}].

[Xgwm55c-3B {0171}].

WMS F55/WMS R55.

(2B, 6D).

Xgwm113-3B [{0171}].

[Xgwm113b-3B {0171}].

WMS F113/WMS R113.

(4B).

Xgwm247-3A [{0171}].

[Xgwm247b-3A {0171}].

WMS F247/WMS R247.

(3B).

Xgwm273-3B [{0171}].

[Xgwm273c-3B {0171}].

WMS F273/WMS R273.

(1B, 3A).

Xgwm340-3A [{0171}].

[Xgwm340b-3A {0171}].

WMS F340/WMS R340.

(3B).

Xgwm497-3A [{0171}].

[Xgwm497c-3A {0171}].

WMS F497/WMS R497.

(1A, 2A, 3D, 5B).

 

Group 3

Amendments:

Xgwm497-3D. Revise the last column to ‘(1A, 2A, 3B, 5B).’.

Add:

Xgdm62-3D {0173}.

 

DMS F62/DMS R62.

 

Xgdm64-3B {0173}.

 

DMS F64/DMS R64.

 

Xgdm120-3B {0173}.

 

DMS F120/DMS R120.

 

Xgwm273-3A [{0171}].

[Xgwm273b-3A {0171}].

WMS F273/WMS R273.

(1B, 3B).

Xwmc169-3A {0153}.

 

WMC 169F/ WMC 169R {0157}.

 

 

Group 4S (4AL:4BS:4DS)

Add:

Xgdm129-4D {0173}.

 

DMS F129/DMS R129.

 

 

Group 4L (4AS:4BL:4DL)

Amendments:

Xgwm251-4B. Add ‘(7A).’ in the last column.

Xgwm601-4A. Add ‘(7A).’ in the last column.

 

Add:

Xgdm93-4B {0173}.  

 

DMS F93/DMS R93.

(2A,D).

Xgdm125-4D {0173}.

 

DMS F125/DMS R125.

 

It is not clear whether Xgdm125-4D belongs to the group 4L or to the group 5AL:5BL:4DL.

Xgwm297-4A [{0171}].

[Xgwm297c-4A {0171}].

WMS F297/WMS R297.

(2A, 7B).

Xgwm663-4A {0171}.

 

WMS F663/WMS R663.

 

 

Group 5AL:4BL:4DL

Amendments:

Xcdo1333-4B,D.  Revise the first column to ‘Xcdo1333-5A {255,282}3, {0148}1, 4B,D {1008}.’ and remove ‘(5A).’ from the last column.

Xfbb255-4B. Add ‘(5A,B).’ in the last column.

Xgwm126-5A. Add ‘(6B).’ in the last column.

Xkvl920(OxoLP)-4D. Revise the first column to 'Xkvl920(OxoLP)-5A [{0148}], 4D [{0091}].' and revise the second column to '[Oxo1-5A {0148}, 4D {0091}].'.

 

Add:

Xycu518-5A,4B,4D {0186}.

 

pTaQ18.

 

Xycu524-5A,4B,4D {0186}.

 

pTaQ24.

 

 

Group 4

Amendments:

Xgwm107-4B. Add ‘(3B, 6B).’ in the last column.

Xgwm113-4B. Add ‘(3B).’ in the last column.

 

Add:

Xgdm34-4D {0173}.

 

DMS F34/DMS R34.

 

Xgdm40-4D {0173}.

 

DMS F40/DMS R40.

 

Xgdm61-4D {0173}.

 

DMS F61/DMS R61.

 

Xgdm88-4A {0173}.

 

DMS F88/DMS R88.

 

Xgdm133-4D {0173}.

 

DMS F133/DMS R133.

(5B).

Xgdm145-4A {0173}.

 

DMS F145/DMS R145.

 

Xwmc35-4B {0153}.

 

WMC 35F/WMC 35R {0162}.

 

Xwmc254-4B {0153}.

 

WMC 254F/WMC 254R.

 

 

Group 5S

Amendments:

Xgwm293-5A. Add ‘(5B).’ in the last column.

Xmgb191-5A. Add ‘(5AL, 5BL, 5DL).’ in the last column.

Xmgb341-5A. Add ‘(5BL,5DL).’ in the last column.

 

Add:

Xgdm109-5A {0173}.  

 

DMS F109/DMS R109.

 

Xgwm415-5A {9929, 0178}.

 

WMS415F/WMS415R.

 

Xutv711-5A {0152}.

 

UTV711.

 

Xutv1441-5A {0152}.

 

UTV1441.

 

 

Group 5L

Amendments:

Xabg391-5A,D. Revise the first column to ‘Xabg391-5A {1059}1, 5B {0148}1, 5D {9926}4, {0148}1.’

Xabg473-5A,B. Revise the first column to ‘Xabg473-5A {9933}1,3, 5B {1059}1, 5D {0148}1.’.

Xbcd9-5A,B. Revise the first column to ‘Xbcd9-5A {0282}3, 5A.1,.2 [{0148}]1, 5B {1059}1, 5D {0148}1.’ and add ‘[Xbcd9a,b-5A {0148}].’ in the second column.

Xbcd21-5A. Revise the first column to ‘Xbcd21-5A {9933}, 5D {0148}.’.

Xbcd183-5A. Revise the first column to ‘Xbcd183-5A {1059}, 5B,D {0148}.’.

Xbcd508-5A,B,D. Revise the first column to ‘Xbcd508-5A {255,282}3, {0148}1, 5B {1059}1, 5D.1,.2 {446}.’.

Xbcd1030-5B. Revise the first column to ‘Xbcd1030-5A {0148}, 5B {1059,0148}, 5D {0148}.’.

Xbcd1235-5A. Revise the first column to ‘Xbcd1235-5A.1,.2 {1059}, 5B, 5D.1,.2 {0148}.’.

Xcdo388-5A,D.  Add as a note: ‘Two loci were detected for Xcdo388-5A and Xcdo388-5D in {0148}.

Xcdo457-5A. Revise the first column to ‘Xcdo457-5A {1059}, 5B,D {0148}.’.

Xcdo465-5A. Revise the first column to ‘Xcdo465-5A {282}3, {0148}1, 5B,D {0148}1.’.

Xcdo548-5A. Revise the first column to ‘Xcdo548-5A {9933}1,3, 5A.1,.2 [{0148}]1, 5B {0148}1, 5D.1, .2 [{0148}]1.’ and add ‘[Xcdo548a,b-5A,D {0148}].’ in the second column.

Xcdo584-5A,B. Revise the first column to ‘Xcdo584-5A {0068}, 5B {1059}, 5D {0148}.’.

Xcdo1312-5A,B,D. Revise the first column to ‘Xcdo1312-5A {255}3, {0148}1, 4B,D {1059}[{028}]1

Xcdo1326-5A,B. Revise the first column to ‘Xcdo1326-5A,B {1059}, 5D {0148}.’.

Xcdo1333-5A. Delete (moved to 5AL:4BL:4DL).

Xfba68-5A. Revise the first column to ‘Xfba68-5A {1059}, 5B,D {0148}.’.

Xfba351-5A,B. Revise the first column to ‘Xfba351-5A,B {1059}, 5D {0148}.’.

Xfbb255-5A. Revise the first column to ‘Xfbb255-5A {1059}, 5A.1, .2 [{0148}], 5D {0148}.’, add ‘[Xfbb255a,b-5A {0148}].’ in the second column, and add ‘(1A,B, 4B, 6A).’ in the last column.

Xfbb237-5B. Revise the first column to ‘Xfbb237-5B {1059}, 5D {0148}.’.

Xgwm68-5B. Revise the last column to ‘(2A, 7B).’.

Xgwm408-5B. Add ‘(1B).’ in the last column.

Xksu919(Lpx)-5A,B. Revise the first column to 'Xksu919(Lpx)-5A,B [{0091}], 5D [{0148}].' and revise the second column to '[Lpx-5A,B {0091}, 5D {0148}].'.

Xksu923(Pr1)-5D. Revise the first column to 'Xksu923(Pr1)-5A,B [{0148}], 5D [{0091}].' and revise the second column to '[Pr1-5A,B {0148}, 5D {0091}].'.

XksuD30-5A,B,D. Add ‘(3B).’ in the last column.

XksuG14-5A,B,D. Revise the first column to ‘XksuG14-5A {282}3, {0148}1, 5B,D {446}1.’.

XksuH1-5A. Revise the first column to ‘XksuH1-5A {860}, 5D {0148}.’ and remove ‘(5D)’ from the last column.

Xmgb63-5A. Revise the first column to ‘Xmgb63-5A {9959}2, {0148}1, B,D {0148}1.’.

Xmwg522-5A,B,D. Revise the first column to ‘Xmwg522-5A {1059}1, 5B {446}1, 5D {9926}4, {0148}1.’.

Xmwg602-5A,D. Revise the first column to ‘Xmwg602-5A {446}, 5B {0148}, 5D {446}.’.

Xmwg900-5D. Revise the first column to ‘Xmwg900-5A,B {0148}, 5D {1059}.’.

Xmwg922-5D. Revise the first column to ‘Xmwg922-5A,B {0148}, 5D {1059}.’.

Xpsr801(Rbcs)-5A,B,D. Add ‘pW4.3 {139}’ to the third column and add the following note : ‘The development of probes specific to two of the three gene subfamilies on chromosome arms 2S and to the subfamily on chromosome arm 5L have been reported in {0149}.’.

Xrz395-5A,D. Revise the first column to ‘Xrz395-5A {1059}, 5B {0148}, 5D {1059}.’.

Xwg889-5A,B,D. Revise the first column to ‘Xwg889-5A {255,282}3, {0148}1,5B {1059}1, 5D {446}1.’.

Xwg908-5A,B,D. Revise the first column to ‘Xwg908-5A {255,282}3, {0148}1, 5B.1,.2, 5D {446}1.’.

 

Add:

Xabc155-5A,B,D {0148}.

 

ABC155

(1D).

Xabc168-5A,B,D {0148}.

 

ABC168.

 

Xbcd21-5A,D {0148}.

 

BCD21.

 

Xbcd307-5B.1,.2 [{0148}].

[Xbcd307a,b-5B {0148}].

BCD307.

 

Xbcd881-5A,B,D {0148}.

 

BCD881.

 

Xbcd1427-5A,B,D {0148}.

 

BCD1427.

 

Xbcd1734-5A,B,D {0148}.

 

BCD1734.

 

Xcdo87-5A,B,D {0148}.

 

CDO87.

 

Xcdo385-5A,B,D {0148}.

 

CDO385.

 

Xcdo1475-5A,B {0148}.

 

CDO1475.

 

Xfbb166-5B {0148}.

 

FBB166.

(3B, 6A).

Xgdm3-5D {0173}.

 

DMS F3/DMS R3.

 

Xgdm43-5D {0173}.

 

DMS F43/DMS R43.

 

Xgdm63-5D {0173}.

 

DMS F63/DMS R63.

 

It is not clear whether Xgdm63-5D belongs to the group  5L or to the group 4AL:5BL:5DL.

Xgdm68-5D {0173}.

 

DMS F68/DMS R68.

(5A,B).

Xgdm99-5D {0173}.

 

DMS F99/DMS R99.

 

Xgdm116-5D {0173}.

 

DMS F116/DMS R116.

 

Xgdm138-5D {0173}.

 

DMS F138/DMS R138.

 

Xgdm153-5D {0173}.

 

DMS F153/DMS R153.

 

Xgwm497-5B [{0171}].

[Xgwm497d-5B {0171}].

WMS F497/WMS R497.

(1A, 2A, 3A,D).

XksuG7-5A {446}1, 5D.1,.2 [{448}]4, {0148}1.

[XksuG7(A),(B)-5D {448}].

pTtksuG7.

(7A,B,D).

XksuG57-5D {0148}.

 

pTtksuG57.

(2D).

XksuP6-5A {0148}.

 

pTtksuP6.

 

XksuP10-5A {0148}.

 

pTtksuP10.

 

XksuP18-5A,B,D {0148}.

 

pTtksuP18.

 

XksuP20-5A,B,D {0148}.

 

pTtksuP20.

 

XksuP21-5A {0148}.

 

pTtksuP21.

 

XksuP23-5A,D {0148}.

 

pTtksuP23.

 

XksuP50-5A,B,D {0148}.

 

pTtksuP50.

 

XksuP64-5A,B,D {0148}.

 

pTtksuP64.

 

XksuQ10-5A,B,D {0148}.

 

pTtksuQ10.

 

XksuQ11-5A,B,D {0148}.

 

pTtksuQ11.

 

XksuQ13-5B,D {0148}.

 

pTtksuQ13.

 

XksuQ16-5A,B,D {0148}.

 

pTtksuQ16.

 

XksuQ24-5A,D {0148}.

 

pTtksuQ24.

 

XksuQ32-5A,B,D {0148}.

 

pTtksuQ32.

 

XksuQ34-5A,B,D {0148}.

 

pTtksuQ34.

 

XksuQ35-5A,B,D {0148}.

 

pTtksuQ35.

 

XksuQ45-5A.1,.2, B.1,.2, D [{0148}].

[XksuQ45a,b-5A,B {0148}].

pTtksuQ45.

 

XksuQ58-5A,B,D {0148}.

 

pTtksuQ58.

 

XksuQ59-5A,B,D {0148}.

 

pTtksuQ59.

 

XksuQ60-5A,B,D {0148}.

 

pTtksuQ60.

 

XksuQ61-5A,B,D {0148}.

 

pTtksuQ61.

 

XksuQ62-5A {0148}.

 

pTtksuQ62.

 

XksuQ63-5B,D {0148}.

 

pTtksuQ63.

 

XksuQ64-5B,D {0148}.

 

pTtksuQ64.

 

XksuQ65-5B,D {0148}.

 

pTtksuQ65.

 

XksuQ66-5B {0148}.

 

pTtksuQ66.

 

XksuQ67-5B {0148}.

 

pTtksuQ67.

 

Xkvl930(Pr1)-5A,D [{0148}].

[Pr1b-5A,D {0148}].

HvPr1b {00104}.

(7B,D).

Xmgb1-5A,D {0148}.

 

MGB1.

 

Xmgb8-5A {0148}.

 

MGB8.

 

Xmgb10-5B {0148}.

 

MGB10.

 

Xmgb174-5A,B,D {0148}.

 

MGB174.

 

Xmgb191-5A,B,D {0148}.

 

MGB191.

(5AS).

Xmgb301-5A,B,D {0148}.

 

MGB301.

 

Xmgb341-5B,D {0148}.

 

MGB341.

(5AS).

Xmwg72-5A,B {0148}.

 

MWG72.

 

Xmwg76-5A,B,D {0148}.

 

MWG76.

 

Xmwg514-5A,B,D {0148}.

 

MWG514.

(6A,D).

Xmwg549-5A,D {0148}.

 

MWG549.

(4A, 6D).

Xmwg550-5A,B,D {0148}.

 

MWG550.

 

Xmwg516-5A,B,D {0148}.

 

MWG516.

 

Xmwg604-5A,B,D {0148}.

 

MWG604.

 

Xmwg716-5A,B,D {0148}.

 

MWG716.

(6D).

Xmwg740-5A,B,D {0148}.

 

MWG740.

 

Xmwg805-5A,B,D {0148}.

 

MWG805.

 

Xmwg862-5B,D {0148}.

 

MWG862.

 

Xmwg933-5B {0148}.

 

MWG933.

 

Xpsr131-5A {0148}1, 5D {9926}4, {0148}1.

 

PSR131.

(2A,B,D).

Xrz328-5A,B,D {0148}.

 

RZ328.

 

Xrz575-5A,B,D {0148}.

 

RZ575.

 

Xrz589-5A,B,D {0148}.

 

RZ589.

 

Xrz744-5A,B,D {0148}.

 

RZ744.

 

Xubp25-5B,D {0148}.

 

UBP25.

 

 

4AL:5BL:5DL

Amendments:

Xmwg549-4A. Add ‘(5A,D).’ in the last column.

 

Add:

Xgdm118-5D {0173}.

 

DMS F118/DMS R118.

 

It is not clear whether Xgdm118-5D belongs to the group 4AL:5AL:5DL or to the group 7BS:5BL:5DL.

Xgwm577-4A [{0177}].

[Xgwm577b-4A {0171}].

WMS F577/WMS  R577.

(7B).

It is not clear whether Xgwm577-4A belongs to the group 4AL:5AL:5BL or to the group 7AS:4AL:7DS.

 

7BS:5BL:5DL

Amendments:

 
XksuG7-5A, D.1,.2. Delete (moved to 5L).

 

Group 5

Amendments:

XksuG57-5D.1,.2,.3. Revise the last column to '(2D, 5DL).

XksuH1-5D. Revise the last column to ‘(5A,D)’.

Xpsr131-5D. Delete (moved to 5L).

 

Add:

XgbxG103-5D [{0146}].

[XgbxG103b-5D {0146}].

gbxG103.

 

Xgdm68-5A {0173}.

 

DMS F68/DMS R68.

(5B,D).

Xgdm68-5B {{0173}.

 

DMS F68/DMS R68.

(5A,D).

Xgdm101-5B {0173}.

 

DMS F101/DMS R101.

 

Xgdm109-5A {0173}.

 

DMS F109/DMS R109.

 

Xgdm115-5B {0173}.

 

DMS F115/DMS R115.

(5D).

Xgdm115-5D {0173}.

 

DMS F115/DMS R115.

(5B).

Xgdm133-5B {0173}.

 

DMS F133/DMS R133.

(4D).

Xgdm136-5D {0173}.

 

DMS F136/DMS R136.

 

Xgdm146-5B {0173}.

 

DMS F146/DMS R146.

 

Xgdm149-5B {0173}.

 

DMS F149/DMS R149.

 

Xgwm274-5B [{0171}].

[Xgwm274b-5B {0171}].

WMS F274/WMS R274.

(1B, 7B).

Xgwm293-5B [{0171}].

[Xgwm293b-5B {0171}].

WMS F293/WMS R293.

(5A).

Xgwm494-5D [{0146}].

[Xgwm494a-5D {0146}].

WMS F494/WMS R494.

(6A).

Xwmc267-5A {0153}.

 

WMC 267F/WMC 267R {0160}.

 

 

Group 6S

Amendments:

Xbcd21-6A,B,D. Revise the last column to ‘(5A,D).’.

Xfbb166-6A. Add ‘(5B).’ in the last column.

Xfbb255-6A. Add ‘(5A,B).’ to the last column.

Xgwm88-6B. Add ‘(2B).’ in the last column.

Xgwm361-6B. Add ‘(7BS, 7BL).’ in the last column.

Xmwg549-6D. Add ‘(5A,D).’ to the last column.

 

Add:

Xgdm14-6D {0173}.

 

DMS F14/DMS R14.

 

Xgdm36-6D {0173}.

 

DMS F36/DMS R36.

 

Xgdm108-6D {0173}.

 

DMS F108/DMS R108.

 

Xgdm113-6B {0173}.

 

DMS F113/DMS R113.

 

Xgdm127-6D {0173}.

 

DMS F127/DMS R127.

 

Xgdm132-6D {0173}.

 

DMS F132/DMS R132.

 

Xgdm141-6D {0173}.

 

DMS F141/DMS R141.

 

Xgwm107-6B [{0171}].

[Xgwm107c-6B {0171}].

WMS F107/WMS R107.

(3B, 4B).

 

Group 6L

Amendments:

Xabg473-6B. Revise the last column to ‘(5A,B,D)’.

Xfbb364-6A,B,D. Revise the first column to ‘Xfbb364-6B {900}, 6A,6D {0081}.’.

Xmwg514-6A,D. Add ‘(5A,B,D).’ in the last column.

Xcmwg716-6D. Add ‘(5A,D).’ in the last column.

 

Add:

Xcmwg664-6B,D {0081}.

 

cMWG664.

(6A).

Xfbb95-6A,B,D {0081}.

 

FBB95.

 

Xgdm28-6A {0173}. 

 

DMS F28/DMS R28.

(1B).

Xgdm98-6D {0173}.

 

DMS F98/DMS R98.

 

Xgdm147-6B {0173}. 

 

DMS F147/DMS R147.

 

Xgwm108-6B [{0171}].

[Xgwm108a-6B {0171}].

WMS F108/WMS R108.

(3B).

Xgwm126-6B [{0171}].

[Xgwm126b-6B {0171}].

WMS F126/WMS R126.

(5A).

Xgwm494-6A.2 [{0146}].

[Xgwm494b-6A {0146}].

WMS F494/WMS R494.

(5D, 6A).

Xgwm582-6B [{0171}].

[Xgwm582a-6B {0171}].

WMS F582/WMS R582.

(1B, 2A).

               

Group 6

Amendments:

Xbcd9-6D. Revise the last column to ‘(5A,B,D).’.

Xcmwg664-6A. Add ‘(6B,D)’. in the last column.

Xgwm55-6D. Revise the last column to ‘(2B, 3B).’.

Xgwm494-6A. Revise the first column to 'Xgwm494-6A.1 [{9929}].', add '[Xgwm494-6A {9929}].' in the second column, and add ‘(5D, 6AL).’ in the last column.

 

Add:

Xgdm153-6B {0173}.

 

DMS F153/DMS R153.

 

Xwmc76-6B {0153}.

 

WMC 76F/WMC 76R {0161}.

 

Xwmc256-6A {0153}.

 

WMC 256F/WMC 256R.

(6D).

 

Xwmc256-6D {0153}.

 

WMC 256F/WMC 256R.

(6A).

 

Group 7S

Amendments:

Xgwm68-7B. Revise the last column to ‘(2A, 5B).’.

Xgwm297-7B. Add ‘(2A, 4A).’ in the last column.

Xkvl930(Pr1)-7B,D. Add '(5A,D).' in the last column.

 

Add:

Xgwm251-7A [{0171}].

[Xgwm251b-7A {0171}].

WMS F251/WMS R251.

 (4B).

Xgwm361-7B [{0171}].

[Xgwm361b-7B {0171}].

WMS F361/WMS R361.

(6B, 7BL).

Xgwm631-7A.{0178}.

 

WMS F631/WMS R631.

 

 

7AS:4AL:7DS

Amendments:

Xksu919(Lpx)-4A. Revise the last column to '(5A,B,D).'.

Add:

Xgdm86-7D {0173}.

 

DMS F86/DMS R86.

(2B).

Xgdm130-7D {0173}.

 

DMS F130/DMS R130.

 

 

Group 7L

Amendments:

XksuG7-7A,B,D. Remove ‘5B’ from the last column.

Xgwm274-7B. Revise last column to ‘(1B, 5B).’.

Xgwm577-7B. Add ‘(4A).’ in the last column.

 

Add:

Xgdm46-7D {0173}.

 

DMS F46/DMS R46.

 

Xgdm67-7D {0173}.

 

DMS F67/DMS R67.

 

Xgdm84-7D {0173}.

 

DMS F84/DMS R84.

 

Xgdm150-7D {0173}.

 

DMS F150/DMS R150.

 

Xgwm361-7B [{0171}].

[Xgwm361a-7B {0171}].

WMS F361/WMS R361.

(6B, 7BS).

Xgwm550-7A [{0171}].

[Xgwm550b-7A {0171}].

WMS F550/WMS R550.

(1B).

XksuH1-7B {0152}.

 

pTtksuH1.

(5A,D).

 

Group 7

Add:

Xgdm142-7D {0173}.

 

DMS F142/DMS R142.

 

Xgdm152-7A {0173}.

 

DMS F152/DMS R152.

 

Xgwm376-7A [{0171}].

[Xgwm376c-7A {0171}].

WMS F376/WMS R376.

(1A, 3B).

Xgwm601-7A [{0171}].

[Xgwm601b-7A {0171}].

WMS F601/WMS R601.

(4A).

Xwmc47-7A {0153}.

 

WMC 47F/WMC 47R {0154}.

 

Xwmc83-7A {0153}.

 

WMC 83F/WMC 83R {0161}.

 

Xwmc216-7B {0153}.

 

WMC 216F/WMC216R {0158}.

 

 

Dormancy (seed)

Add at the end of the section:

‘Several QTL for falling number and α-amylase activity, two indicators for pre-harvest sprouting resistance, were identified in {0169}.  The most significant were associated with Xglk699-2A and Xsfr4(NBS)-2A , Xglk80-3A and Xpsr1054-3A, Xpsr1194-5A and Xpsr918-5A, Xpsr644-5A and Xpsr945-5A, Xpsr8(Cxp3)-6A and Xpsr563-6A, and Xpsr350-7B and Xbzh232(Tha)-7B [{0169}]. '

 

Earliness per se

EpsWi.       Replace the current v: listing with: ‘ su:  Cheyenne*7/ Wichita 3A {0025}'.           ma: Linked to QTLs for plant height, kernel number per spike, and 1,000-kernel weight in RSLs derived from CNN/CNN(WI3A) {0025}.

QTL :

Analysis in Courtot/CS {0132}.

 

 

 

 

Gametocidal Genes

1. Gametocidal activity

 

Gc1-C1 {0188}.

2CL {0189}.

ad:

CS/2C {0189}.      

 

 

su:

CS2C(2A), CS2C(2B), CS2C(2D) {0189}.

 

Insert after the first paragraph:

            ‘Gametocidal genes in chromosomes in the same homoeologous group have the same gametocidal action {0190}.  In monosomic additions of chromosomes with gametocidal effects, chromosome deletions and translocations are produced in gametes not having the gametocidal genes.  This feature has been exploited to isolate genetic stocks suitable for physical mapping of wheat {0191} chromosomes, and of rye {0192} and barley {0193,0194,0195} chromosomes in a wheat background.’.

 

Glaucousness

Add at the end of the section:

‘A gene for spike glaucousness, Ws, was mapped distally on the short arm of chromosome 1B in the cross T. durum cv. Langdon x T. dicoccoides acc. Hermon H52 {0171}.’

 

Epistatic inhibitors of glaucousness

Insert prior to last sentence :  ‘A non-glaucous spike phenotype present in line L-592, a 7S(7A) substition line, is described in {0113}.’.

 

Grain Hardness / Endosperm Texture

To be inserted in a reorganised section :

‘QTL : In a DH population of Courtot/CS a major locus in chromosome 5DS coincided with Ha ; minor QTLs mapped in chromosomes 1A (associated with Xfba92) and 6D (associated with Xgwm55) {0141}.’.

 

Grain Quality Parameters

1. Sedimentation value

 

2. Flour colour    

Transfer from previous location following DNA section (1999 Supplement) and replace section with: 

‘QTL: A QTL was detected on chromosome 7A {9936}.  Cultivar Schomburgk contributed the yellow colour allele in a cross Schomburgk/Yarralinka {9936}.  Markers Xcdo347-7A and Xwg232-7A accounted for 60% of the genetic variation {9936}.  A Sequence Tagged Site PCR marker is available {0180}.  Other references to flour colour are given under Lr19 and Sr25.’.

 

3. Amylose  content

Replace previous section :  Amylose content has a significant effect on industrial quality ; for example, reduced amylose wheats have better performance in some types of noodles.  The waxy protein genes have an important influence, but other genes are also involved.

QTL : 

QAmc-ocs.4A.1was located in a Xbcd1738Xcdo1387 segment in chromosome 4AS of Kanto 107 relative to CS {0047}.       

 

4. Milling yield

QTL:  A QTL was detected on chromosome 3A {0181}.  Cultivar Schomburgk contributed the higher milling yield allele in a cross Schomburgk/Yarralinka {0181}.  RFLP markers Xbcd115 and Xpsr754 were associated with this QTL at LOD>3 {0181.}

 

5. Alveograph dough strength W

QTL:  QTLs for W were detected on chromosome arms 5DS (associated with Xmta10), 1AS (associated with Xfba92), and 3B (associated with XksuE3) in a cross Courtot/Chinese Spring {0141}.  The first two QTLs coincided with those for hardness.

 

Grain Weight

QTL : 

Variation at locus QGw1.ccsu-1A, associated with Xwmc333-1A, accounted for 15% of the variation in a RIL population from RS111/CS {0143}.

 

Height

QTL: 

Two QTLs for plant height were assigned to chromosome 3A in RSLs from Cheyenne*7/Wichita 3A substitution line {0025}.

 

Seven QTLs on chromosomes 1A, 1D, 2B, 2D, & 4B affected plant height among RILs of CS/T. spelta duhamelianum.  Effects linked with the CS alleles of Xbcd1160-1A, Xksu127-1D, and XksuF11-2D increased height whereas those CS alleles associated with Xpsr131-2B, Xpsr135-2B, Xpsr934-2D and Xcs22.2-4B reduced it {0196}.

 

Hybrid Weakness

1. Hybrid necrosis

Add to genotype list :  {0112}.

 

Meiotic Characters

2. Pairing homoeologous

 

Ph1b.

ma : 

A PCR-based detection system for ph1bph1b individuals is described in {9965}.

               

Proteins

1. Grain Protein Content

QTLs for grain protein content were detected on chromosome arms 6AS (associated AFLP marker, XE38M60200) and 1BL (associated RFLP marker, Xcdo1188) in Courtot/Chinese Spring {0141}.

 

QGpc.ndsu-6Bb

v:  

Glupro {0179}. 

ma : 

Flanking microsatellite markers and PCR-specific markers are available {0179}.

 

3. Endosperm Storage Proteins

3.1 Glutenins

Add below Glu-A1-1c in the Glu-A1-1 section:

‘A PCR marker specific for the Glu-A1-1c (Ax2*) allele was developed in {0147}.’

 

Add below Glu-B1-1a in the Glu-B1-1 section:

‘A PCR marker (2373 bp) for the Glu-D1-1a (Bx7) allele was developed in {0145}.’

 

Add below Glu-D1-1d in the Glu-D1-1 section:

‘PCR markers specific for the Glu-D1-1d (Dx5) allele were developed in {0145} and {0147}.’

 

Add below Glu-D1-2a in the Glu-D1-2 section:

‘A PCR marker (612 bp) for the Glu-D1-2a (Dy12) allele was developed in {0145}.’

 

Add below Glu-D1-2b in the Glu-D1-2 section:

‘PCR markers (576 bp and 2176) for the Glu-D1-2b (Dy10) allele were developed in {0145} and {0147}, respectively.’

 

Between the Glu-A1 allelic list and the text beginning ‘There is a possibility that Glu-A1 alleles i, j {1527} and k {478} correspond to alleles…’, insert the paragraph:

‘The importance of the HMW glutenin subunits for bread-making quality was first noted from observations in wheat cultivars of related pedigree on the effects of the presence of subunit 1 encoded by Glu-A1a {0197}, effects that have repeatedly been confirmed since (for example {0198,0199,01100}).’

 

After the end of the paragraph that closes the Glu-3 (LMW glutenin) section (‘The Glu-3 loci can be recognised with pTag544 {49} and pTdUCD1 {167} and by specific microsatellite primers {252}.’), add the paragraph:

‘PCR amplification of genomic DNA has been used to isolate three LMW glutenin genes in cultivar Chinese Spring, named LMWG-MB1, LMWG-MB2 and LMWG-MB3 {01101}.  The deduced amino-acid sequences showed a high similarity between these ORFs and with those of other LMW glutenin genes.  The authors state that the study provided direct evidence that insertions and/or deletions provide a mechanistic explanation for the allelic variation, and hence the resultant evolution, of prolamin genes, and comment on relationships with g-secalins and b-hordein families.  Single-base substitutions at identical sites generate premature stop codons in both LMWG-MB2 and LMWG-MB3, indicating that these clones are pseudogenes.’

 

3.2. Gliadins

Before the final paragraph of the preamble (which now reads, after an amendment included in the 1999 Supplement: ‘The Gli-1 loci may be recognised by probes pcP387 {372} and pTag1436 {065}, and by specific microsatellite primers {252}. Furthermore, it has been shown that probe pTag1436 differentiates gliadin alleles rather well; using this probe, families of gliadin alleles and some of their relationships have been described {9988}.’)
insert the paragraph:

‘Based upon morphological observation and RFLP analysis, it has been proposed that the cultivar ‘Chinese Spring’ is a strain of the landrace ‘Chengdu-guangtou’ from the Chengdu Plain, Sichuan Province; this proposal is supported by the observation that the cultivar and landrace share the same alleles at all nine Gli-1, Gli-2 and Glu-1 loci {see 01102}.’

 

After the final paragraph of the preamble (as given above), add the paragraphs:

‘PCR primers GAG5 and GAG6 were applied to 35 cultivars of closely related spelt and hexaploid wheat, and to eight cultivars of durum wheat, to yield products originating from two g-gliadin genes mapped to chromosomes 1B (termed GAG56B) and 1D (termed GAG56D) {01103}. Two alleles for GAG56D (differing in a 9 bp deletion/duplication and single nucleotide polymorphism) were found, one a new allele and the other previously published {01104}. Meanwhile two alleles found for GAG56B among the durum wheats correlated with the presence of gluten quality markers g-gliadins 42 or 45.

 

1B and 1D sulphur-poor w-gliadins in cultivar Butte 86 were characterised by RP-HPLC, SDS-PAGE, two-dimensional PAGE, amino acid composition determination and sequencing, matrix assisted laser desorption ionisation – time of flight mass spectrometry and circular dichroism spectroscopy to reveal the detailed nature of the peptides belonging to the two groups, and showing that the complexity of mixture of the peptides of the 1B group was greater than that of the 1D group {01105}. Although circular dichroism spectra were similar for the two groups of peptides, and suggested a mainly flexible random structure, there was evidence for a significant amount of left-handed polyproline II helical conformation in the case of the 1D components. The authors placed some of the results in the context of the possible ancestor of the B-genome and relationships with the barley C-hordeins and rye w-secalins’

 

4. Enzyme inhibitors (previously, protease inhibitors)

4.4. Inhibitors (dimeric) of heterologous α-amylases

Chromosome 3BS has duplicated loci controlling two dimeric inhibitors of exogenous α-amylases, one known as 0.53 or Inh  I {1260}, and the other as WDA I-3 {1260}.  Chromosome 3DS has a homoeologous locus controlling a dimeric inhibitor of exogenous α-amylases, known as 0.19 or Inh III {1260,0124}, that is closely related to 0.53/Inh I.  Intervarietal polymorphism for the WDA-3 protein was identified by isoelectric focussing of water-soluble endosperm proteins {0124}.  This was interchromosomely mapped on 3BS using both a DH population of Cranbrook/Halberd, and a set of RILs of  Opata 85/W-7984 (ITMI population) {0125}.

 

Iha-B1.1 {1260}.

 

3BS {1260}.

v : 

CS {1260}.

Iha-B1.2 {0124}. 

 

3BS {0124}.

v : 

CS {0124}.

Iha-B1.2a {0124}.

 

 

v :  

CS {0124,0125}.

Iha-B1.2b {0125}.

 

Null allele.

v :  

Cadoux {0125}; Cranbrook {0125}; Tasman {0125}.

Iha-D1 {1260}.    

 

3DS {1260}.

v : 

CS {1260}.

                                                               

5. Other proteins

5.6 Waxy proteins

 

Wx-A1.  At end of section add : Variation in the microsatellite gene Xsun1-7A provides a co-dominant marker for this locus {0116}.

Wx-A1b.

 

tv :  

Asrodur {0111}.

Wx-B1b.

 

tv :  

Blaquetta  (BG-13701) {0111}.

Wx-B1f {0111}.

           

 

 

tv :

BG-12413 {0111};  BG-12415 {0111}.

Wx-D1b {0116}. 

At end of section add : 

ma : 

Microsatellite marker Xsun1-7D is absent in wheats with this allele {1116}; Xsun4 (Wx)-7D is a perfect marker {0118}.  

Wx-D1d {0118}.               

 

v :

  K107wx1 {0118}; EMS mutants {0118}.

Wx-D1e {0117}.

Null allele {0117}.

v : 

NP150 {0117}.  

 

Add {0144} to genotype list.

 

Add at the bottom of the section:

‘Isolation of a wheat cDNA encoding Wx-A1 and Wx-D1 was reported in {0123} and {0167}, respectively.  Isolation of genomic sequences for the genes encoding granule-bound starch synthase (GBSSI or Wx) in T. monococcum, Ae. speltoides and T. tauschii was reported in {0168}.  Cloning of a second set of GBSS or waxy genes, GBSSII, which were shown to be located on chromosomes 2AL, 2B and 2D, was reported in {0167}.

 

5.7    Starch granule proteins

At end of section for Sgp-1 add :  ‘A triple null stock (SGP-1 null wheat) is reported in {0137}.’.

 

5.8    Puroindolines

To sentence : ‘Present only in some hard wheats’ in 2000 Supplement add : ‘Pina-D1b is associated with harder texture than Pinb-D1b {0177}.’.

 

Red Grain Colour

Add at end of section :  ‘See also Variegated  Red Grain Colour’.

 

Response to Photoperiod   

 

QTL :

A QTL was detected in chromosome 4BS in Courtot/CS {0132}.

 

Response to Vernalization

 

QTL :

Analysis in Courtot/CS {0132}.

 

Variegated Red grain Colour

Add at end of section :  ‘Variegated red pericarp was also studied in crosses of cv. Supreme.  In this case, two red colour genes were present {0136}.

 

Yield Components

1000-grain weight

QGw1.ccsu-1A {0165}.

1AS {0165}.

v:

RS111/CS mapping population {0165}.

 

ma:

Associated with Xwmc333-1A {0165}.

QTL:  Two QTLs for 1,000-kernel weight were assigned to chromosome 3A in RSLs from Cheyenne*7/Wichita 3A {0025}.

 

Spike number per square metre

QTL:   A QTL for spike number per square meter was assigned to chromosome 3A in RSLs from Cheyenne*7/Wichita 3A {0025}.

 

Kernel number per spike 

QTL:  Three QTLs for kernel number per spike were assigned to chromosome 3A in RSLs from Cheyenne*7/Wichita {0025}.

 

Spike length

QTL:  Five QTLs for spike length were detected in Courtot/Chinese Spring {0114} but only one on chromosome arm 5AL was consistent for at least two years.

 

Spikelet number/ear

QTL:  Three QTLs for spike length were detected in Courtot/Chinese Spring {0114} but only two on chromosome arms 2AS and 2BS were consistent for at least two years.

 

 

Pathogenic Disease/Pest Reaction

 

Reaction to Barley Yellow Dwarf Virus.

 

Bdv2.

7DL= T7DS.7DL-7Ai#1L {0182}.

tr:   H960642 {0182}.

 

ma:

Distal 10% of 7DL, translocation point between RFLP markers Xpsr680 and Xpsr965 {0182}.

 

Reaction to Diuraphis noxia

Dn5

ma:

A SCAR marker developed from the RAPD fragment OPF141083 mapped 5.5 cM proximal to Dn5 {0172}.

 

Reaction to Erysiphe graminis

 

Pm6.

 

i :

6 NILs based on Prins {0139}.

 

 

ma : 

Pm6 was mapped to the interval Xbcd135-2B – Xpsr934-2B {0139}.  However, the fact that Timgalen and a  ‘CI12632/Cc’ line lacked the critical T. timopheevii markers {0139} is cause for concern.

Pm13.

 

ma :

STS marker  Xutv13 {0036}; several other markers located in introgressed segments {0036}.

 

Pm24.

 

Add :

‘Although Pm24 had previously been located to chromosome 6D {571}, Pm24 was mapped on chromosome arm 1DS in the cross Chinese Spring (susceptible) x Chiyacao (resistant){0150}.

Pm29 {0129}.

 

v : 

Pova {0129}.

 

 

ma : 

Location confirmed with molecular markers {0129}.

Pm30 {0163}.

5BS {0163}.

v: 

87-1/C20//2*8866 selections {0163}.  

 

 

 

 

tv: 

T. dicoccoides accession C20 {0163}.

 

 

MlRE.

6AL {0142}.

Add at the end of the sentence ‘Mlre showed a residual effect on the quantitative expression of APR in the presence of E. graminis pathotypes considered virulent for Mlre in standard seedling tests {0016}.’:

‘In addition to the Mlre gene on chromosome arm 6AL, a QTL for resistance effective at the seedling stage was identified on chromosome 5D in {0146}.  The QTL was associated with microsatellite marker Xgwm174-5D.’.

 

Reaction to Fusarium graminearum

Replace previous section:

 

QFhs.ndsu-2A {9925,0175}.

2AL {9925}.

v:

Stoa {0081}.

 

ma:

Associated with XksuH16-2A (LOD>3) {0175}.

QFhs.ndsu-3B {9925,0175}.

3BS {9925}.

v:

Sumai 3 {9925,0175}.

 

ma:

Associated with Xbcd907-3B.2 (LOD>3) {9925} and microsatellite markers Xgwm533 and Xgwm493 {0175}.

Add at the bottom of the section :

‘Two major genes with additive effects were reported in crosses between Sumai 3 (resistant) and two susceptible cultivars {0174}.  One of the genes was assigned to 5AL based on linkage to the dominant awn suppressor B1 (RF 15.1 – 21.4 %).’.

 

Reaction to Heterodera avenae

 

Cre2 {238}.

v:

Replace H93-8 {238} with 'H-93-8 Cre6 {238}'.

Cre5 {0107}.

Derived from Aegilops ventricosa {0107,0009}.

CreX {0009,0183}.

2AS{0107}=  2A-2Nv-6Nv.

 

v:

 

su :

dv :

VPM1 {0107}.  Many VPM1 derivatives {0107}.  Notable exceptions of lines with Lr37, Sr38 and Yr17, but lacking Cre5 include Trident and Line L22 {0107}.

Moisson 6Nv(6D) {0183}.

Ae. ventricosa 10 {0183}. 

Two resistance gene analogues similar to the candidate gene Cre3 were isolated from the Ae. ventricosa segment carrying Cre5 {0183}.

 

Cre6 {0138}.

Derived from Aegilops ventricosa {0138}.

5Nv {0138}.

 

ad : 

Moisson + 5Nv {0138}.

v : 

H-93-35 {0138}; H-93-8 Cre2 {0138} .

Cre7 {0104}.

CreAet{0105}.

Derived from Aegilops triuncialis {0105}.

 

v : 

TR353 derivatives {0105}.

 

 

CreR {0133}.

6RL {0133}.

su :

CS + 6R(6D) {0133}

al:

Rye accession T701-4-6 {0133}.

 

ma :

Cent……XksuF37 – 3.7cM – CreR {0133}.

 

Reaction to Meloidogyne spp.

 

Rkn-mn1 {1621}.

Derived from Aegilops variabilis {1621}.      

 

v :

ma : 

X8  = CS/Ae   variabilis No 1//Rescler/38*Lutin {1620} ; X35 {1620,1621}.

Co-segregation with RAPD OpY161065 and close linkage with several markers

including Est-B5 {0103}.

 

Reaction to Mycosphaerella graminicola

                                                                                               

Stb5 {0186}.

Identified using M. graminicola culture IPO94269 {0186}.

Derived from Aegilops tauschii accession 37-1 {0186}.

 

7DS {0186}.

su: 

CS*8/(Syn7D) {0186}.

v:    Sear's Synthetic {0186}.

Stb6 {0187}.

Confers resistance to  M. graminicola  isolate IPO323 but not to isolate IPO94269 {0187}.

 

3AS {0187}.

v: 

Flame {0187}.

 

Reaction to Pratylenchus spp.

Disease :   Root lesion nematode;  prats

 

1. Reaction to Pratylenchus neglectus

 

Rlnn1 {0121}.

7AL {0121}.

v : 

Excalibur {0121}; Krickauff {0121}.

 

 

2. Reaction to Pratylenchus thornei

QTLs were located on chromosomes 2BS and 6DS {0122}.

 

Reaction to Puccinia graminis

Following SrZdar, to genotype list add : ‘0102’.

 

Reaction to Puccinia recondita

 

Lr19.

Add to ma : ‘ The following gene order for the Thinopyrum segment is given in {0101} :   Cent – Sd1Xpsr165 - Xpsr105Xpsr129XcsIH81-1Xwg380Xmwg2062Lr19Wsp-D1Sr25/Y.’.

Lr37.

A resistance gene analog containing an NBS-LRR R gene sequence was isolated from the Ae ventricosa segment carrying Lr37 {0183}.

Lr46.

1BL {0119}.

v :

Pavon F76 Lr1 Lr10 Lr13 {0119}.     Lr46 is completely linked with Yr29 {0119}.

 

Lr47.      Modify and add to earlier sentence :   ‘Complete linkage with several RFLP {9901} and PCR specific markers {0126}.’.

 

To genotype list, for Czeckoslovakian cultivars add reference {0102} to {855}, i.e. ‘{855,0102}’.

 

Reaction to Puccinia striiformis

 

Yr15.

ma :

Xgwm33-1B – 4.5cM – Yr15 – 5.6cM – UBC199200 – 5.6cM – Nor-B1 {0110}.

Yr28

ma : 

Close association witk Xmwg634-4DS {1377}.

Yr29 {0119}.

Adult plant resistance {0119}.

1BL {0119}.

 

v : 

Pavon F76 Yr6 Yr7 Yr30 {0119}.       Yr29 is completely linked with Lr46 {0119}.

Yr30 {0120}.

Adult plant resistance {0120}.

3BS {0120}.

 

v :

Opata 85 {0120} ; Parula {0120}.  Inia 66 YrA {0120}.  Pavon F76 Yr6 Yr7 Yr29 {0120}.  Yr30 is closely linked with Sr2 and Lr27 {0120}.

 

YrH52.

ma : 

  Xgmw273a – 2.7cM – YrH52 – 1.3cM – Xgwm413/Nor1…….centromere {0108}.

 

 

Reaction to Tilletia caries (D.C.) Tul., T. foetida (Wallr.) Liro, T. controversa

 

Bt10.

v :

Add to Others : ‘{0128}’.

ma : 

Add at the end : ‘The RAPD fragment was sequenced and converted to a diagnostic PCR marker for Bt10 in {0151}.’.

 

Reaction to Wheat Spindle Streak Mosaic Bymovirus (WSSMV)

 

QTL :      79% of the variation between Geneva (resistant) and Augusta (susceptible) was associated with markers Xbcd1095-2D  and Xcdo373-2D  located 12.4cM apart in chromosome 2DL {0131}.

 

Genetic Linkages

Much of the information listed in this section comes from work carried out prior to the use of DNA markers.  More recent information from molecular markers is provided under ‘ma:’ within sections describing individual genes.  There, the linkage values are usually limited to 10cM.  Further integrated mapping information can be found in:

tv:   {0185,0184}.

 

In the following section, unless otherwise indicated…..(as in 1998 Catalogue).

Chromosome 1D

1DS

Pm22           -      Pm24

I {0150}.

 

Chromosome 3A

Br2               -         R-A1b    

44.2cM {0130}

Br3               -         R-B1b

47.0cM {0130}

 

Chromosome 6B

Amp-B2        -         B2

0.9%       {0176}

Amp-B2       -       B2

2.1%       {0176}

 

Summary Tables

 

Additions to Summary Table 1

Amc

Amylose content

Gw

Grain weight

Iha               

Inhibitor (dimeric) of heterologous α-amylase

Plnn            

Reaction to Pratylenchus neglectus

Plnt             

Reaction to Pratylenchus thornei

 

 

 

 

References

 

Amendments.

1377.       Replace:  Singh RP, Nelson JC & Sorrells ME  2000  Mapping Yr28I and other genes for resistance to stripe rust in wheat.  Crop Science 40: 1148-1155.

9985.       Metakovsky EV, Gómez M, Vázquez JF & Carrillo JM  2000  Plant Breeding 119: 37-42.

0001.       Euphytica 115: 121-126.

0002.       Genome 43: 377-381.

0022.       Peusha H, Enno T & Priilinn O  2000  Hereditas 132: 29-34.

0029.       Wheat Information Service 91: 33-70

0030.       Theoretical & Applied Genetics 100 : 686-689.

0034.       Genome 43: 191-198.

0050.       Theoretical and Applied Genetics 100: 419-431

0081.       Theoretical & Applied Genetics 100: 519-527

 

Deletion

0078.       Delete, identical with {9925}.

 

New.

0101.       Prins R & Marais GF  1998  An extended deletion map of the Lr19 translocation and modified forms. Euphytica 103: 95-102.

0102        Bartoš P, Stuchlíková E & Hanušová R  1996  Adaptation of wheat rusts to the wheat cultivars in former Czeckoslovakia.  Euphytica 92: 95-103.

0103.       Barloy D, Lemoine J, Dredryver F & Jahier J   2000   Molecular markers linked to the Aegilops variabilis- derived root knot nematode resistance gene Rkn-mn1 in wheat.  Plant Breeding 118: 169-172.

0104.       Delibes A  2000  Personal communication.

0105.       Romero MD, Montes MJ, Sin E, Lopez-Brańa I, Duce I, Martin-Sanchez JA, Andres MF & Delibes A  1988  A cereal cyst nematode (Heterodera avenae Woll.) resistance gene transferred from Aegilops triuncialis to hexaploid wheat.  Theoretical & Applied Genetics 96: 1135-1140.

0107.        Jahier J, Abélard P, Tonguy AM, Rivoal R & Bariana HS  2000  Manuscript.

0108.       Peng JH, Fahima T, Röder MS, LI YC, Grama A & Nevo E  2000  Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat.  New Phytologist 146: 141-154.

0109.       Koval SF  1997  The catolog of near-isogenic lines of Novosibirskaya-67 common wheat and principles of their use in experiments.  Russian Journal of Genetics 33: 995-1000.

0110.       Chagué V,  Fahima T, Dahan A, Sun GL, Korol AB, Ronin YI, Grama A, Röder MS & Nevo E  1999  Isolation of microsatellite and RAPD markers flanking  the Yr15 gene of wheat using NILs and bulked segregant analysis.  Genome 42: 1050-1056.

0111.       Nieto-Taladriz MT, Rodrígues-Quijano M  Polymorphism of waxy proteins in Spanish durum wheats.  Plant Breeding 119: 277-279.

0112.       Pukhal’skii VA & Bilinskaya EN  1997  Necrotic genotypes of modern spring varieties of common wheat Triticum aestivum L. in Russia, Ukraine, Belarus, and Kazakhstan.  Russian Journal of Genetics 33: 1304-1308.

0113.       Pukhalskiy VA, Iordanskaya IV, Badaeva ED, Lapochkina, and Bilinskaya EN  1999  Genetic analysis of spike waxlessness in a line of common wheat Triticum aestivum L.  Russian Journal of Genetics 35: 1050-1054.

0114.       Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S & Bernard M  2000  Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers.  Molecular Breeding 6: 247-255.

0115.       Camargo CE deO, Neto AT, Ferreira Filho AWP & Felicio JC  2000  Genetic control of aluminium tolerance in mutant lines of wheat cultivar Anahuac.  Euphytica 114: 47-53.

0116.       Shariflou MR & Sharp PJ  1999  A polymorphic microsatellite on the 3’ end of  ‘waxy’ genes of wheat, Triticum aestivum.  Plant Breeding 118: 275-277.

0117.       Shariflou MR, Hassani ME & Sharp PJ  2000.  Development of a PCR based DNA marker for detection of mutant and normal alleles of the Wx-D1 gene of wheat.  Manuscript.

0118.       Yasui T, Sasaki T & Matsuki J  1998  Waxy bread wheat mutants, K107Wx.1 and K107Wx2, have a new null allele on Wx-D1 locus.  Breeding Science 48: 405-407.

0119.       Singh RP  2000  Personal communication.

0120.       Singh RP  2000  Personal communication.

0121.       Williams K  2000  Personal communication.

0122.       Thompson J  2000  Personal communication.

0123.       Clark JR, Robertson M, Ainsworth CC  1991  Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA encoding the waxy protein. Plant Molecular Biology 16: 1099-1101.

0124.       Sanchez-Monge, Gomez L, Garcia- Olmedo F & Salcedo G.  1989   New dimeric inhibitor of heterologous α-amylases encoded by a duplicated gene in the short arm of chromosome 3B of wheat (Triticum aestivum L.)  European Journal of Biochemistry 183: 37-40.

0125.       Singh J, Appels R, Sharp P & Skerritt J  2001  Albumin polymorphism and mapping of a dimeric α-amylase inhibitor on wheat chromosome 3B.  Australian Journal of Agricultural Research.  In press

0126.       Helguera M, Khan IA & Dubcovsky J  2000  Development of PCR markers for the wheat leaf rust gene Lr47.  Theoretical & Applied Genetics 101: 625-631.

0127.       Kojima T, Habu Y, Iida S & Ogihara Y  2000  Direct  isolation of differentially expressed genes from a specific chromosome region of common wheat: application of the amplified fragment length polymorphism-based in RNA fingerprinting (AMF) method in combination with a deletion line of wheat.  Molecular & General Genetics 263: 635-641.

0128.       Laroche A, Demeke T, Gaudet DA, Puchalski B, Frick M & McKenzie R  2000  Development of a PCR marker for rapid identification of the Bt10 gene for common bunt resistance in wheat. Genome 43: 217-223.

0129.       Zeller FJ  2000  Personal communication.

0130.       Watanabe N & Ikakata N  2000  The affects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat.  Euphytica 115: 215-220.

0131.       Khan AA, Bergstrom GC, Nelson JC & Sorrells ME  2000  Identification of RFLP markers for resistance to wheat spindle streak mosaic bymovirus (WSSMV) disease.  Genome 43: 477-482.

0132.       Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S & Bernard M. 2000   Detection of QTL’s for heading time and photoperiod response in wheat using a doubled haploid population.  Genome 43: 487-494.

0133.       Taylor C, Shepherd KW & Langridge P  1998  A molecular genetic map of the long arm of chromosome 6R of rye incorporating the cereal cyst nematode gene, CreR.  Theoretical & Applied Genetics 97: 1000-1012.

0134.       Tixier MH, Sourdille P, Charmet G, Gay C, Cadalen T, Bernard S, Nicholas P & Bernard M  1998  Detection of QTL’s for crossability in wheat using a doubled-haploid population.  Theoretical & Applied Genetics 97: 1076-1082.

0135.       Spielmeyer W, Moullet O, Laroche A, Lagudah ES  2000  Highly recombinogenic regions at seed storage protein loci on chromosome IDS of Aegilops tauschii, the D-genome donor of wheat. Genetics 155: 361-367.

0136        Enns H & Konzak CF  1966  Genetically controlled seedcoat variegation in Triticum aestivum.  Genetics 53: 1091-1099.

0137.       Yamamori M, Fujita S, Hayakawa K & Matsuki J  2000  Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose.  Theoretical & Applied Genetics 101: 21-29.

0138.       Obbonnaya FC, Seah S, Delibes A, Jahier J, López-Brańa I, Eastwood RF & Lagudah ES  2001  Molecular-genetic characterization of a new nematode resistance gene in wheat.  Theoretical & Applied Genetics 102: 623-629.

0139.       Tao W, Liu D, Liu J, Feng Y & Chen P  2000  Genetic mapping of the powdery mildew resistance gene  Pm6 in wheat by RFLP analysis.  Theoretical & Applied Genetics 100: 564-568.

0140.       Luo MC, Yang ZL & Dvořák J  2000  The Q locus of Iranian and European spelt wheat.  Theoretical & Applied Genetics 100: 602-606.

0141.       Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S & Bernard M  2000  QTL analysis of bread-making quality in wheat using a doubled haploid population.  Theoretical & Applied Genetics 100: 1167-1175.

0142.       Chantret N, Sourdille P, Röder M, Tavaud M, Bernard M & Doussinault G  2000  Location and mapping of the powdery mildew resistance gene MlRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat.  Theoretical & Applied Genetics 100: 1217-1224.

0143.       Varshney RK, Prasad M, Roy JK, Kumar N, Harjit-Singh, Dhaliwal HS. Balyan HS & Gupta PK  2000  Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat.  Theoretical & Applied Genetics 100: 1290-1294.

0144.       Marcoz-Ragot C, Gateau I, Koenig J, Delaire V & Branlard G  2000  Allelic variants of granule-bound starch synthase proteins in European bread wheat varieties.   Plant  Breeding 119: 305-309.   

0145.       Ahmad M  2000  Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theoretical & Applied Genetics 101: 892-896.

0146.       Chantret N, Sourdille P, Roder M, Tavaud M, Bernard M & Doussinault G  2000  Location and mapping of the powdery mildew resistance gene MIRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat. Theoretical & Applied Genetics 100: 1217-1224.

0147.       De Bustos A, Rubio P & Jouve N  2000  Molecular characterisation of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat. Theoretical & Applied Genetics 100: 1085-1094.

0148.       Faris JD, Haen KM & Gill BS  2000  Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154: 823-835.

0149.       Galili S, Avivi Y, Millet E & Feldman M  2000  RFLP-based analysis of three RbcS subfamilies in diploid and polyploid species of wheat. Molecular & General Genetics 263: 674-680.

0150.       Huang XQ, Hsam SLK, Zeller FJ, Wenzel G & Mohler V  2000  Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theoretical & Applied Genetics 101: 407-414.

0151.       Laroche A, Demeke T, Gaudet DA, Puchalski B, Frick M & McKenzie R  2000  Development of a PCR marker for rapid identification of the Bt-10 gene for common bunt resistance in wheat. Genome 43: 217-223.

0152.       Lotti C, Salvi S, Pasqualone A, Tuberosa R & Blanco A  2000  Integration of AFLP markers into an RFLP-based map of durum wheat. Plant Breeding 119: 393-401.

0153.       Prasad M, Varshney RK, Roy JK, Balyan HS & Gupta PK  2000  The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical & Applied Genetics 100: 584-592.

0154.       Dubcovsky J  2001  Personal communication.

0155.       Flore G  2001 Personal communication.

0156.       Rogers SG  2001  Personal communication.

0157.       Bernard M  2001  Personal communication.

0158.       Benoist P  2001  Personal communication.

0159.       Sharp P  2001  Personal communication.

0160.       Keller B  2001  Personal communication.

0161.       Devaux P  2001 Personal communication.

0162.       Wang RC  2001  Personal communication.

0163.       Liu ZY, Sun QX, Ni ZF, Nevo E & Yang TM  2001  Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer.  Euphytica (In press).

0164.       Tao W, Liu D, Liu J, Feng Y & Chen P  2000  Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theoretical & Applied Genetics 100: 564-568.

0165.       Varshney RK, Prasad M, Roy JK, Harjit-Singh NK, Dhaliwal HS, Balyan HS & Gupta PK (2000) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theoretical & Applied Genetics 100: 1290-1294

0166.       Weibull P  2001 Personal communication.

0167.       Vrinten PL & Nakamura T  2000  Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiology 122: 255-263.

0168.       Yan LL, Bhave M, Fairclough R, Konik C, Rahman S & Appels R  2000  The genes encoding granule-bound starch synthases at the waxy loci of the A, B, and D progenitors of common wheat. Genome 43: 264-272.

0169.       Zanetti S, Winzeler M, Keller M, Keller B & Messmer M  2000  Genetic analysis of pre-harvest sprouting resistance in a wheat x spelt cross. Crop Science 40: 1406-1417.

0170.       Peng JH, Fahima T, Roder MS, Li YC, Grama A & Nevo E  2000  Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F-2 generation in wild emmer wheat. New Phytologist 146: 141-154.

0171.       Peng J, Korol AB, Fahima T, Roder MS, Ronin YI, Li YC & Nevo E  2000  Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: Genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Research 10: 1509-1531.

0172.       Venter E & Botha A-M  2000  Development of markers linked to Diuraphis noxia resistance in wheat using a novel PCR-RFLP approach.  Theoretical & Applied Genetics 100: 965-970.

0173.       Pestsova E, Ganal MW & Röder MS  2000  Isolation and mapping of microsatellite markers specific for the D genome of bread wheat.  Genome 43: 698-697.

0174.       Ban T & Suenaga K  2000  Genetic analysis of resistance to Fusarium head blight caused by Fusarium graminearum in Chinese wheat cultivar Sumai 3 and the Japanese cultivar Saikai 165. Euphytica 113: 87-99

0175.       Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Mitchell Fetch J, Song QJ, Cregan PB & Frohberg, RC  2001  DNA markers for Fusarium head blight resistance QTLs in two wheat populations.  In press.

0176.       Dubcovsky J, Tranquilli G, Khan IA, Pfluger LA, Suarez E, Rousset M & Dvorak J  2000  Comparisons of recombination frequencies in hybrids involving telocentric and bibrachial wheat chromosomes.  Theoretical & Applied Genetics 100: 308-314.

0177.       Giroux MJ, Talbert L, Habernicht DK, Lanning S, Hemphill A & Martin JM  2000    Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Science 40: 370-374.

0178.       Hammer K, Filatenko AA & Korzun V  2000  Microsatellite markers - a new tool for distinguishing diploid wheat species. Genetic Resources & Crop Evolution 47: 497-505.

0179.       Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Frohberg R  & Dubcovsky J  2000  Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp dicoccoides transferred to bread wheat.  Crop Science 40: 518-524.

0180.       Parker GD & Langridge P  2000  Development of a STS marker linked to a major locus controlling flour colour in wheat (Triticum aestivum L.).  Molecular Breeding 6: 169-174.

0181.       Chalmers KJ, Rathjen AJ & Langridge P  1999  Mapping loci associated with milling yield in wheat (Triticum aestivum L.).  Molecular Breeding 5: 561-568.

0182.       Zhang ZY, Xin ZY, Ma YZ, Chen X, Xu QF & Lin ZS  1999  Mapping of a BYV resistance gene from Thinopyrum intermedium in wheat background by molecular markers. Science In China Series C-Life Sciences 42:663. Chinese Academy of Sciences.

0183.       Seah S, Spielmeyer W, Jahier J, Sivasithamparam K &  Lagudah ES  2000   Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat.  Molecular Plant-Microbe Interactions 13: 334-341.

0184.       Lotti C, Salvi S, Pasquallone A, Tuberosa R & Blanco A  Integration of AFLP markers into an RFLP-based map of durum wheat.  Plant Breeding 119: 393-401.

0185.       Blanco A, Bellomo MP, Cenci A, de Giovanni R, D’Olidio R, Iocono E, Laddomada B, Pagnotta MA, Porceddu E, Sciencalepore A, Simeone R & Tanzarella OA  1998  A genetic linkage map of durum wheat.  Theoretical & Applied Genetics 97: 721-728.

0186.       Arraiano LS, Worland AJ & Brown JKM  2001  Personal communication.

0187.       Brading PA, Kema GHJ, Verstaffen ECP & Brown JKM  2001  Personal communication.

0188.       McIntosh RA, Devos KM, Dubcovsky J & Rogers J  2001  Catalogue of gene symbols for wheat:  2001 supplement.  In press.

0189.       Endo TR  1996  Allocation of a gametocidal chromosome of Aegilops cylindrica to wheat homoeologous group 2.  Genes & Genetic Systems 71:  243-246.

0190.       Endo TR  1990  Gametocidal chromosomes and their induction of chromosome mutations in wheat.  Japanese Journal of Genetics 65: 135-162.

0191.       Endo TR & Gill BS  1996  The deletion stocks of common wheat.  Journal of Heredity 87: 295-307.

0192.       Endo TR, Yamamoto M & Mukai Y  1994   Structural changes of rye chromosome 1R induced by a gametocidal chromosome.  Japanese Journal of Genetics 69: 13-19.

0193.       Shi F & Endo TR 1997  Production of wheat and barley disomic addition lines possessing an Aegilops cylindrica gametocidal chromosome.  Genes & Genetic Systems 72: 243-248.

0194.       Shi F & Endo TR 1999  Genetic induction of structural changes in barley chromosomes added to common wheat by a gametocidal chromosome derived from Aegilops cylindrica.  Genes & Genetic Systems 74: 49-54.

0195.       Shi F & Endo TR 2000  Genetic induction of chromosomal rearrangements in barley chromosome 7H added to common wheat.  Chromosoma 109: 358-363.

0196.       Ahmed TA, Tsujimoto H & Sasakuma T  2000  QTLs associated with plant height and related characters in hexaploid wheat.  Breeding Science 50: 267-273.

0197.       Payne PI, Corfield, K.G. & Blackman JA  1979  Identification of a high molecular weight subunit of glutenin whose presence correlates with breadmaking quality in wheats of related pedigree. Theoretical and Applied Genetics 55: 153-159.

0198.       Payne PI, Nightingale MA, Krattiger AF & Holt LM  1987  The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. Journal of the Science of Food and Agriculture 40: 51-65.

0199.       Payne PI, Seekings JA, Worland AJ, Jarvis MG & Holt LM  1987  Allelic variation of gluten subunits and gliadins and its effect on bread making quality in wheat: Analysis of F5 progeny from Chinese Spring x Chinese Spring (Hope 1A). Journal of Cereal Science 6: 103-118.

01100.     Obukhova LV, Maystrenko OI, Generalova GV, Ermakova MF & Popova RK  1997  Composition of high-molecular-weight glutenin subunits in common wheat substitution lines created from cultivars with contrasting bread-making qualities. Russian Journal of Genetics 33: 1005-1009.

01101.     Benmoussa M, Vézina LP, Pagé M, Yelle S & Laberge S  2000  Genetic polymorphism in low-molecular-weight glutenin genes from Triticum aestivum, variety Chinese Spring. Theoretical and Applied Genetics 100: 789-793.

01102.     Wei YM, Zheng YL, Liu DC, Zhou YH & Lan XJ  2000  Genetic diversity of Gli-1, Gli-2 and Glu-1 alleles in Sichuan wheat landraces. Acta Botanica Sinica 42: 496-501.

01103.     von Büren M, Lüthy J & Hübner P  2000  A spelt-specific g-gliadin gene: discovery and detection. Theoretical and Applied Genetics 100: 271-279.

01104.     Scheets K, Rafalski JA, Hedgcoth C & Söll DG  1985  Heptapeptide repeat structure of a wheat g-gliadin. Plant Science Letters 37: 221-225.

01105.     DuPont FM, Vensel WH, Chan R & Kasarda DD  2000  Characterization of the 1B-type w-gliadins from Triticum aestivum cultivar Butte. Cereal Chemistry 77: 607-614.