SPEAKER AND POSTER ABSTRACTS
Numbers in brackets indicate
page numbers in the printed volume.
Note: all files will be displayed as PDF files from the printed volume.
2012 INTERNATIONAL TRITICEAE MAPPING INITIATIVE [ITMI] WORKSHOP
Genome Sequencing and Utilization
- Sequences of 14,600 'gene-bearing' MTP BACs of Morex barley, Timothy J. Close [4]
- Same, same but different: complementary analytical approaches highlight the different shades of polyploidy in rye and wheat, Rachel Brenchley, Manuel Spannagl, Matthias Pfeifer, Gary L.A. Barker, Rosalinda D’Amore, Alexandra M. Allen, Neil McKenzie, Melissa Kramer, Dan Bolser, Suzanne Kay, Darren Waite, Yong Gu, Naxin Huo, Ming-Cheng Luo, Sunish Sehgal, Sharyar Kianian, Martin Trick, Ian Bancroft, Bikram S. Gill, Olin Anderson, Jan Dvorak, Paul Kersey, Richard McCombie, Anthony Hall, Klaus F.X. Mayer, Keith J. Edwards, Michael W. Bevan, Neil Hall, Mihaela Martis, Hana Simkova, Jan Vrana, Jaroslav Dolezel, Susanne König, Ruonan Zhou, Thomas Schmutzer, Uwe Scholz, Viktor Korzun, Nils Stein, Chris-Carolin Schön, Eva Bauer, and Grit Haseneyer [4-5]
- Grass microRNA gene paleohistory unveils new insights into gene dosage balance in subgenome partitioning after whole genome duplication, Michael Abrouk, Rongzhi Zhang, Florent Murat, Aili Li, Caroline Pont, Long Mao, and Jérôme Salse [5]
- Comparative genomic hybridization reveals structural diversity in barley, Gary J. Muehlbauer, M. Munoz-Amatriain, T. Richmond, J. Jeddeloh, A. Landreman, B. Steuernagel, S. Taudien, M. Platzer, U. Scholz, M. Mascher , R. Ariyadasa, T. Nussbaumer, K. Mayer, S.R. Eichten, N.M. Springer, and N. Stein [6]
- kmer-based contamination screening in the wheat chromosome survey sequencing project, Jonathan Wright and Ricardo Ramirez-Gonzalez [6]
- Current status of physical mapping on wheat chromosome 6B, F. Kobayashi, S. Katagiri, W. Karasawa, Y. Hanawa , S. Kaneko, S. Nasuda, K. Hayakawa, H. Fujisawa, Y. Ito, Y. Mukai, J. Dolezel, T. Matsumoto, J. Wu, and Hirokazu Handa [7]
Historical Perspectives
Utilizing Triticeae Resources and Diversity
- DNA marker-assisted chromosome engineering for efficient alien gene introgression of stem rust resistance in wheat,
Steven S. Xu, Zhixia Niu, Daryl L. Klindworth, Qijun Zhang, Shiaoman Chao, Timothy L. Friesen, Justin D. Faris, Yue Jin, and Xiwen Cai [8]
- Barley germplasm and malting barley breeding, Takashi Iimure, Takehiro Hoki , Naohiko Hirota, Wataru Saito, Makoto Kihara, Kiyoshi Takoi, Tomokazu Takaoka, Shigeki Araki, Masahide Sato, Shinji Yamada, Brian G. Rossnagel, and Kazuhiro Sato [9]
- Comparative sequence analysis of chromosomes isolated from two wild relatives of wheat (Aegilops umbellulata and Ae. biuncialis), Mihaela Martis, István Molnár, Jan Vrána, Marie Kubaláková, Hana Simková, Federica Cattonaro, Márta Molnár-Láng, Klaus Mayer, and Jaroslav Dolezel [9]
- Nonparametric tests reveal multiple selection events in the wheat genome, Eduard Akhunov, S. Wang, S. Chao, S. Stephen, E. Huang, C. Saintenac, D. See, A. Carter, G. Brown-Guedira, K. Forrest, D. Wong, M. Pumphrey, G. Bai, R. Bowden, P.S. Baenziger, L. Talbert, J.A. Anderson, S. Dreisigacker, J. Chen, K. Campbell, A. Akhunova, V. Korzun, M. Sorrells, J. Dubcovsky, C. Cavanagh, and M. Hayden [10]
- A genome-wide survey of leaf stripe resistance in a low-structured barley association panel, Alessandro Tondelli, N. Faccini, M. Rahimi, A. Flavell, L. Cattivelli, and G. Valè [10-11]
- Haplotype diversity and evolutionary history of the Lr34 locus of a world wheat germplasm collection, Abdulsalam Dakouri, Brent D. McCallum, and Sylvie Cloutier [11]
Genetics and Genomics of Important Traits
- An analysis of variation in the saccharification potential of barley straw, Robbie Waugh [11]
- Mother of FT and TFL1 represses wheat germination and has potential breeding applications to improve seed dormancy, Shingo Nakamura [12]
- Barley’s triple spikelet meristem is controlled by Vrs4 (six-rowed spike 4), Thorsten Schnurbusch [12]
- Towards cloning the powdery mildew resistance gene QPm.tut-4A introgressed to bread wheat from T. militinae, Monika Kladivová, Barbora Klocová, Diana Posti, Irena Jakobson, Hilma Peusha, Kadri Järve, Ljudmilla Timofejeva, Yuqin Hu, Yong Zhang, Frank M. You, Ming-Cheng Luo, Ajay Kumar, Shahryar F. Kianian, Hana Simková, Jan Safar, Jaroslav Dolezel, and Miroslav Valárik [13]
- Cleistogamy in the Triticeae: genetic variation and its regulation, Ning Wang, Shunzong Ning, and Takao Komatsuda. National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan [13-14]
- Genetics and molecular evolution of a 3.1-Mb genomic region harboring both wheat prolamin and disease resistance gene families, Lingli Dong, Naxin Huo, Yi Wang, Karin Deal, Frank You, Jan Dvorak, Olin D. Anderson, Ming-Cheng
Luo, and Yong Q. Gu [14]
Young Triticeae Researchers
- Genetic provenance and genetic providence in a diverse crop, Ana M. Gonzales and Peter L. Morrell [14-15]
- Molecular tools and genetic resources for eyespot resistance in wheat, Christopher Burt and P. Nicholson [15]
- Wheat Zapper, Illumina BSA, and radiation hybrids for synteny analysis of the scs region, Filippo M. Bassi, Yi Wang, Monika Michalak de Jimenez, Kristin Simons, Kerrie L. Forrest, Stephan L. Kong, Raed Seetan, Loai Alnemer, Rissa Dizon, Hana Simkova, Jaroslav Dolezel, Farhad Ghavami, Anne Denton, Jan Dvorak, Ming-Cheng Luo, Yong Gu, Matthew J. Hayden, and Shahryar F. Kianian [15-16]
- Identification of a candidate barley stem rust susceptibility gene determining the recessive nature of Rpg4-mediated Ug99 resistance in barley, Deepika Arora, Xue Wang, Patrick Gross, Brian Steffenson, and Robert Brueggeman [16]
- Targeted re-sequencing of the wheat exome and the generation of public co-dominant single nucleotide polymorphism markers, Alexandra M. Allen, Gary L.A. Barker, Simon Griffiths, Cristobal Uauy, Peter Jack, Simon Berry, Peter Werner, James P.E. Melichar, Jane Coghill, Mark Winfield, Paul Wilkinson, Amanda Burridge, Jane McDougall, Rhian Gwilliam, Phil Robinson, and Keith J Edwards [16-17]
- Molecular adaptation to cooler climates and ecological diversification of Pooideae, Magnus D. Vigeland, Manuel Spannagl, Torben Asp, Cristiana Paina, Heidi Rudi, Odd-Arne Rognli, Siri Fjellheim, and Simen R. Sandve [17]
Physical Mapping and Map-based Cloning:
Young Researchers
- Physical mapping of the wheat and Triticeae genomes using single gene FISH, Tatiana V. Danilova, Bernd Friebe, and Bikram S. Gill [18]
- Assembly of chromosome 1BS physical map and its utilization for positional cloning of disease resistance genes in wheat, Dina Raats, Zeev Frenke, Tamar Krugman, Itay Dodek, Jaroslav Dolezel, Hana Simkova, Helene Berges, Federica Cattonaro, Thomas Wicker, Etienne Paux, Catherine Feuillet, Abraham Korol, and Tzion Fahima [18-19]
- High-resolution mapping of areas of low recombination and polymorphism containing the hexaploid wheat loci Pis1 and C, Vijay K. Tiwari, Oscar Riera-Lizarazu, Hilary L. Gunn, Kasandra Lopez, Shahryar F. Kianian, and Jeffrey M. Leonard [19]
- The rye gene Pm8 conferring resistance to wheat powdery mildew is a homologue of the wheat powdery mildew resistance gene Pm3, Severine Hurni, Susanne Brunner, Thomas Wicker, Patricia Krukowskia, Nabila Yahiaouia, and Beat Keller [19-20]
Genomics-assisted Breeding
- Use of genomic selection in 21st century wheat breeding, Arron Carter [20]
- DArT and DArTseq genome profiling with relevant IT support, Andrzej Kilian, Eric Huttner, Frank Detering, Jason Carling, Ling Xia, Vanessa Caig, Katarzyna Heller-Uszynska, Damian Jaccoud, Colleen Hopper, and Grzegorz Uszynski [20]
- The usefulness of genomic selection in wheat breeding programs, Giles Charmet and E. Storlie [21]
- Development of gene specific KASP markers: a toolbox for marker-assisted selection in wheat, Gina Brown-Guedira, Neelam Kumari, Susan Dreisigacker, Peter Sharp, Catherine Ravel, and Cristobal Uauy [21]
- An integrated SNP, SSR, DArT map in the wheat population ‘Kenyon/86ISMN 2137’, Curt A. McCartney, Mulualem T. Kassa, Curtis J. Pozniak, Ruan Yuefeng, Andy Sharpe, Christine Sidebottom, Geoff R. Hughes, and Pawan K. Singh [22]
High-throughput Phenotyping
- State of the art and future developments in phenotyping: half a century of expertise in ARVALIS Institut du végétal, L. Guerreiro, K. Beauchene, X. Lacaze, D. Gouache, J. Lorgeou, M. Siné, P. Gate, and B. Desolan [22]
- Nondestructive, high-throughput phenotyping to study cereals under stress conditions, Bettina Berger and M. Tester [23]
-