Query (optional)   in Class  

GrainGenes Reference Report: GEN-136-383

[Submit comment/correction]

Reference
GEN-136-383
Title
The use of mixture models to detect effects of major genes on quantitative characters in a plant breeding experiment
Journal
Genetics
Year
1994
Volume
136
Pages
383-394
Author
Jiang C
Pan X
Gu M
Abstract
An analysis based on Elston's model of mixed major locus and polygenic inheritance is extended to include populations of progeny testing such as F3, B1s, and B2s families derived from and backcrosses in a cross between two inbred lines. Genetic hypotheses that can be validly tested by the likelihood ratio method in the analysis of a breeding experiment include homogeneity of variances due to environment and/or polygenes with transformable scale effect by Box-Cox power function, random and independent segregation of major genes, invariance of the effects of major genes with population types and additive and dominant models for polygenes. Testing hypotheses in the order suggested here can lead to a gradual simplification of the models and increases the feasibility of the subsequent analysis, but caution must be paid to the possible bias in parameter estimation and hypotheses tests. The procedure is applied to a set of data on plant height of rice with the effects of dwarf genes in crosses among three varieties. Two recessive dwarf genes are shown to be nonallelic and unlinked. One dwarf gene is shown to reduce plant height about 36-56 cm, and another 52-61 cm. The effect of polygenes, estimated as the standard deviation among possible inbred lines derived from these crosses, is about 11.7 cm. Interactions between the dwarf genes and the polygenic background are found, especially for one of the two genes. Both the polygenic effects and the interactions are much smaller than the effects of the major dwarf genes.
Keyword
crops
[ Show all 13 ]

GrainGenes is a product of the Agricultural Research Service of the US Department of Agriculture.