Query (optional)   in Class  

GrainGenes Reference Report: PPS-131-684

[Submit comment/correction]

Reference
PPS-131-684
Title
A low-starch barley mutant, Riso 16, lacking the cytosolic small subunit of ADP-glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity of the plastidial small subunit
Journal
Plant Physiology
Year
2003
Volume
131
Pages
684-696
Author
Johnson PE
[ Show all 8 ]
Abstract
Summary: To provide information on the roles of the different forms of ADP-glucose pyrophosphorylase (AGPase) in barley (Hordeum vulgare) endosperm and the nature of the genes encoding their subunits, a mutant of barley, Riso 16, lacking cytosolic AGPase activity in the endosperm was identified. The mutation specifically abolishes the small subunit of the cytosolic AGPase and is attributable to a large deletion within the coding region of a previously characterized small subunit gene that we have called Hv.AGP.S.1. The plastidial AGPase activity in the mutant is unaffected. This shows that the cytosolic and plastidial small subunits of AGPase are encoded by separate genes. We purified the plastidial AGPase protein and, using amino acid sequence information, we identified the novel small subunit gene that encodes this protein. Studies of the Riso 16 mutant revealed the following. First, the reduced starch content of the mutant showed that a cytosolic AGPase is required to achieve the normal rate of starch synthesis. Second, the mutant makes both A- and B-type starch granules, showing that the cytosolic AGPase is not necessary for the synthesis of these two granule types. Third, analysis of the phylogenetic relationships between the various small subunit proteins both within and between species, suggest that the cytosolic AGPase single small subunit gene probably evolved from a leaf single small subunit gene
External Databases
Pubmed: 12586892
Keyword
acid
[ Show all 21 ]

GrainGenes is a product of the Agricultural Research Service of the US Department of Agriculture.