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Wheat Gene Catalogue – Trait Summary 
 

1. Morphological and Physiological Traits 
 

1.1 Gross Morphology: Spike characteristics 
1.1.1. Squarehead/spelt 
1.1.2. Club/Compact spike 
1.1.3. Sphaerococcum 

1.2. Branched spike 
1.3. Elongated glume 
1.4. Ear length 
1.5. Multi-gynoecium; Multi-ovary 
1.6. Accumulation of abscisic acid 
1.7. Alkylresocinol content in grain 
1.8. Aluminium tolerance 
1.9. Anthocyanin pigmentation 

1.9.1. Purple anthers 
1.9.2. Purple/Red auricles. Purple leaf base/sheath 
1.9.3. Red/purple coleoptiles 
1.9.4. Purple/red culm/straw/stem 
1.9.5. Purple grain/pericarp 
1.9.6. Purple glume 
1.9.7 Purple leaf blade 

1.10 Awnedness 
1.10.1. Dominant inhibitors of awns 
1.10.2. Promotors of awns 
1.10.3. Smooth awns 

1.11. Basal Sterility in speltoids 
1.12. Blue aleurone 
1.13. Brittle culm 
1.14 Brittle rachis 
1.15. Boron tolerance 
1.16. Cadmium uptake 
1.17. Chlorophyll abnormalities 

1.17.1. Virescent 
1.17.2. Chlorina 
1.17.3. Striato-virescens 
1.17.4. Yellow-green 

1.18. Cleistogamous flowering 
1.19. Copper efficiency 
1.20. Corroded 
1.21. Crossability with rye and Hordeum and Aegilops spp 

1.21.1. Common wheat 
1.21.2. Tetraploid wheat 

1.22. Dormancy (Seed) 
1.22.1. Germination index 
1.22.2. Vivipary 
1.22.3. Pre-harvest sprouting 

1.23. Ear emergence 
1.24. Earliness per se 
1.25. Embryo lethality 



1.24.1. Embryo lethality in wheat × rye hybrids 
1.26. Flag leaf width 
1.27. Flowering time 
1.28. Flour colour 
1.29. Free-threshing habit 
1.30. Frost resistance 
1.31. Gametocidal genes and segregation distortion 

1.31.1. Gametocidal activity 
1.31.2. Suppression of gametocidal genes 
1.31.3 Segregation distortion 

1.32. Gibberellic acid response (insensitivity) 
1.33. Glaucousness (Waxiness/Glossiness) 

1.33.1. Genes for glaucousness 
1.33.2. Epistatic inhibitors of glaucousness 
1.33.3. Leaf glaucousness 
1.33.4. Spike glaucousness 

1.34. Glume and awn colour 
1.34.1. Red (brown/bronze/black) glumes 
1.34.2. Pseudo-black chaff 
1.34.3. Black-striped glumes 
1.34.4. Inhibitor of glume pigment 
1.34.5. Chocolate chaff 
1.34.6. Awn colour 

1.35. Grain hardness/Endosperm texture 
1.36. Grain quality parameters 

1.36.1. Sedimentation value 
1.36.2. Flour, semolina and pasta colour 
1.36.3. Amylose content 
1.36.4. Milling yield 
1.36.5. Alveograph dough strength W 
1.36.6. Mixograph peak time 
1.36.7. Starch characteristics 
1.36.8. Loaf volume 
1.36.9. Dough rheological properties 
1.36.10. Grain fructan content 
1.36.11. Water absorption 
1.36.12. Chinese dry noodle quality 
1.36.13. Grain traits based on homolgyREQUIRES REVISION 

1.37 Grain weight 
1.38. Grass-clump dwarfness/Grass dwarfness 
1.39. Growth rate and early vigour 
1.40. Hairinessy/Pubescence traits  

1.40.1. Hairy auricles 
1.40.2. Hairy glumes  
1.40.3. Hairy leaves 
1.40.4. Hairy leaf sheath 
1.40.5. Hairy neck/pubescent peduncle 
1.40.6. Hairy node/Pubescent node 

1.41. Heat tolerance 
1.42. Reduced height 

1.42.1 Reduced height: GA-insensitive 



1.42.2. Reduced height: GA-sensitive 
1.42.3. Reduced height: temporary designations 
1.42.4. Reduced height: QTL 

1.43. Herbicide response  
1.43.1. Difenzoquat insensitivity 
1.43.2. 2,4-D tolerance 
1.43.3. Chlortoluron insensitivity 
1.43.4. Imidazolinone resistance 

1.44. Hybrid weakness 
1.44.1. Hybrid necrosis 
1.44.2. Hybrid chlorosis type 1 
1.44.3. Hybrid chlorosis type 2 
1.44.4. Apical lethality 
1.44.5. Hybrid necrosis type 3 

1.45. Iron deficiency 
1.46. Lack of ligules 
1.47. Leaf characteristics 

1.47.1. Leaf erectness 
1.47.2. Leaf tip necrosis 
1.47.3. Seedling leaf chlorosis 
1.47.4. Early leaf senescence 

1.48. Lesion mimicry 
1.49. Lodging 
1.50. Male sterility 

1.50.1. Chromosomal 
1.50.2. Sterility in hybrids with wheat 
1.50.3. Photoperiod and/or temperature-sensitive male sterility (PTGMS) 

1.51. Manganese efficiency 
1.52. Maturity time 
1.53. Megasporogenesis 

1.53.1. Control of megasporogenesis 
1.54. Meiotic characters 

1.54.1. Low-temperature pairing 
1.54.2. Pairing homoeologous 
1.54.3. Inhibitors of pairing homoeologous 
1.54.4 Asynapsis/desynapsis 

1.55. Nitrate reductase activity 
1.56. Nuclear-cytoplasmic compatability enhancers 
1.57. Nucleolus organizer regions 

1.57.1. 18S - 5.8S - 26S rRNA genes 
1.58. Osmoregulation 
1.59. Phenol colour reaction of kernels 
1.60. Pollen killer 
1.61. Polyphenol oxidase (PPO) activity 
1.62. Red grain colour 

1.62.1. Red grain colour 
1.62.2. Variegated red grain colour 

1.63. Reaction to black-point of grain 
1.64. Response to photoperiod 
1.65. Response to salinity 

1.65.1. K+/Na+ discrimination 



1.65.2. Salt tolerance 
1.65.3. Sodium exclusion 

1.66. Response to tissue culture 
1.67. Response to vernalization 
1.68. Restorers for cytoplasmic male sterility 

1.68.1. Restorers for T. timopheevi cytoplasm 
1.68.2. Restorers for Aegilops longissima cytoplasm 
1.68.3. Restorers for photoperiod-sensitive Aegilops crassa cytoplasm 
1.68.4 Restorers for temperature-sensitive Aegilops kotchyi cytoplasm 
1.68.5. Restorers for multi-species cytoplasm 

1.69. Ribosomal RNA 
1.69. Segregation distortion 
1.70. Short roots 
1.71. Soft glumes 
1.72. Sterol esterification in kernels - Synthesis of b-sitosterol esters 
1.73. Stem solidness 
1.74. Temperature-sensitive winter variegation 
1.75. Tenacious glumes 
1.76. Tiller inhibition / Tiller number 
1.77. Uniculm stunt 
1.78. Yield and yield components 

1.78.1. Grain number per spike 
1.78.2. Grain volume weight 
1.78.3. Grain weight 
1.78.4 Test weight 
1.78.5. Grain weight/ear 
1.78.6. Grain yield 
1.78.7. Kernel number per square metre 
1.78.8. Spike number per plant 
1.78.9. Spikelet number per square metre 
1.78.10. Spike length 
1.78.11. Tiller number/plant 

1.79. Yellow berry tolerance 
 

2. Proteins 
 

2.1. Grain protein content 
2.2. Enzymes 

2.2.1. Acid phosphatase 
2.2.2. Alcohol dehydrogenase (Aliphatic) 
2.2.3. Aminopeptidase 
2.2.4. Alpha-amylase 
2.2.5. b-amylase 
2.2.6. Endopeptidase 
2.2.7. Esterase 
2.2.8. Glucosephosphate isomerase 
2.2.9. Glutamic oxaloacetic transaminase 
2.2.10. Hexokinase 
2.2.11. Lipoxygenase 
2.2.12. Malate dehydrogenase 
chromosomes 3.2.13. Peroxidase 



2.2.14. Phosphodiesterase 
2.2.15. Phosphogluconate dehydrogenase 
23.2.16. Phosphoglucomutase 
2.2.17. Shikimate dehydrogenase 
3.2.18. Superoxide dismutase 
2.2.19. Triosephosphate isomerase 
3.2.20. Aromatic alcohol dehydrogenase 
2.2.21. Aconitase 
2.2.22. NADH dehydrogenase 
2.2.23 Dipeptidase 
2.2.24. Malic enzyme 
2.2.25. Adenylate kinase 
2.2.26. Glutamate-pyruvate transaminase 
2.2.26. Glutamate-pyruvate transaminase 
2.2.28. Beta-glucosidase 
2.2.29. Starch branching enzyme I 
2.2.30. Starch branching enzyme II 
2.2.31. Benzoxinones 
2.2.32. Acetohydroxyacid synthase (EC 4.1.3.18) 
2.2.33. Phytoene synthase (EC 2.5.1.32) 
2.2.34. Polyphenol oxidase 
2.2.35. Protein disulfide isomerase (EC 5.3.4.1) 
2.2.36. Isoamylase 1 
2.2.37. Polygalacturonase-inhibiting proteins 
2.2.38. Flavone 3-hydroxylase (EC 1.14.11.9) 
2.2.39. Zeta-carotene desaturase 
2.2.40. Carotenoid beta-hydroxylase (non-heme di-iron type)  
2.2.41 Lycopene-zeta-cyclase 
2.2.42 Dehydration-responsive element (DREB) proteins; Dehydration response factors  

(DRF) 
2.3. Endosperm storage proteins 

2.3.1. Glutenins 
2.3.2. Gliadins 
2.3.3. Other endosperm storage proteins 
2.3.4. Enzyme Inhibitors 
2.3.5. Grain softness protein 
2.3.6. Histone H1 Proteins 
2.3.7 Iodine binding factor 
2.3.8 Lipopurothionins 
2.3.9. Lectins 
2.3.10. Puroindolines and grain softness protein 
2.3.11. Endosperm-specific wheat basic region leucine zipper (bZIP) factor storage activator   

alias Storage protein activator 
2.3.12. Salt soluble globulins 
2.3.13. Serine protease inhibitors alias serpins 
2.3.14. Starch granule proteins 
2.3.15. Starch synthase 
2.3.16. Water soluble proteins 
2.3.17. Waxy proteins 
 

 



 
3. Pathogenic Disease/Pest Reaction 

 
3.1. Abiotic stress responses: Dehydrin-response element binding factors 
3.2. Reaction to Barley Yellow Dwarf Virus 
3.3. Reaction to Bipolaris sorokiniana 
3.4. Reaction to Blumeria graminis DC. 

3.4.1. Designated genes for resistance 
3.4.2. Suppressors of PM resistance genes 
3.4.3. Temporarily designated genes for resistance to Blumeria graminis 
3.4.4. QTLs for resistance to Blumeria graminis 

3.5. Reaction to Cephalosporium gramineum 
3.6. Reaction to Cephus spp 
3.7. Reaction to Cochliobolus sativus Ito & Kurib. 
3.8. Reaction to Colletotrichum cereale 
3.9. Reaction to Diuraphis noxia (Mordvilko) 
3.10. Reaction to Eurygaster Integriceps 
3.11. Reaction to Fusarium spp. 

3.11.1. Disease: Fusarium head scab, scab 
3.11.2. Disease: Crown rot caused by Fusarium pseudograminearum, F. culmorum and other 

Fusarium species 
3.12. Reaction to Heterodera avenae Woll.., H. filipjeva (Madzhidov) Stelter 
3.13. Reaction to Magnaporthe spp. 

3.13.1. Reaction to Magnaporthe grisea (Herbert) Barr: Syn. Pyricularia oryzae 
3.13.2. Reaction to Magnaporthe oryzae 

3.14. Reaction to Mayetiola destructor (Say) (Phytophaga destructor) (Say) 
3.15 Reaction to Meloidogyne spp. 
3.16. Reaction to Mycosphaerella graminicola (Fuckel) Schroeter, Zymoseptoria tritici 
3.17. Reaction to Phaeosphaeria nodorum (E. Muller) Hedjaroude 

3.17.1. Genes for resistance 
3.17.2. Sensitivity to SNB toxins (necrotrophic effectors) 

3.18. Reaction to Pratylenchus spp 
3.18.1. Reaction to Pratylenchus neglectus 
3.18.2. Reaction to Pratylenchus thornei 

3.19. Reaction to Puccinia coronata var. hordei. 
3.20. Reaction to Puccinia graminis Pers. 
3.21. Reaction to Puccinia striiformis Westend. 

3.21.1. Designated genes for resistance to stripe rust 
3.21.2. Temporarily designated genes for resistance to stripe rust 
3.21.3. Stripe rust QTL 
3.21.4. Spike response to stripe rust 

3.22. Reaction to Puccinia triticina 
3.22.1. Genes for resistance 
3.22.2 Temporary designations 
3.22.3. Suppressor of genes for resistance to P. triticina 
3.22.4. QTL for reaction to P. triticina 

3.23. Reaction to Pyrenophora tritici-repentis (anomorph: Drechlera tritici-repentis) 
3.23.1. Insensitivity to tan spot toxin (necrosis) 
3.23.2. Insensitivity to tan spot toxin (chlorosis) 

3.24. Reaction to Rhizoctonia spp. 
3.25. Reaction to Sitobion avenae 



3.26. Reaction to Sitodiplosis mosellana (Gehin) 
3.27. Reaction to Schizaphis graminum Rond. (Toxoptera graminum Rond.) 
3.28. Reaction to soil-borne cereal mosaic virus 
3.29. Reaction to Tapesia yallundae. (Anomorph: Pseudocerosporella herpotrichoides (Fron) Deighton) 
3.30. Reaction to Tilletia caries (D.C.)Tul., T. foetida (Wallr.) Liro, T. controversa 
3.31 Reaction to Tilletia indica Mitra 
3.32. Reaction to Ustilago tritici (Pers.) Rostrup 
3.33. Reaction to wheat spindle streak mosaic bymovirus (WSSMV) 
3.34. Reaction to wheat streak mosaic virus 
3.35. Reaction to Xanthomonas campestris pv. undulosa 
3.36. Resistance to colonization by Eriophyes tulipae (Aceria tulipae) 
3.37. Reaction to wheat yellow mosaic virus 
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The Wheat Catalogue: 1. Morphological and Physiological Traits 

Note: Levy and Feldman {797} studied the inheritance of more than 20 morphological and 
biochemical traits in crosses of four T. dicoccoides lines and T. durum. Similarly, Kuspira et al. 
{744} studied 12 qualitative characters in T. monococcum. The symbols applied to the characters 
examined in these studies are not being reserved and listed in the Catalogue. However, both 
studies should serve as base for future work. 

1.1. Gross Morphology: Spike characteristics 

Major hexaploid wheat types are categorized into groups with respect to three major gene pairs; viz. Q, C 
and S1 {1038}. 
1. Common wheat Q c S1  v:  vulgare group. 
2. Club wheat Q C S1  v:  compactum group. 
3. Shot wheat Q c s1  v:  sphaerococcum group. 
4. Spelt wheat q c S1 and q C S1  v:  spelta group (including vavilovi). 
The majority of hexaploid wheat stocks are already, or can be readily, classified into these groups. 
Diploid wheat is assumed to be q. Durum and carthlicum groups have the genotype Q {1049}. 

1.1.1. Squarehead/spelt 

Q 

Q {881}.  [k {1550}; Ap2-5A].  5AL {1293}.  bin:  5AL-17 {10541}.  v:  Common wheats. CS;  Iranian 
spelts {140}.  tv:  T. turgidum ssp. carthlicum, durum and polonicum {10457}.  ma:  Complete linkage 
with cDNA clone PtAq22 {0127}.  c:  Q was cloned and shown to have similarity to AtAP2 (APETALA 
2), the Q allele was more abundantly transcribed than the q allele transcription factors {10457}.  
GenBank AY02956.1.  

q {881}.  [K {1550}].  v:  Macha wheats;  European spelt wheats {10457}; vavilovi wheats.  s:  
CS*8/White Spring Spelt 5A {1048}.  tv:  T. turgidum ssp. dicoccum, dicoccoides {10457}.  ma:  Cent – 
Xrsq805(Empb)-5A – 4.6 cM – Q – 4.3 cM – Xpsr370-5A {419}; Q was physically mapped in 5AL, 
fraction length 0.87, bracketed by deletions 5AL-7 and 5AL-23 {446}; Q – 9.3 cM – Xpsr370-5A {9903}.  
The speltoid phenotype of at least some spelts may be caused by genes at other loci {0140}. Fine 
mapping of the 20 cM region possessing Q and delimited by deletions 5AL -7 and -23 is reported in 
{0324}. 

A nucleotid change in the microRNA172 binding site of the Q locus played a critical role in wheat 
domestication and the origin of free-threshing modern wheats {11192}. 

Pleiotropic features of the Q locus include effects on glume toughness, threshability, rachis fragility, spike 
length, flowering time, and plant height {11342}.  
Final spike and reproductive morphology is affected by the Q/q sequence and its regulation by miR172 
{11344} along with direct or indirect interaction with the homoeologues {11344}. 



 

2   MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS  

 

Homoeologues of Q were described in {11192}. Both have miRNA172 target sites close to the 3’ ends of 
the coding region. These genes were referred to as Ap2-5B, a transcriptionally active pseudogene, and 
Ap2-5D that encodes a functional protein that contributes to suppression of the speltoid phenotype 
{11342}. Reduced height gene Rht23, a mutationally derived allele in NAUH164, was caused by a SNP 
(G3147A, Ala416Thr) within the miR172 target site in 5DL that permitted up-regulation of Ap2-5D due 
to down-regulation of miR172 in leaves, stems and spikes {11345}. 
 

1.1.2. Club/Compact spike 

C 

C {1517}.  [Cd {47}].  2DL {1192, 1517}. probably 2DL {10578}. 2D {1192}.  bin:  C-2DS1 - C-2DL3, 
markers flanking C were located on either side of the centromere {10578}.  i: S-615*11/Elgin {1500}.  s:  
CS*6/Poso 2D {1304};  CS*5/Red Egyptian 2D {1304}.  v:  Club wheats;  Coda {10578};  Corrigin 
{10578}.  ma:  Coda / Brundage: Xwmc144-2D – 1 cM – C – 8 cM – Xwmc18-2D;  Corrigin / CS (Ae. 
tauschii 2D): Xwmc245-2D – 1 cM – Xcfd16-2D/Xgwm358-2D/C/Xcfd116-2D – 1 cM – Xbarc145-2D 
{10578}.  

Cg {11114}.  2BL {11114}.  bin:  2BL-0.48-0.89, near breakpoint 0.69.  v:  Akage Gumbai {11114};  
Akage Gumbai 22 {11114};  Gumbai 22 {11114};  Kinoshita Komugi {11114};  Nakote Gumbai 
{11114}.  ma:  Xhbg410/Xhbg440-2B – 18.1 cM – Cg – 15.3 cM – Xgwm47-2B {11114}.  

Although gene C may be present in some forms of group macha {1447} and spelta {0623}, it is not 
universally present. Tsunewaki {1500} found that compact spike in one form was controlled by 
polygenes. 
C may be orthologous to gene Sog for soft glumes on chromosome 2Am {10578} Tetraploid wheat: A 
compact spike gene C17648 in mutant line MA 17648 wad located in chromosome 5AL {10541}. 
Xbarc319-5A – 9.7 cM – C17648 – 24.8 cM – Xgwm179-5A {10541}. C17648 was distal to the Q locus 
{10541}.  

QTL 

Courtot/Chinese Spring: Six QTL for spike compactness were detected but only 4 on chromosome arms 
1AL, 2BS, 2DS and 4AS were consistent for at least two years {0114}. Two additional QTLs for spike 
compactness were detected in Courtot/Chinese Spring {10080} on chromosome arms 5DL (QCp.icf-5D) 
and 6DL (QCp.icf-6D). Markers Xcfd26-5D and Xcfd38-6D explained 13.6% and 12.2% of the variance 
in spike compactness, respectively {10080}. 

1.1.3. Sphaerococcum  

The naturally-occurring sphaerococcum gene in chromosome 3D and various mutant alleles conferring a 
similar phenotype form a homoeologous series. The sphaerococcoid alleles are either recessive or 
incompletely dominant. All three mapped loci are closely linked to the respective centromeres {0030}. 
The "a" alleles are allocated to Chinese Spring or "normal" wheats. 
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S1 

S-A1 {0029}.  3A {0056}.  v:  CS {0029}.  

S-A1a {0029}.  v:  CS {0029};  common wheats {0029}.  

S-A1b {0029}.  [S3 {0056}].  v:  MS 1453 {0056}.  ma:  Xgwm2-3A(S) – 5.1 cM – S-A1 – 6.6 cM – 
Xgwm720-3A(L) {0030}.  

S-B1 {0029}.  3B {0030}.  v:  CS {0029}.  

S-B1a {0029}.  v:  CS {0029};  common wheats {0029}.  

S-B1b {0029}. [s16219 {10541}, S2 {0030}].  v:  MSK 2452  {0056};  MSK 2454{0056}.  tv:  MA 16219 
{10541}.  ma:  Xgwm685-3B(S) – 4.2 cM – S-B1 – 0.5 cM – Xgwm566/Xgwm845/cent {0030}.  

S-D1 {0029}.  TraesCSD01G137200.  3DL {692}. 3D {0030, 1292}. 3DS {1193, 1194, 11415}.  v:  CS 
{0029}.  

S-D1a {0029}.  v:  CS {0029};  common wheats {0029}.  

S-D1b {0029}.  [s1, sp1 {1286}, Tasg-D1 {11415}].  i:  S-615*11/T. sphaerococcum var. rotundatum 
{1500}.  s:  CS*7/T. sphaerococcum rubiginosum 3D {1304}.  v:  Nongda 4332 {11415};  
Sphaerococcum wheats {0029}; T. antiquorum K056397 & K56398 {10234}.  ma:  Located between 
markers Xgwm341-3DS and Xgdm72-3DS {11415}.  c:  The sphaerococcum phenotype is caused by a 
gain of function mutation in serine/threonine kinase glycogen synthase kinase 3 (STKc_GSK3) that in 
rice affects the brassinosteroid signaling pathway and grain shape {11415}. There is a Lys286Glu 
substitution in the ninth exon of TraesCSD01G137200 {11415}. 

S-D1c {0029}.  [S1 {0056}].  v:  MS 3287 {0056}.  ma:  Xgdm72-3D(S) – 8.0 cM – S-D1 – 2.9 cM – 
Xgwm456-3D/cent {0030}.  

S2 

s2.  Partially dominant {1286}.  [sp2 {1286}].  v:  Sphaerococcoid wheats. "Sphaerococcum simulator" 
{1286}.  
Sphaerococcum-like tetraploid wheats were reported {122}, {475}, {1282}, {1286}, but comparisons 
between them, or with s2, were not made. Whereas Schmidt & Johnson {1281} reported a single 
recessive controlling the sphaerococcum character in tetraploid wheat, Joppa {621} using the same stock 
found that two recessive genes were necessary to produce this phenotype. 

1.2. Branched spike 

Synonyms: branched spike, four-rowed spike, multi-rowed spike, supernumerary spikelet, tetrastichon 
spikelet. 
Branched spike and multi-rowed spike are phenotypes involving the presence of supernumerary spikelets, 
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or the presence of additional spikelets at rachis nodes. A similar condition in rye is known as 'monstrosum 
ear' (reviewed in {10637}). Genetic studies of branched spike in tetraploid and hexaploid wheats indicate 
that the phenotype is recessive, involves one or more genes, and is strongly influenced by environmental 
effects. Comparative genetic studies suggest an orthologous gene series in homoeologous group 2 
{10637}. 

BH1 

bh-A1 {10637}.  [bh {665}].  2AS {665}.  tv:  PI 349056 {665}.  

bh-D1{10637}.  [mrs {10637}].  2DS {10637}.  bin:  2DS5-0.47-1.0 {10637}.  v:  Ra1 {10637};  
Ruc163167-1-02 = Ra1 / ZGK242-81 {10637};  Ruc163167-1-02 = Alana /3/ Ra1 / ZGK242-82 // Ra1 
{10637}.  ma:  Xwmc453-2D/bh-D1 – 7.8 cM – Xgwm988-2D{10637}; Xwwm484-2D – 3.3 cM – 
Xwmc453-2D/bh-D1 – 3 cM – Xwgm988-2D {10637}.  
Ra1 is a mutant stock maintained at the NI Vavilov Research Institute of Plant Industry, St Petersburg, 
Russia. 
A chromosome 2B gene of minor effect was identified {9907}. In a monosomic analysis of the hexaploid 
line LYB with supernumerary spikelets, Peng et al. {9908} located recessive genes in chromosomes 2A 
and 4A that promote the development of supernumerary spikelets and a gene in chromosome 2D that 
prevents their expression. 

bh-R1 {10637}.  [mo {10637}].  2R {10637}.  al:  S. cereale D40 {10637}.  ma:  Xrms056-2R – 15.7 cM 
– bh-R1 – 10.7 cM – Xcfe209-2R {10637}.  

1.3. Elongated glume 

Elongated glume is the phenotype associated with the polonicum group of tetraploid wheats. Expression 
in hexaploid wheat is much reduced compared with tetraploids. Matsumura {911} reported linkage of 
gene P and a gene for red coleoptiles implicating chromosomes 7A or 7B. A different gene was 
subsequently located in chromosome 7B {9990}. 

P1 

P1. [P-Apol1 {0254}, P {911}, Eg {922}, P-Apet1 {0254}].  7AL {922, 1547}. 7A or 7B (based on linkage 
of 0.2 with a gene for red coleoptile) {922}. 7AS {11606, 11587}.  i:  Saratovskaya29*8//Novsibirskaya 
67*2/T. polonicum {922, 0066}. NILs developed in {11606, 11587}. Paragon derivative {11606}.  itv:  
P-LD222 = LD222*11/T. turgidum var polonicum {1547, 1546}.  tv:  T. polonicum {0254}; T. 
petropavlovskyi {0254}. NILs developed in {11587}. T. petropavlovskyi {add: 11587}; Tall and dwarf 
(with Rht22) Polish wheat accessions from Xinjiang {11587}.  ma:  Xgwm260 – 7A(S) – 2.3 cM – P1 – 
5.6 cM – Xgwm1083-7A(L) {0254}; Xgwm890 -7A – 2.1 cM – P1 {0254}; Xgwm260-7AS – 2.3 cM – 
P1pol – 5.6 cM – Xgwm1083-7AL {0254}; Xgwm890-7AS – 2.1 cM – P1pet {0254, 11587}. Located 
between SSR markers XP25 (128.79 MB) and XP87 (128.92) in CDSREFSeq_v1 {11587}.  c:  An 
insertion in intron 1 causes alternate splicing and >50fold up-regulation of the P1 allele affecting kernel 
length, glume length, and flowering date through the brassinosteroid pathway {11587}. The VRT-A2a 
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allele {11606} is present in Chinese Spring and other non-long-glume tetraploid and hexaploid 
accessions; The VRT-A2b in long-glume accessions has a 160 bp sequence replacing a 563 bp sequence in 
intron 1 in all T. polonicum, T. petrapavlovkyi and hexaploid Arrancada landraces {11606}. Loss-of- 
function mutations in both VRT2 homoeologs in tetraploid wheat delay heading time, reduce plant height, 
and increase number of spikelets per spike {11607}. 
Note: The loci determining elongated glumes in T. turanicum and T. durum conv. falcatum are not 
homoeologous to the P loci in the centromeric region of the group 7 chromosomes {0254}. According to 
{11606} T. petropavlovskyi is hexaploid. 

P2 {9990}.  7BL {9990}.  itv:  LD222*7/T. ispahanicum {9990}.  tv:  T. ispahanicum {9990}.  
According to {0254} the loci of T. polonicum, T. petropavlovsky and T. isphanicum are allelic 
('homoeoallelic') whereas other workers had claimed genes in the first two forms were not allelic. Wang 
et al. {0254} however concluded that loci bearing alleles for elongated glumes in T. turanicum and T. 
durum conv. falcatum were not part of the above series. 

1.4. Ear length 

QEl.ocs-5A.1 {0068}.  5AL {0068}.  v:  CS(T. spelta 5A)/CS(Cappelle-Desprez 5A) RI mapping 
population {9903}.  ma:  Associated with Xbcd9-5A {0068}.  

1.5. Multi-gynoecium; Multi-ovary 

Synonym: three pistils (TP). 
This trait describes a dominant phenotype consisting of 3 kernels within each wheat floret; that is, the 
flower consists of 3 separate ovaries, 3 anthers and 2 lodicules. 

PIS1 

Pis1 {10636}.  2DL {10636}.  bin:  C-2DL3-0.49 {10636}.  i:  CM28TP {11228}.  v:  TP Mutant 
{10636}.  ma:  Xgwm539-2D – 17.6 cM – Pis1 – 19.5 cM – Xgwm349-2D {10636}. KM69_132294739 
– 3.5 cM – KM70_136805221 – 3.0 cM – PIS1 – 1.1 cM – KM71_140258883 {11228}. 

A gene designated Mov-1 (multi-ovary) mapped to bin 2DL-9 in a CIMMYT line is assumed to involve 
the same locus as Pis1. Mov-1 was mapped to a 3.5 cM interval (589.3 – 590.4 Mb) {11636}. 

1.6. Accumulation of abscisic acid 

A QTL was mapped on 5AL between Xpsr575-5A {proximal} and Xpsr426-5A {distal} {1180}. 

1.7. Alkylresocinol content in grain 

AR 

Ar1 {0281}.  High alkylresocinol content is dominant {0281}.  5AL {0281}.  tv:  Langdon{0281}.  
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ar1 {0281}.  tv:  Ardente {0281};  this cultivar has a low content compared to all tested durum and 
common wheats {0281}.  

1.8. Aluminium tolerance 

ALT1 

Alt1 {234}.  v:  ET3 = Carazinho/4*Egret {234}.  

alt1 {234}.  v:  ES3 = Carazinho/4*Egret {234}.  

ALT2 

Alt2 {848}. [AltBH {1213}].  4DL {848}.  su:  T. turgidum cv. Langdon 4D(4B) {848}.  v:  
BH1146{0115, 1213};  IAC-24 {0115};  IAC-60 {0115};  13 induced mutants of Anahuac {0115}.  ma:  
Alt2 was mapped to a 4 cM interval flanked by Xpsr914-4D and Xpsr1051-4D {848};  on a consensus 
4B-4D map of T. aestivum; ALT2 – 1.1 cM – Xbcd1230-4D {1213}; Alt2 cosegregated with Xbcd1230-
4D and fell within the interval Xgdm125-4D – 4.8 cM – ALT2 – 1.1 cM – Xpsr914-4D {248}.  
Malate transporter AlMT-D1 gene (GenBank AB081803) is completely linked to aluminium tolerance in 
chromosome arm 4DL between SSR markers Xwmc48b and Xwmc331 in a similar region to ALT2 
{10285}. Almt1 transgenic expression in barley conferred and Al-activated efflux of malate with 
properties similar to those of Al-tolerant wheat {10286}. Allelic variation at the promoter of Almt-D1 was 
associated with differences in Al tolerance. Molecular and pedigree analysis suggest that Al resistance in 
modern wheat germplasm is derived from several independent sources {10532}.  

Almt1. TaALMT1 {11242}. 4DL {11242}. 4DL {11242}. v:  CAR3911 {11242}. ma:  
Xwmc457-4D – 4.0 cM – Almt1 – 2.0 cM – Xwmc331-4D {11242}. 

QTL  

Atlas 66 / Century: A QTL in the region Xdgm125-4DL – Xwmc331-4DL accounted for nearly 50% of the 
phenotypic variation in root growth rate in hydroponic solution {10265}. An Al-activated malate 
transporter (LMT1) was earlier mapped to the same location {10266}. 
Atlas 66 (insensitive)/Chisholm (sensitive) RILs: One QTL, located in chromosome 4DL, corresponded 
to ALMT1 and accounted for 50% of the phenotypic variation {10483}. A second QTL was located on 
3BL (R2 = 0.11); nearest marker Xbarc164-3B {10483}. Both QTLs were verified in Atlas / Century 
{10483}. 
FSW (A1 tolerant) / ND35 (A1 sensitive): 3 QTLs for tolerance, Qalt.pser-4DL co-segregating with 
Xups4, a marker for the promoter of the ALMT1 gene, Qalt.pser-3BL (Xbarc164-3B – Xbarc344-3B) and 
Qalt.pser-2A (Xgwm515-2A – Xgwm296-2A) {10605}. 
In D genome introgression lines of Chinese Spring a major QTL was located in the interval Xgwm125-4D 
– Xgwm976-4D, R2=0.31 {10598}, probably coinciding with Alt2. A second QTL from CS, Qaltcsipk-3B, 
R2=0.49, occurred in interval Xgwm1029-3BL – Xgwm1005-3BL in a CS / CS (Synthetic 3B) population 
{10598}. 
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1.9. Anthocyanin pigmentation 

The genetic determinants of anthocyanin pigmentation of various tissues are largely located in 
homoeologous regions in group 7, viz. 7BS (Rc-B1, Pc-B1, Plb-B1, Pls-B1) and 7DS (Rc-D1, Pc-d1, Plb-
D1), and appear to be linked clusters rather than multiple alleles on each chromosome {10700}. Their 
relationship with genes for purple auricle and purple pericarp are still not clear. 

1.9.1. Purple anthers 

A single, dominant factor was reported {1326}. 

PAN 

Pan1 {921}.  7DS {921}.  v:  Ilyitchevka {921};  Mironovskaya 808 {921};  Novosibirskaya 67 {921};  
Pyrothrix 28 {921};  Saratovskaya 210 {921};  Strela {921};  Ukrainka {921}.  tv:  T. polonicum {921}.  

Pan2.  7AS {9959}.  tv:  T. turgidum ssp. dicoccoides acc. MG4343 {9959}.  ma: PAN2 – 9.2 cM – RC1 
– 12.2 cM – Xutv1267-7A (proximal) {9959}.  

1.9.2. Purple/Red auricles. Purple leaf base/sheath 

For review see {1641}. 
Melz and Thiele {983} described a "purple leaf base" phenotype where anthocyanin pigmentation 
extended to the leaf base as well as auricles. Purple leaf base was expressed only when pigmentation 
occurred in the coleoptiles. 

An5 {983}.  5R {983}.  

Pc/Pls/Plb {10692}.  7B {10692}.  tv:  TRI 15744 (IPK GeneBank, Gatersleben) {10692}. ma: 
Xgwm951-7B – 6.7 cM – Pc/Pls/Plb – 8.2 cM – Pp1 – 8.9 cM – Xgwm753-7B{10692}.  

Ra1.  [Ra {1645}].  1D Gulyeeva {474, 983}. 2D {1645}.  v:  Kenya 58 {1645}.  

Ra2 {983}.  4B {983}.  

Ra3 {983}.  6B {983}.  

1.9.3. Red/purple coleoptiles 

There is an orthologous gene series on the short arms of homoeologous group 7. The 'a' alleles confer red 
coleoptiles. In chromosome substitution lines of wild emmer to common wheat both the 7AS and 7AL 
derivatives had red coleoptiles, placing Rc-A1 in the centromeric region {10974}. 

RC1 

RC-A1 {10451}.  [Rc]. 7AS3 {10451}.  dv:  PAU14087 {10451}.  ma: Xcfa2174-7AS – 11.1 cM – RC-
A1 – 4.3 cM – Xgwm573-7A/Xwmc17-7AL {10451}.  
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Rc-A1a {0250}.  [Rc1, R {401}].  7A {769, 1293}.  7AS {0250}.  s:  CS*6/Hope 7A {1293}.  v:  Hope 
Rc-B1a {1293}.  tv:  T. turgidum ssp. dicoccoides acc. MG4343 {9959}.  ma:  PAN2 – 9.2 cM – RC-A1 
– 12.2 cM – Xutv1267-7ª (proximal) {9959}; RC-A1(distal) – 11.9 cM – Xgwm913-7A {0250}.  

RC-B1 

Rc-B1a.  [Rc2, R2 {401}].  7BS {769, 401, 250}. 7B {742}.  s:  CS*6/Hope 7B {769}.  v:  Hope Rc-A1.  
ma:  Xgwm263-7B – 26.1 cM – RC-B1 – 11.0 cM – Xgwm1184-7B {0250}.  

RC-D1  

Rc-D1a {0250}.  [Rc 3].  7D {596}. 7DS {1444, 1241, 0250}.  v:  Gaoyuan 115 {11160};  Mironovskaya 
808 {1444}; Tetra Canthatch/Ae. squarrosa var. strangulata RL 5271, RL 5404 {1240}; Tetra 
Canthatch/Ae. squarrosa var. meyeri RL 5289, RL 5406 {1240};  Sears' T. dicoccoides /Ae. squarrosa = 
Sears' Synthetic {596}.  ma:  RC-D1 (distal) – 3 cM – Xpsr108-7D {180}; Xgwm44-7D – 6.4 cM – RC-
D1 – 13.7 cM – Xgwm111-7D {0250}.  c:  TaMYB-D1 isolated from Gaoyuan 115 was proposed as the 
candidate gene {11160}.  

Tahir & Tsunewaki {1453} reported that T. spelta var. duhamelianum carries genes promoting 
pigmentation on chromosomes 7A and 7D and genes suppressing pigmentation on 2A, 2B, 2D, 3B and 
6A. Sutka {1444} reported a fourth factor in chromosome 6B and suppressors in 2A, 2B, 2D, 4B and 6A.  
The Rc allele appears to encode a transcription activator of late biosynthesis genes involved in the light-
regulation of anthocyanin systhesis (studies carried out on CS(Hope 7A) substitution line) {10317}. 

1.9.4. Purple/red culm/straw/stem 

Purple or red colour is dominant. 

PC1 

PC1 {743}.  [Pc {743}].  7BS {768}.  7B {743}.  s:  CS*6/Hope 7B {743, 768}.  itv:  LD222*11/CS 
(Hope 7B) {1546}.  ma:  Pc (proximal) – 5.7 cM – Xpsr490(Ss1)-7B.  

PC2 

Pc2 {921}.  7DS {921}.  v:  Ilyitchevka {921};  Mironovskaya 808 {921};  Novosibirskaya 67 {921};  
Pyrothrix 28 {921};  Saratovskaya 210 {921};  Strela {921};  Ukrainka {921}.  

Pc/Pls/Plb {10692}.  7B {10692}.  tv:  TRI 15744 (IPK GeneBank, Gatersleben) {10692}.  ma:  
Xgwm951-7B – 6.7 cM – PC/PLS/PLB – 8.2 cM – PP1 – 8.9 cM – Xgwm753-7B {10692}.  

1.9.5. Purple grain/pericarp 

Genes for purple pericarp were transferred from tetraploid wheats to the hexaploid level {112}, {214}, {941}, 
{1138}. At the hexaploid level duplicate genes {112}, {941} and complementary genes {112}, {939}, {1138}, 
{438} were reported. At the tetraploid level, duplicate-gene {941} and single-gene {1327} inheritances were 
observed. Purple colour is dominant and may be affected by environment and genetic background. Complementary 



 

9   MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS  

 

genes were located in chromosomes 3A and 7B {1138}. Possible pleiotropic relationships of genes affecting 
pigmentation of various tissues have not been studied in detail. Pc2 and Rc-B1a may be the same gene {769}. Also, 
complementary genes involved in determination of purple pericarp could be related to culm colour {112}. The 
location of the second complementary gene is confusing: the three group 7 homoeologues might be 
involved in different materials. 
For review, see {1643}. 
Complementary dominant genes. A purple line PC was obtained from a cross of non-purple Line 821 (a 
7S(7B) substitution from Ae. speltoides) and Line 102/00, a chromosome 2A introgression from T. 
timopheevii {10946}. Purple grained accessions are unknown in both Ae. speltoides and T. timopheevii. 

PP1 

Pp1 {41}.  7BL {10392}. 6A {41}.  i:  Saratovskaya 29*8/Purple {Australia} Pp2 {40}.  v:  Novosibirsk 
67 (this cultivar has white pericarp) {10392}.  v2:  Purple K49426 Pp3a{10392};  Purple Feed Pp3b 
{10392}.  ma:  Xgwm983-7B – 15.2 cM – PP1 – 11.3 cM – Xgwm767-7B {10392}.  

PP2 

Pp2 {41}.  7A {41}.  tv:  T. durum Desf. subsp. abyssinicum Vav {40}.  
Piech and Evans {1138} located complementary genes on chromosomes 3A and 7B. Pp2 was renamed 
Pp3b. 

PP3 

Pp3 {10392}.  2A, not 6A {10392, 0066}.  

Pp3a {10392}.  v2:  Purple K49426 Pp1 {10392}.  ma:  Xgwm328-2AS – 2.7 cM – PP3a – 3.2 cM – 
Xgwm817-2AL {10392}.  

Pp3b {10392}.  [Pp2].  v2:  Purple Feed {10392}, {66}.  ma:  Xgwm328-2AS – 5.2 cM – 
PP3b/Xgwm817/Xgwm912-2A – 3.6 cM – Xgwm445-2A {10392}.  

pp1pp3.  v:  Saratovskaya 29 (this cultivar has red pericarp) {10329}.  

A set of Saratovskaya 29 NILs is described in {11136}. 

A homoeologous sysyem was later proposed:  

PP1 

PP-A1.  [Pp-A1]  7AS.  v:  Saratovskaya 29 (not purple) {11312}. 

PP-B1.  [Pp-B1]  7BS.  Later renamed as Pp3b. 

PP-D1.  [Pp-D1].  TaPpm1a {11313}.  7DS {11312}.  
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Pp-D1a.  v  Heixiaomai 76 Pp3 {11313}; Luozhen 1 Pp3 {11313}; Nongda3753 Pp3 {11667}.  c:  
GenBank KM382421, a purple pericarp MYB 1, is strongly expressed in the pericarp {11313}. 
GenBank MG066451 {11313}. 

PP2. 

PP3  [Pp3].  TaMyc1 {11312}, TaPpb1a {11313}.  2AS.   

Pp3.  v:  Heixiaomai 76 Pp-D1 {11313}; Luozhen 1 Pp-D1 {11313}; Nongda3753 Pp-D1a 
{11667}.  c:  Encodes a protein with an anthocyanin bHLH regulatory factor {11313}. GenBank 
MG066455; has a 6x261 bp tandem repeat in the promoter {11313}. Specifically expressed in 
the seeds {11313}. The alternate allele has only a single 261 bp repeat {11313}.   

Combinations of Pp3 and one or other Pp1 single purple allele gave light purple pericarp 
whereas combinations involving Pp3 with multiple purple alleles gave a dark purple phenotype 
{11312}. 

Transcription factor TaMYB3 on chromosome 4BL bin 0.62-0.95 isolated from purple grained 
cv. Gy115 appeared to be involved in purple pericarp color, but was not the candidate gene for 
purple grain color {11285}. This may correspond to TaPpm2 located on chromosome 4BL, one 
of three Ppm genes with no effect on purple pericarp {11313}. 
 
1.9.6. Purple glume 

PG 

Pg {10692}.  2A {10692}.  tv:  TRI 15744 (IPK GeneBank, Gatersleben) {10692}.  ma:  Xgwm328-2A – 
19.2 cM – PG – 1.4 cM – PP3 – 5.1 cM – Xgwm817-2A {10692}.  

1.9.7. Purple leaf blade 

PLB 

Plb {10692}.  7B {10692}.  tv:  TRI 15744 (IPK GeneBank, Gatersleben) {10692}.  ma:  Xgwm951-7B 
– 6.7 cM – PC/PLS/PLB – 8.2 cM – PP1 – 8.9 cM – Xgwm753-7B {10692}.  

Transcription factor TaMYB3 on chromosome 4BL bin 0.62-0.95 isolated from purple grained 
cv. Gy115 appeared to be involved in purple pericarp color, but was not the candidate gene for 
purple grain color {11285}. This may correspond to TaPPM2 located on chromosome 4BL, one 
of three PPM genes with no effect on purple pericarp {11313}. 
 
1.10. Awnedness 

In cereals such as barley and rice awns are conferred by dominant genes. No homologous genes have 
been reported in wheat. 
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hd b1 b2.  Bearded or fully awned genotype  

1.10.1. Dominant inhibitors of awns 

Hooded 

HD 

Hd {1551}.  4AS {1195, 1293}.  i:  S-615*11/CS {1500}.  v:  Chinese Spring B2 {1293}.  ma:  
Xcdo1387-4A – 8.2 cM – HD – 7.2 cM – Xpsr163-4A {0047} was mapped as a QTL with a peak on 
Xfba78-4A {0309}.  

hd.  s:  CS*6/Hope 4A;  CS*5/Thatcher 4A;  CS*6/Timstein 4A.  

Tipped 1  

B1  
TraesCS5A02G542800 (b1 allele), annotated as a C2H2 zinc finger gene with an EAR domain (11570, 
11571, 11581, 11582, 11596). Located in the terminal region of chromosome 5A that originated from 
homoeologous group 4 {11571}. Expression of TraesCS5A02G542800 was higher in awnless genotypes 
{11571, 11581, 11582}. 

B1 {1551}.  ALI-1 {11581}.  5AL {0242, 1293}.  i:  S-615*11/Jones Fife {1500}.  v:  Timstein 
{741};  Redman {160};  WAWHT2046 {10040}.  tv:  LD222 {10541}. Glossy Huguenot 
{11570}.  ma:  Xgwm410.2-5A – 8.2 cM – B1 – 12.2 cM – YR34 {10040};  Terminally located 
{10189}; Xgwm291-5A.3 – 5.3 cM – B1{10330}.  matv:  Xgwm291-5A – 8.0 cM – B1 {10541}.  
c:  Functionally confirmed by transforming awned Kennong 199 with a 2,017 bp fragment containing 
TraesCS5A02G542800 and UTRs from YMZ {11581}. 
B1 was mapped as a QTL with a peak on Xwmc182-6B {0309}. Associated with increased number 
of spikelets per spike and decreased kernel size in a survey of global bread wheat germplasm {11571}. 
Associated with lower grain length and 1000 grain weight {11581}. 

B1a {42}.  s:  Saratovskaya 29*8/Festiguay 5A {42}.  

B1b {42}.  s:  Saratovskaya 29*8/Aurora 5A {42}.  

B1c {42}.  s:  Saratovskaya 29*8/Mironskaya 808 5A {42}. 

b1.  ali-1 {11581}.  v2:  Chinese Spring B2 Hd {1293}. 

In a common genetic background, carriers of B1a have the shortest tip-awned phenotype; carriers of B1b 
and B1c have awns 2 to 3 times longer depending on environment. In F1 hybrids, differences between the 
substitution line combinations are significant. The postulation of B1 in both CS and Courtot {0309} based 
on the phenotype of a CS deletion stock was not supported by genetic observation.  

Tipped 2 
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B2 

B2 {1551}.  6BL {1297, 1293}.  i:  S-615*11/CS {1500}.  v:  Chinese Spring Hd {1293}.  

b2.  s:  CS*6/Hope 6B;  CS*5/Thatcher 6B;  CS*9/Timstein 6B.  

A GWAS of 364 wheat accessions identified 26 loci associated with awn length {11581}. 
 
Awnless 

Genotypes Hd B2 (e.g., Chinese Spring) and B1 B2 (e.g., Federation) are awnless. Presumably Hd B1 is 
awnless. Watkins & Ellerton {1551} noted the probability of a third allele "b1a" leading to a half-awned 
condition, and in discussion they considered the possibility of a similar third allele at the B2 locus. In 
view of more recent cytogenetic analyses, it seems that the half-awned condition could result from 
epistatic interactions between the alleles B1 and/or B2 and various promotor genes. 
Although hooded, half-awned, tip-awned and awnless variants occur among tetraploid wheats, these are 
relatively infrequent. It has not been established with certainty that the above inhibitors are involved. 
The inhibitor alleles have a pleiotropic effect on glume-beak shape {1348}. Acuminate beak is associated 
with full beardedness and occurs only in b1 b2 types. B2 reduces beak length producing an acute beak 
shape. B1 reduces beak length producing an obtuse beak shape. In this effect B1 is epistatic to B2. 

1.10.2. Promotors of awns 

The effects of (recessive) awn-promoting genes were documented in a number of studies, mainly through 
monosomic and disomic F1 comparisons, and in tetraploids, whereas Heyne & Livers {549} provided 
genetic evidence of their effects. A series of "a" genes was documented, but the evidence for the existence 
of at least some of these was not well supported. Hence symbols for this gene series are not recognized. 

1.10.3. Smooth awns 

Smooth-awned tetraploid wheats were reported {16}, {45}, {690}, {1259} and genetic analyses {16}, 
{45}, {690} suggested a single recessive factor, with modifiers in most instances, relative to rough awns. 
The phenotype has not been reported in hexaploid wheats. No gene symbol is applied. 

1.11. Basal sterility in speltoids 

The presence of gene Q ensures the fertility of the first and subsequent florets in wheat spikelets {378}. In 
speltoids lacking Q, fertility of the second and subsequent florets is ensured by the dominant allele Bs 
(designated A in {378}) located on chromosome 5D {377}. In the presence of Bs the fertility of the first 
floret is under polygenic control. 
In bs bs speltoids floret development is under polygenic control, and stocks with varying levels of basal 
fertility were isolated. 
All group vulgare genotypes so far studied carry Bs. 
The following stocks were described {378}:  
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GenotypeApprox. sterile-base scoreGroup vulgare----QQ Bs Bs0.00Speltoids StFFqq Bs Bs0.00StFqq Bs 
Bs0.08St1Aqq Bs Bs0.39St1qq Bs Bs0.96St2qq bs bs1.41 

 Genotype  Approx. sterile-base score 

Group vulgare ---- QQ Bs Bs 0.00 

Speltoids  StFF qq Bs Bs 0.00 

 StF qq Bs Bs 0.08 

 St1A qq Bs Bs 0.39 

 St1 qq Bs Bs 0.96 

 St2 qq bs bs 1.41 

1.12. Blue Aleurone 

The Ba allele in T. monococcum spp. aegilopoides acc. G3116 determines a half-blue seed phenotype and 
is different from the allele present in Elytrigia pontica that determines a solid blue phenotype {282}. 
They are treated as different genes. 
For review see {1643}. 

BA1 

Ba1 {643}.  Derived from Elytrigia pontica (2n=70).  [Ba {643}].  4B [4BS-4el2] {594}.  tr:  UC66049B 
(currently UC66049, PI 633834) {643}.  

BA2 

Ba2.  [Ba {10451}].  4AmL.  dv:  G3116 {282};  PAU5088 = G2610 = PI 42783le9 {10451}.  ma:  BA2 
cosegregated with Xcdo1387-4A, Xmwg677-4A and Xbcd1092-4ª {282}; Xcfd71-4A – 10.3 cM – BA – 
16.5 cM – Xcfa2173-4A.  

1.13. Brittle culm 

Three independent mutants with brittle tissues were obtained as EMS-induced mutants in T. monococcum 
accessions PAU 14087 {11002}. The mutations likely affected cellulose synthesis and involved all tissues 
{11002}. 

BRC1 

brc1 {11002}.  6AS {11002}.  dv:  T. monococcum mutant brc3 {11002}.  ma:  Xbarc37-6A – 1.9 cM – 
BRC1 – 10.3 cM – Xbarc113-6A {11002}.  

BRC2 
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brc2 {11002}.  3AL {11002}.  dv:  T. monococcum mutant brc2 {11002}.  ma:  Xcfa2170-3A – 2.9 cM – 
BRC2 – 0.8 cM – Xcfd62-3A {11002}.  

BRC3 

brc3 {11002}.  1AL {11002}.  dv:  T. monococcum mutant brc1 {11002}.  ma:  Xwmc470-1A – 3.9 cM – 
Brc3 – 2.1 cM – Xgwm135-1A {11002}.  

A further recessive mutation in T. monococcum accession Pau 5088 was named brc5 (11505).  ma:  
Xcfd38-5AL – 2.6 cM – BRC5 – 4.8 cM – Xgwm126-5AL {11505}. 

1.14. Brittle rachis 

Brittle rachis in T. durum was defined as a spike that disarticulated when the tip was bent by 45 degrees 
relative to the peduncle {10242}. In chromosome substitution lines of wild emmer to common wheat, the 
3AS derivative was more brittle than the 3BS derivative {10974}. 
Wedge (W) type disarticulation is associated with the Br-1 gene set whereas barrel (B) type 
disarticulation is caused by a different gene and is limited to species with the D genome {11080}. 

BR1 

BR-A1 

Br-A1 {10061}.  [Br2 {10061}, Br-A2 {10280}].  3A {0130}. 3AS {10061}.  sutv:  LDN(DIC 3A) 
{0130}.  itv:  ANW10A=LD222*7/LDN-DIC DS 3A {10242}.  ma:  Xgwm2-3A – 3 cM – BR-A1 – 8 cM 
– Xgwm666-3A.1/Xbarc356-3A/Xbarc19-3A/Xgwm674-3A/Xcfa2164-3A {10280}.  

BR-B1 

Br-B1 {10061}.  [Br3 {0130}, Br-A3 {10280}].  3BS {10061}. 3B {0130}.  sutv:  LDN(DIC 3B) 
{0130}.  itv:  ANW10B=LD222*7/LDN-DIC DS 3B {10242}.  ma: Xbarc218-3B – 22 cM – BR-B1 – 2 
cM – Xwmc777-3B {10280}.  tv:  Senatore Cappelli PI 342646 {10242};  Sammartinara {10242};  others 
{10242}.  
The presence of Br-B1 in some durums apparently does not lead to significant shattering under conditions 
of Mediterranean agriculture {10242}. 

BR-D1 

Br-D1 {10061}.  [Br1 {9970}, Br61 {10362}].  3DS {9970}.  v:  KU510, KU511, KU515 {10061};  R-61 
{10362};  T. aestivum var. tibetanum {9970}.  dv:  Ae. tauschii KU2126 {10227}.  ma:  In Ae. tauschii: 
Brt – 7 cM – Xgdm72-3D {10227}.  
Evidence for an orthologous series extending to many related species is discussed in {0130} and 
{10061}. 

BR-S1 
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Br-S1 {11080}.  3SS {11080}.  v:  Iranian spelts {11080}.  tv2:  Triticum timopheevii {11080}.  dv: 
Aegilops tauschii {11080}.  ma:  Xpsr1196-3S – 32.3 cM – BR-S1 – 1.5 cM – Xabg471-3D {11080}.  

Br-D2 

Br-D2 {11080}.  3DL {11080}.  v:  Common wheat {11080};  European spelts {11080}.  dv:  AL8/78 
(shattering) {11080};  TA1604 (non-shattering) {11080}.  ma:  Xmwg2013-3D – 1.5 cM – BR-D2 – 2.9 
cM – Xpsr170-3D {11080}.  

BR4 

Br4 {10082}.  2A {10082}.  tv:  T. dicoccoides {10082}.  ma:  33 cM distal to Xgwm294-2A (LOD=6.3, 
R2=14.4%) {10082}.  

1.15. Boron tolerance 

Genes controlling tolerance to high concentrations of soil boron act additively. 

BO1 

Bo1 {1113, 1111}.  [Bot-B5b {11432}].  7BL {10460}. 7B {177}.  v:  Carnamah {10460};  Frame 
{10460};  Krichauff {10460};  Yitpi {10460};  Additional genotypes {10833, 10834}.  v2:  Halberd 
Bo2Bo3.  tv:  Kalka {10834};  Linzhi {10834};  Niloticum {10834};  Additional genotypes {10834}.  
ma: Bo1 co-segregated with several STS-PCR markers, including Xaww11-7BL, falling within a 1.8 cM 
interval {10460}; The AWW5L7 (Xaww11) PCR marker allele was a good predictor of boron tolerance 
{10460};  Co-dominant PCR marker AWW5L7 co-segregated with Bo1 and was predictive of the 
response of 94 Australian wheat genotypes {10833}; Xbarc32-7B – 2.4 cM – Xaww5L7 – 1.2 cM – 
Xbarc182-7B/BO1 – 1.2 cM – Xpsr680/Xmwg2062-7B {10833}; Xbarc32-7B – 2.6 cM – Xaww5L7/BO1 
{10834}.  c:  Boron transporter-like gene {11432}. GenBank KF148625.  
Bo1 functions as a boron transporter {11432}. 

BO2 

Bo2 {1113, 1111}.  v2:  (W1*MMC)/Warigal Bo3. Halberd Bo1 Bo3.  

BO3 

Bo3 {1113, 1111}.  4A {0012}.  v2:  Warigal Bo2. Halberd Bo1 Bo2. 

BO4 

Bo4 {11432}.  [BOT(TP4A-B5C) {11432}].  4AL {11431}.  v:  G61450 {11431}.  c:  Bo4 is a dispersed 
duplication of Bo1 {11432}. 

A homoeologous nomenclature based on annotated boron transporters inferred from the IWGS CS 
sequence is provided in Extended Data Table 1 in {11432}. 
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Very sensitive genotype: Kenya Farmer bo1 bo2 bo3. 

Boron efficiency: In contrast to tolerance, boron efficiency was studied in {10135}. Monogenic 
segregation occured in Bonza (B inefficient)/SW41 (moderately B inefficient) and SW41/Fang60 (B 
efficient). Two genes, designated Bod1 and Bod2, segregated in Bonza/Fang60. 

QTL 

Cranbrook (moderately tolerant) / Halberd (tolerant): DH population; QTLs for tolerance were 
identified on chromosomes 7B and 7D {10832}. 

For a review of boron tolerance in wheat, see {10835}. 

1.16. Cadmium Uptake 

Low uptake is dominant. 

Low cadmium uptake 

CDU1 

Cdu1 {963}.  [Cdu {1128}].  Corrected to 5BL {10894}. 5BL {10104}.  itv:  Kyle*2/Biodur {10104}.  
tv:  Biodur {1128};  Brigade {11044};  CDC Desire {11044};  CDC Verona {11044};  CDC Vivid 
{11044};  Enterprise {11044};  Eurostar {11044};  Fanfarran {10894};  Hercules {1128};  Napoleon 
{11044};  Nile {1128};  Transend {11044};  Strongfield {11044}.  bin:  5BL9-0.76-0.79.  ma:  CDU1 – 
4.6 cM – OPC-20 {1128}; CDU1 – 21.2 cM – UBC-180 {1128}; Xfcp2-5B – 12 cM – CDU1 – 3 cM – 
ScOPC20{10894}; ScOPC20/Xrz575-5B/XBG608197 – 0.5 cM – 
Cdu1/XbF293297/XBF474090/Os03g53590(Xusw15-5B) – 0.2 cM – XBF474164{10895}; CDU1 is close 
to VRN-B1{10895}.  

cdu1 {963}.  [cdu 1 {1128}].  itv:  Kofa {10104}.  tv:  Kyle {1128};  DT369 {10894}.  

1.17. Chlorophyll abnormalities 

1.17.1. Virescent 

V1 

V1.  3BS {1423}. 3B {122}, {1294}, {1311}.  v:  CS.  

v1a.  [v {1294}].  i:  S-615*11/Neatby's Virescent {1500}.  s:  CS*9/Neatby's Virescent {1304}.  v:  
Neatby's Virescent {1055}.  

v1b.  i:  CS*/Hermsen's Virescent v2b {1304}.  v:  Hermsen's Virescent v2b {1311}.  

V2 
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V2.  3A {1545, 1311}.  v:  CS.  

v2a.  v:  Viridis 508 {1545}.  

v2b.  Expressed only when combined with v2b.  i:  CS*/Hermsen's Virescent v1a {1304}.  v:  Hermsen's 
Virescent v1a {1311}.  
v1b and v2b are expressed only when both are present. Corresponding normal alleles are designated V1 
{3B} and V2 {3A} following Sears' {1295} demonstration of their effects on the expression of v1a. 

1.17.2. Chlorina 

CN1 

CN-A1.  7AL {1304, 1131, 1311}. 7° {1132}.  v:  CS.  

cn-A1a.  [cn1a].  i:  ANK-32 {10820};  Chlorina-1 {1311}.  

cn-A1b.  [cn1b].  i:  Cornell Wheat Selection 507aB-2B-21/6*CS {1133}.  

cn-A1c.  [cn2].  i:  Chlorina-448 (CS background) {1545}.  

cn-A1d {665}.  tv:  CDd6 {665, 666}.  itv:  ANW5A-7A {10820}.  ma:  Hexaploid wheat: Xhbg234-7A 
– 8.0 cM – CN-A1 – 4.3 cM – Xgwm282/Xgwm332-7A {10820}; Tetraploid wheat: Xbarc192-7A – 19.5 
cM – CN-A1 – 11.4 cM – Xgwm63-7A {10820}; Diploid wheat: Xgwm748-7A – 29.2 cM – CN-A1 – 33.3 
cM – Xhbg412-7A {10820}.  

 

CN-B1.  7BL {1131}.  v:  Chinese Spring {1131}.  

cn-B1a {665}.  tv:  CDd1 {665, 666};  v:  CBC-CDd1 {665}.  

cn-B1b {665}.  tv:  CDd2 {665, 666}.  

CN-D1.  [Cn3].  7D {1545}. 7DL {1131}.  v:  Chinese Spring {1131}.  

cn-D1a.  [cn-D1, cn3].  i:  Chlorina-214 {1545}.  v:  CD3 {1583}.  

Two mutants in diploid wheat are reported in {10820}. 

 

13.17.3. Striato-virescens 

A mutant of this type was described {376} but has been lost. 
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1.17.4. Yellow-green 

YG 

yg [{11238}].  Incompletely dominant.  y1718 {11238}.  2BS {11238}.  v:  Xinong 1718 mutant 
{11238}.  ma:  Be498358 – 4.0 cM – yg – 1.7 cM – Xwmc25-2B {11238}.   
The homozygous ygyg genotype is extremely yellow, stunted and sterile and the mutant is easily 
maintained as a heterozygote {11238}. 
 
1.18. Cleistogamous flowering 

Cleisogamy in barley is controlled by the Chy1 allele that encodes an AP2 protein. The Cly and cly1 
alleles differ by a single nucleotide within the miR172 binding site. Three wheat homologues of Cly1, viz, 
TaAP-2A, TaAp-2B and TaAp-2D were located in the terminal bins of chromosomes 2AL, 2BL and 2DL, 
respectively in Chinese Spring and Shinchunaga {11013}. Cleistogamous flowering in durums 
Cleistogamy, a rare flowering habit in durum wheats, is controlled by a single recessive gene relative to 
chasmogamy {191}. 

CL 

Cleistogamous genotypes clcl.  tv:  HI8332 {191}; WH880 {191}. 
Chasmogamous genotypes ClCl.  tv:  IWP5308 {191}; PWB34 {191}; WH872 {191}. 

1.19. Copper efficiency 

Copper efficiency is a genetic attribute that enhances plant growth in copper deficient soil. 

CE 

Ce {1276}.  4BL = T4BL.5RL {1276}.  v:  Cornell Selection 82a1-2-4-7 {462};  Backcross derivatives 
of Cornell Selection to Oxley, Timgalen, Warigal {464};  Hairy necked Viking {1276}.  
5BS = T5BS.5RL.  ad:  CS+5R {463}.  su:  CS 5R {5D} {463}.  v:  Sears' stock HN-2 {464};  
Backcross derivatives to Warigal and Timgalen {464}.  

1.20. Corroded 

CO1 

co1.  [co {1297}].  wsl {11535}.  6BS {1293}.  v:  }; Guomai Mutant {11535};  Sears' corroded mutant 
{1293, 1297, 11535{.  ma:  Xgwm508-6B – 5.1 cM – Xgwm519-6B – 8.2 cM – CO1 {11535}; Xgwm508-
2 – 8.7 cM – CO1 – Xgpw7651-6B {11534}.    

CO2 
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co2.  6D {1570}.  v:  Kurrachee {1570}; Shannong 33 Mutant I30 {11534}.  ma:  Xcfd190-6D – CO2 – 
9.1 cM – 6DS-5 {11534}.   
A gene(s) in chromosome 6A acted as an inhibitor of corroded {1039, 1570}. 

Corroded mutants are very frequent in EMS-treated populations {939}. 

 

1.21. Crossability with Rye and Hordeum and Aegilops Spp. 

1.21.1. Common wheat 

High crossability of some wheats, particularly those of Chinese origin, viz. Chinese 446 {790}, Chinese 
Spring {1216}, and TH 3929 {939}, with cereal rye, weed rye (S. segetale L.) {1646}, and other species, 
e.g., Aegilops squarrosa {691}, Hordeum bulbosum {1387, 1397, 1469} and H. vulgare {349, 693], is 
determined by additive recessive genes. The kr genes influence crossability with H. vulgare. Allele Kr1 is 
more potent in suppressing crossability than Kr2, which is stronger in effect than Kr3 {1387}. According 
to Zheng et al. {1649}, the effect of Kr4 falls between Kr1 and Kr2.  

KR1 

Kr1.  5B {1216}. 5BL {762}.  ma:  Mapped to a 2.0 cM region flanked by Xw5145-5B and 
CA1500122/Xw9340-5B {10922}.  
A second gene in 5BL distal to the Ph1 locus and flanked by Oshypl and Os09g36440, but including 
Xgwm371-5B, affected the temperature sensitivity of seed-set in Kr1 genotypes in wide crosses {10922}. 

KR2 

kr2.  5A {1216}.  5AL {1387}.  

kr1 kr2.  v:  Chinese 446 {790};  Chinese Spring {1025, 1216, 762}; Martonvarsari 9*4/CS {1016}.  

KR3 {11769}. 5DL {11769}.  Published paper not available. 

kr3.  A very weak effect. 

KR4 

kr4.  1A {1649}.  

KR5 

Kr5 [{11387}].  skr {0134, 11352}.  5BS {11352, 11764}.  ma:  Linked marker Cfb306-5B {11764}. 

kr5  su:  Courtot (Fukuhokomugi 5B) {11352}.  v: Balthazar-crossable {11352}; Deucendeu {11352}; 
MP98 {11764}; Ornicar-crossable {11352}. 
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Balthazar-crossable and Ornicar-crossable probably also carry kr1 {11352}.    

 

Kr1 kr2.  s:  CS*6/Hope 5B {1216, 762}.  v:  Blausamtiger Kolben {790}.  

kr1 Kr2.  s:  CS*6/Hope 5A {1216}.  

Kr1 Kr2.  v:  Marquis {790};  Peragis {790}.  

kr1 kr2 kr3 kr4.  v:  J-11 {1649}.  

Kr1 Kr2/Kr1 kr2.  (heterogeneous).  v:  Martonvarsari 9 {1016}.  
Using the Chinese Spring/Cheyenne chromosome substitution series, Sasaki & Wada {1265} found 
significant differences in crossability for chromosome 5B, 7D, 1D and 4B. Differences between rye lines 
were also reported {1265, 1458}. Allelic variation in the potency of the dominant suppressor genes was 
reported {1385, 343}. Evidence for allelic variation in dominant supressors is reported in {1386}. Lists of 
wheat/rye crossabilities:{1383, 1642, 850, 858}. 

QTL 

65% of the variability in a Courtot/CS population was associated with Xfba-367-5A (5AS), Xwg583-5B 
(5BL) and Xtam51-7A {0134}. Only the second QTL appeared to coincide with known locations of Kr 
genes. The former was skr. 

1.21.2. Tetraploid wheat 

The Chinese tetraploid, Ailanmai, possesses recessive crossability genes on chromosomes 1A, 6A and 7A 
with the 6A gene being the least effective {0017}. 

1.22. Dormancy (Seed) 

Seed dormancy in wheat has several components, including factors associated with vivipary and red grain 
colour. Dormancy is an important component of resistance/tolerance to pre-harvest sprouting (PHS). For 
a review of genes involved in preharvest sprouting see {11569}. 

1.22.1. Germination index 

TaSDR-1  

Isolated using the seed dormancy related gene OsSdr4. 

TaSDR-A1. [TaSdr-A1 {11199}].  2A {11199}.  ma:  Xgwm95-2A – 1.4 cM – TaSDR-A1 – 1.5 cM – 
Xgwm372-2A {11199}.  

TaSdr-A1a {11119}.  c:  GenBank KF021988 {11119}. 
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This allele is associated with lower germination index 

TaSdr-A1b {11119}.  c:  GenBank KF021989 {11119}. 

This allele is associated with higher germination index 

 

TaSDR-B1. [TaSdr-B1 {11119}].  2B{11119}.  

TaSdr-B1a {11119}.  v:  Yangxiaomai {11119}.  c:  GenBank KF021990 {11119}.  
This allele is associated with lower germination index. 

TaSdr-B1b {11119}.  v:  Zhongyou 9507 {11119}.  c:  GenBank KF021991 {11119}.  
This allele was associated with higher germination index. 

1.22.2. Vivipary 

Orthologues of maize viviparous 1 (Vp-1) are located in chromosomes 3AL, 3BL and 3DL {9961} 
approximately 30 cM distal to the R loci. Variability at one or more of these loci may be related to 
germination index and hence to PHS {10468}. 
Alleles at VP-A1 were recognized using STS marker A17-19 {10919}.  
Three sequence variants at VP-B1 identified in {10468} were used to develop STS marker Vp1B3 whose 
amplified products showed a significant, but not complete, association with germination index used as 
one measure of PHS. 
Alleles of VP-B1 were recognised using STS marker Vp1B3 {10615, 10621}. 

VP-1 

VP-A1 {10919}.  3AL {10919}.  

Vp-A1a {10919}.  v:  Nongda 311 {10919}.  c:  599 bp {10919}.  
Higher germination index. 

Vp-A1b {10919}.  v:  Wanxianbaimaizi {10919};  Yannong 15 {10919}.  c:  596 bp {10919}.  
Lower germination index. 

Vp-A1c {10919}.  v:  Jing 411 {10919}.  c:  593 bp {10919}.  
Higher germination index. 

Vp-A1d {10919}.  v:  Xiaoyan 6 {10919}.  c:  590 bp {10919}.  
Lower germination index. 

Vp-A1e {10919}.  v:  Zhengzhou 6 {10919};  Bainong 64 {10919}.  c:  581 bp {10919}.  
Higher germination index. 
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Vp-A1f {10919}.  v:  Yumai 34 {10919}.  c:  545 bp {10919}.  
Higher germination index. 

Vp-A1g {11047}.  [Vp-1Ab {11047}].  v:  Kalyansona {11047};  Sonalika {11047};  Yaqui 50 {11047};  
Yecora Rojo 76 {11047}.  c:  GenBank GU385899 {11047}.  

Vp-A1h {11047}.  [Vp-1Ad {11047}].  v:  Attila {11047};  Glenlea {11047};  Tanori F71 {11047}.  c:  
GenBank GU385901 {11047}.  

Vp-A1i {11047}.  [Vp-1Af {11047}].  v:  Debeira {11047};  Kancahn {11047};  Rayon F89 {11047}.  c:  
GenBank GU385903 {11047}.  

 

VP-B1.  3B {11047}.  

Vp-B1a {10615}.  v:  Charger {10616};  Zhongyou 9507 {10615};  271 accessions {10616}.  c:  
GenBank AJ400713 {10615}.  

Vp-B1b {10615}.  v:  Altria {10616};  Recital {10616};  Yongchuanbaimai {10615};  2 accessions 
{10616}.  c:  193 bp insertion in third intron relative to Vp-A1a.  

Vp-B1c {10615}.  v:  Scipion {10616};  Xinong 979 {10615};  101 others {10616}.  c:  83 bp deletion 
relative to Vp-B1a.  

Vp-B1d {10616}.  c:  25 bp deletion relative to Vp-A1a.  

Vp-B1e {10998, 10621}.  [Vp-1Be {10998}].  v:  Fulingkemai {10999};  Hongheshangtou {10621};  
Hongmangchum {10998};  Wangshuibai {10999}.  c:  83 bp deletion, 4 bp insertion and 2 SNPs relative 
to Vp-B1a {10621}.  

Vp-B1f {10998}.  [Vp-1Bf {10998}].  v:  Wanxanbaimaizi {10998}.  

Vp-B1g {11047}.  [Vp-1Bg {11047}].  v:  HD2939 {11047};  Pavon 76 {11047};  Sonora 64 {11047}.  
c:  GenBank GU385904 {11047}.  

Vp-B1 allelic identifications for Chinese landraces, historical and current wheat cultivars are listed in 
{10621}. 

 

VP-D1 {10919}.  3DL {10919}. c:  AJ400714 {10919}.   

Vp-D1a {10919}.  3DL {10919}.  v:  81 Chinese wheat cultivars {10919}.  c:  5 pairs of 
primers{10919}. There was a suggestion of a relationship between alleles and PHS response {10615}.  
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1.22.3. Pre-harvest sprouting 

PHS1  c  Encodes  a mitogen-activated protein kinase kinase (TaMKK3-A) {11737} and orthologue of SD2 
(Qsd2-AK) in barley {11737}. 
Phs1 {10500}.  Semi-dominant {9960}.  [Phs {9960}; Phs1-4AL; Phs-A1 {11546}; TaMKK-A {11546}.  
4AL  {9960}.  i:  Haruyokoi*6/Leader {10500};  Haruyokoi*6/Os21-5 {10500}.  v:  Chinese Spring 
{11737};  Leader {10500};  Os21-5 {10500};  Soleil {9960}.  ma:  Associated with Xpsr1327-4A 
{10346}; Xhbe03-4AL – 0.5 cM – Phs1 – 2.1 cM – Xbarc170-4AL {10500}.  

phs1.  v:  Haruyokoi {10500}.  

TaOsd1 {11738}.  CRISPR-Cas 9 knockout of TaQsd1 homoeologues in chromosomes 5A, 5B and 5D 
led to a 3-4-fold increase in dormancy in Fielder wheat {11738}. Qsd1 encoding an alanine amino 
transferase controls dormancy in barley. 
 
Genotypes with and without favourable haplotypes are discussed in {11546}. 
According to {11547} red grain colour increases the time to dormancy release and has a cumulative effect 
when combined with other dormancy genes not associated with grain colour. 
For a review of Preharvest Sprouting see {11595}. 

QTL 

Several QTL for falling number and alpha-amylase activity, two indicators for pre-harvest sprouting 
resistance, were identified in {0169}. The most significant were associated with Xglk699-2A and 
Xsfr4(NBS)-2A, Xglk80-3A and Xpsr1054-3A, Xpsr1194-5A and Xpsr918-5A, Xpsr644-5A and Xpsr945-
5A, Xpsr8(Cxp3)-6A and Xpsr563-6A, and Xpsr350-7B and Xbzh232(Tha)-7B {0169}. 

AC Domain / Haruyutaka: one major QTL in chromosome 4AL and two lesser possibly 
homomeologous QTLs for dormancy in 4BL and 4DL {0226}.  

AC Domain (red seeded, PHS resistant) / RL4137 (white seeded, PHS moderately resistant): most 
measures of PHS occurred as clusters at the R loci. However, QSi.crc-5D for sprouting index, R2=0.44, 
was independent of seed colour {10626}. 

Annong 0711 (res) / Henong 825 (sus): RIL population. Differences in germination index were 
attributed to a 33 bp insertion in the promoter (possibly the AP2 binding site) of TaMFT-3A in Annong 
0711 relative to Henong 825. TaMFt-3A encodes a phosphatidyl ethanolamine-binding protein {11410}. 

 
Argent (non-dormant, white seeded) / W98616 (dormant, white seeded): 90 DH lines: Strong QTLs 
on chromosomes 1A, 3A, 4A and 7A and weaker QTLs on 2B, 5B, and 6B, all from W98616 {10740}. 

CN10955 (PHS resistant white seeded) / Annuello (PHS susceptible, white seeded): F8 RIL 
population: QPhs.dpivic-4A.2 in the Xgwm637-4AS – Xgwm937/Xgwm894-4AL region and QPhs.dpivic-
4A.1 in the Xwmc48-4AS – Xgwm397-4AS region {10599}.  



 

24   MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS  

 

SPR8198 (red seeded, PHS tolerant) / HD2329 (white seeded, PHS susceptible): Tolerance to 
preharvest sprouting (PHS) was associated with Xwmc104-6B and Xmst101-7D {0032}. In a further study 
7 QTL were located on chromosomes 2AL, 2DL, 3AL and 3BL, the most important, on 2AL and 3AL 
{10670}.   

SPR 8198 (dormant) / HD2329: QPhs.occsu-3A was located in the Xgwm155-3A – Xwmc153-3A region 
with R2 = 75% across 6 environments {10261}. 

Renan / Recital: QTL for preharverst sprouting were identified on chromosomes 3A (associated with 
Xfbb293-3A at P = 0.01), 3B (associated with Xgwm403-3B and Xbcd131-3B at P = 0.001), 3D 
(associated with Xgwm3-3D at P = 0.001) and 5A (associated with Xbcd1871-5A at P = 0.001) in the 
population {0347}. The resistant alleles on the group 3 chromosomes and on 5A were contributed by 
Renan and Recital, respectively. All QTL for preharvest sprouting co-located with QTL for grain colour 
{0347}.  

RL4452 (red seeded, low PHS tolerance) / AC Domain (red seeded, high PHS tolerance): DH lines: 
Genes associated with falling number, germination index and sprouting index contributing to PHS were 
locatged on chromosomes 3A, 4A (locus-2) and 4B in AC Domain and 3D, 4A (locus-1) and 7D in 
RL4452 {10671}.  

Rio Blanco (white seeded, PHS resistant) / NW97S186 (white seeded, PHS susceptible): RIL 
population: QPhs.pseru-3AS, R2=0.41, Xgwm369-3A – Xbarc12-3A, and one minor QTL {10634}. This 
major QTL was confirmed in a Blanco / NW98S079 RIL population, R2 up to 0.58 {10634}. Qphs.pseru-
3A (TaMFT-3A) was fine mapped to a 1.4 cM region flanked by two AFLP markers and was tightly 
linked to Xbarc57-3A and seven other AFLP markers {10893}.  

Sun325B (dormant white seeded) / QT7475 (semi-dormant white seeded): both parents with the 
chromosome 4A QTL: DH population: A QTL was located in the Xgwm77-3B – Xwmc527-3B interval 
(R2 = 0.19) in the approximate region of the R-B1 locus {10669}.  

Totoumai (res) / Siyong (sus): RIL population: A QTL on chromosome 4AL was delimited to a 2.9 cM 
interval flanked by GBS109947 and GBS212432; nine and two SNP were associated with minor QTL on 
chromosomes 5A and 5B {11408}, respectively.  

Zenkoujikomugi / CS: Qphs.ocs-3A.1 on chromosome 3AS was associated with Xbcd1380-3A and 
Xfbb370-3A accounting for 38% of the phenotypic variation {10195}. QPhs.ocs.3A-1 was localized to a 
4.6 cM interval flanked by Xbarc310-3A and Xbcd907-3A {10245}. A weaker QTL, Qphs.ocs-3A.2 in 
3AL, was not associated with TaVp1 {10195}, the wheat orthologue of the maize transcription factor 
Viviparous-1.  

Zenkoujikomugi/Spica: White seeded wheats with the dormancy-related QTL, QPhs-3AS from 
Zenkoujikomugi were more resistant to PHS than counterparts with the contrasting allele from Spica 
{10377}. White seeded wheats with contrasting alleles of QPhs-4AL were not different {10377}. 
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Qphs.ocs-4A.1, may be the same as a QTL in AC Domain/Haruyutaka due to tight linkage with Xcdo785-
4A {10245}. 
QPhs.ocs.4B.1, a CS allele contributing to dormancy, was located in the region of Xgwm495-4B {10245}. 

QPhs.sicau-3B.1, distally located on chromosome 3B in T. spelta CSSR6 (res) / Lang (sus); nearest 
marker wPt-6157; transferred to durum cv. Bellaroi using SCAR markers {11246}. 

QTL analyses in several crosses {10275} indicated a common region in chromosome 4A associated with 
dormancy, dormant genotypes included AUS1408, SW95-50213 and Halberd. The location was 
consistent with Japanese and U.K. work even though different flanking markers were involved. 

Association mapping of 198 winter wheat genotypes detected 8 QTLs on 7 chromosomes, viz. 1BS, 2BS, 
2BL, 2DL, 4AL, 6DL, 7BS and 7DS {10959}. 

A GWAS identified 12 QTL for PBS resistance among which those on chromosomes 3AS and 4AL were 
most commonly detected {11409}. 

Diploid wheat QTL 

T. monococcum KT3-5 (non-dormant) / T. boeoticum KT1-1 (dormant): RIL population: QTL on 
chromosome 5AmL, Xcdo1236c-5A – Xabc302-5A), R2 = 0.2-0.27. Weaker QTLs were found on 3Am 
(TmAB18 – Xwmc102-3A and Xrz444-3A – TmABF) and 4Am (Xrz261-4A – Xrz141-4A) {0892}. The 3Am 

QTL co-located with TmABF and TmAB18 {10417}, derived from orthologous ABA signaling genes in 
Arabidopsis. The 5A QTL may be orthologous to the barley dormancy gene SD1 {10417}. 
For a review of Preharvest sprouting see {11595}. 

1.23. Ear emergence 

QEet.ocs-4A.1 {0047}.  4AL {0047}.  v:  CS/CS(Kanto107 4A) mapping population.  ma:  Associated 
with Wx-B1{0047}.  

QEet.ocs-5A.1 {0068}.  5AL {0068}.  v: CS(T. spelta 5A)/CS(Cappelle-Desprez 5A) RI mapping 
population {9903}.  ma:  Associated with Xcdo584-5A and morphological locus Q {0068}.  

QEet.ocs-5A.2 {0026}.  5AL {0026}.  ma:  Xcdo 412-5A – Xbcd9-5A region {0026}.  

QEet.inra-2B {10069}.  2B.  ma:  2B linked to Xgwm148 (LOD=5.7, R2 = 11.9%.  

QEet.inra-2D {10069}.  2D.  ma:  2D linked to XksuE3 (LOD=2.7, R2 = 6.5%).  

QEet.inra-7D {10069}.  7D.  ma:  7D linked to Pch1 (LOD=3.9, R2 = 7.3%).  

QEet.ipk-2D {255}. QEet.ipk-2D coincides with a QTL for flowering time, QFlt.ipk-2D. Both QTLs may 
correspond to Ppd-D1 {0255}.  2DS {0255}.  v:  Opata/W-7984 (ITMI) RI mapping population{0255};  
Lateness was contributed by W-7984{0255}.  ma:  Associated with Xfba400-2D and Xcdo1379-2D 
{0255}.  
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QEet.ipk-5D {0255}. QEet.ipk-5D coincides with a QTL for flowering time, QFlt.ipk-5D. Both QTLs 
probably correspond to Vrn-D1 {0255}.  5DL {0255}.  v:  Opata/W-7984 (ITMI) RI mapping population 
{0255};  Lateness was contributed by W-7984 {0255}.  ma:  Associated with Xbcd450-5D {0255}.  

1.24. Earliness per se 

Genes for earliness per se {0023} affect aspects of developmental rate that are independent of responses 
to vernalization and photoperiod. 

EPS-A1 

Eps-A1a  {0024}.  3AL {0024}. 3A {0023}.  v:  Chinese Spring {0024}.  

Eps-A1b {0024}.  v:  Timstein {0024}.  

Eps-1Am {0364}. [Eps-Am1].  1AL {0364}.  dv:  T. monococcum DV92 allele for late flowering, G3116 
early flowering {0364}.  ma:  0.8 cM distal to Xwg241-1A {0364};  within a 0.9 cM region within the 
VAtpC – Smp region{10246};  The circadian clock gene Elf3 was identified as a candidate gene for Eps-
Am1{11120}.  

EPS-B1 

Eps-5BL.1 {10075}.  5BL {10075}.  ma:  QTL mapped on chromosome 5BL, linked to Xwmc73-5B (this 
QTL explained 8% of the variance in flowering time, P <0.03 {10075}.  

Eps-5BL.2 {10075}.  5BL {10075}.  ma:  QTL mapped on chromosome 5BL, linked to Xgwm499-5B 
(this QTL explained 6% of the variance in flowering time) {10075}.  

EPS-D1 

Eps-D1 {11193}.  1DL {11193}.  v:  Earliness allele: Cadenza and Spark {11193};  Lateness allele: 
Avalon and Rialto {11193}.  ma:  The earliness allele was associated with a subtelomeric deletion 
containing three candidate genes one of which was TaELF-D1 {11193}.  
A QTL for heading date co-segregated with TaELF3-1DL in a RIL population derived from Gaocheng 
8901 / Zhoumai 16 {11194};  a deletion of the Eps-1D region was associated with earlier flowering.  

epsCnn {0025}.  v:  Cheyenne{0025}.  

Eps Wi {0025}.  3A {0025}.  su: Cheyenne*7 / Wichita 3A {0025}.  ma:  Linked to QTLs for plant 
height, kernel number per spike, and 1,000-kernel weight in RSLs derived from CNN/CNN(WI3A) 
{0025}.  

QTL 
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CS / T. spelta var. duhamelianum KT19-1: RIL population: Two QTL for narrow-sense earliness were 
detected on chromosome 2B in a {10057}. These QTLs were associated with markers Xpsr135-2B and 
Xabc451-2B {10057}. For both QTLs, earliness was conferred by the CS allele.  

Courtot / CS: {0132}.  

Cutler / AC Barrie: Three QTLs were mapped on chromosomes 1B (QEps.dms-1B.1 and QEps.dms-
1B.2) and 5B QEps.dms5B) {11039}. 

Grandin / BR34: QEet.fcu.5AL identified in Xfcp359-5A – Xfcp231-5A interval (R2 = 0.38), at or near the 
Q locus in {10256}. Grandin was the earlier parent.  

1.25. Embryo lethality 

The Chinese Spring (Imperial rye) addition lines 6R and 6RL crossed with different inbred rye lines (R2, 
R6, R7) produced hybrid seeds with different proportions of differentiated embryos. R2 with (Eml-R1a) 
gave only undifferentiated embryos; R6 and R7 (with Eml-R1b) gave 74-100% differentiated embryos 
{10748}. A cross of R2 with the CS nulli-tetrasomics gave differentiated embryos only with N6AT6B 
and N6AT6D, indicating the presence of a complementary factor Eml-A1 on chromosome 6A {10748}. 

1.26. Flag leaf width 

Two NILs in backgrounds of Mianyang 99-323 and PH691 possessing Fhb5 in a Xbarc303-5A – 
Xbarc100-5A interval from Wangshuibai spanning the centromere had a narrow leaf phenotype. 
QFlw.nau-5A, re-designated as TaFLW1, was mapped to a 0.2 cM region, Xwmc492-5A – Xwmc752-5A: 
bin 5AL12-0.37-0.57, and was separated from Fhb5: bin 5AS3-C-0.75 {10934}. 

1.27. Flowering time 

The isolation of wheat genes orthologous to the Arabidopsis Co and rice Hd1 genes was reported in 
{10054}. The genomic clones TaHd1-1, TaHd1-2 and TaHd1-3 originated from the long arms of 
chromosomes 6A, 6B and 6D, respectively. The orthology of the TadHd1 genes with Co/Hd1 was 
demonstrated by complementation of a rice line deficient in Hd1 function with the TaHd1-1 genomic 
clone. The wheat TaHd1 and rice Hd1 genes were located in non-syntenic locations {10054}. To date, no 
variation for flowering time has been identified on wheat group 6 chromosomes. 

QTL 

QFlt.ipk-3A {0255}.  3AL {0255}.  v:  Opata/W-7984 (ITMI): RI mapping population{0255};  Lateness 
was contributed by W-7984 {0255}.  ma:  Associated with Xbcd451-3A {255}.  

QFt.cri-3B.1 {10567}.  Nearest marker Xbarc164-3B; identified in croses of substitution lines of Ceska 
Presivka and Zlatka or Sandra {10567}.  
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Arina (149 days) / Forno (150 days): winter wheat cross: Six QTL were detected over six environments. 
The 3 most important, all from Arina, were in chromosomes 6DL (R2=16%), 3DL (R2=14%) and 7BL 
(R2=13%); 3 others in 2AL, 5BL and 6DL were from Forno {10172}.  

CI 13227 / Suwon 92: RIL population: Heading date: AFLP marker – 2.6 cM – QHd.pser-2DS – 121.1 
cM – Xgwm261-2D {10269}. This QTL could be Ppd-D1 {10269}. 

Ernie (early) / MO94-317 (late): winter wheat cross: days to anthesis (dta): Qdta.umc-2D, linked to 
Xbarc95-2D, R2 = 0.74 {10456}.  

Karl 92*2 / TA 4152-4: F2:F4 population: Two QTLs, QHd.ksu-2D, associated with Xgwm261-2D 
(R2=0.17), and QHd.ksu-3D, associated with Xgwm161-2D 9 (R2) {10273}. 

Nanda 2419 / Wangshuibai: spring wheat cross: 7 QTL for flowering time identified with earlier alleles 
for five coming from Nanda 2419: QFlt.nau-1B (closest marker Xbarc80-1B, R2=11 %), QFlt.nau-1D 
(Xbarc62-1D, Xgwm232-1D, R2=6.13 %), QFlt.nau-2B (Xwmc35-2B, R2=10 %), XFlt.nau-2D 
(Xwmc601-2D, R2=10 %), XFlt.nau-4A.1 (Xcfd2-4A, Xmag1353-4A, R2=10 %), XFlt.nau-4A.2 
(Xmag3386-4A, Xwmc161-4A, R2=18-19 %), XFlt.nau7B (Xmag2110-7B, Xmag1231-7B, Xgwm537-7B, 
Xwmc218-7B, R2=18 %) {10566}. 

1.28. Flour colour 

Schomburgk/Yarralinka: RIL population: Regions in 3A and 7A accounted for 13% and 60% of the 
genetic variation, respectively, and Xbcd828-3A, Xcdo347-7A and Xwg232-7A.1 were significantly 
associated with flour colour {9936}. The association was highly significant in all three replicates only for 
the 7A QTL. Symbols were not assigned to the flour colour loci. See also 29.2. Flour, semolina and pasta 
colour. Lutein is one of the carotenoids contributing to flour colour. Esterification of lutein contributes to 
its stability during storage. A locus controlling esterification was located in chromosome 7D. 

Lutein esterification 

LUTE 

Lute {11189}.  High lutein ester. 7DS {11189}.  bin:  7DS4-0.61-1.00.  v:  Indis {11189};  
Sunco*2/Indus Der. DM5685*B12 {11189};  Most bread wheat accessions.  ma: Xwmc438-7D – 15.1 
cM – LUTE/XwPt-116/XwPt-3727 – 17.7 cM – Xbarc154-7 {11189}.  
Sunco is low lutein but high ester, whereas Haruhikari is low lutein and zero ester. 

lute.  Low lutein ester.  v:  Haruhikari {11189}. 

Lutein esters were not detected in durum {11189}. 

1.29. Free-threshing habit 
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QFt.mgb-5A {0046}.  5AL {0046}.  tv:  Messapia/T. dicoccoides MG4343 mapping population {0046}.  
ma:  Associated with XksuG44-5A {0046}.  

QFt.mgb-6A {0046}.  6A {0046}.  tv:  Messapia/T. dicoccoides MG4343 mapping population {0046}.  
ma:  Associated with Xpsr312-6A {0046}.  

1.30. Frost resistance 

FR-1 

Fr1 {1446}.  5AL {1446}.  v:  Hobbit{1446}.  ma:  Mapped to the mid-region of 5AL, 2.1 cM distal 
from Xcdo504-5A and Xwg644-5A and proximal to Xpsr426-5A {419};  Mapped 2 cM proximal to 
Xwg644-5A and VRN-A1 {0291};  and flanked by deletion points 0.67 and 0.68 {0292}.  

Fr2 {0291}.  5DL {0291}.  s:  CS*7/Cheyenne 5D {0291}.  ma:  FR2 mapped 10 cM proximal to VRN-
D1{0291}. 

Studies using induced and natural mutants of VRN-1 suggested that differences in frost tolerance 
previously attributed to FR1 were pleiotropic effects of VRN-1 {10708}. 

FR-2 

Fr-A2 {10079}.  dv:  Triticum monococcum. Frost tolerant parent G3116, frost susceptible parent DV92.  
ma:  The QTL mapped on chromosome 5AL had a LOD score of 9 and explained 49% of the variation in 
frost tolerance. Closest markers: Xbcd508-5A and Xucw90(Cbf3)-5A. These markers are 30 cM proximal 
to Xwg644-5A, which is closely linked to frost tolerance locus FR-1. Eleven different Cbf transcription 
factors were identified at the Fr-A2 locus {10302};  QTLs for frost tolerance in the FR-A2 region were 
also identified in wheat chromosome 5B (FR-B2 {10079}) and in barley chromosome 5H (FR-H2 
{10083}.  

Fr-B2.  [Fr-B1 {10075}].  ma:  QTL mapped on chromosome 5BL, linked to Xgwm639-5B (this QTL 
explained 12-31% of the variance in frost tolerance) {10075}. Xgwm639-5B mapped close to Xmwg914-
5B, and to Xbcd508-5B, a marker located at the peak of the Fr-A2 QTL {10075}. This data suggests that 
this locus is more likely orthologous to FR-2 than to FR-1.  

QWin.ipk-6A.  6AS {0255}.  v:  Opata/W-7984 (ITMI) RI mapping population {0255}.  Winter 
hardiness was contributed by W-7984 {0255}.  ma:  Associated with Xfba85-6A and Xpsr10(Gli-2)-6A 
{0255}.  

Responses to cold exposure and their genetics are reviewed in {0020, 0274}. 

QTL 

Norstar (tolerant) / Winter Manitou (non-tolerant): DH population: Norstar possessed major and 
minor QTL for tolerance on chromosomes 5A and 1D. The 5A QTL was 46 cM proximal to the VRN-A1 
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locus (R2=0.4); its peak co-incided with Xwmc206-5A and Xcfd2-5A, and expression of C-Repeat Binding 
Factor genes with strong homology to Cfb14 and Cfb15 located at the FR-2 locus in T. monococcum 
{10414}. 

1.31. Gametocidal genes and segregation distortion 

1.31.1. Gametocidal activity 

GC1-B1 

Gc1-B1a {1485}.  [Gc1a {1490}, Gc1 {1487}].  2B {1490}.  i:  CS*8/Aegilops speltoides subsp. aucheri 
{1487}.  

Gc1-B1b {1485}.  [Gc1b {1490}].  2B {1490}.  i:  CS*8/Ae. speltoides subsp. ligustica {1490}.  

GC1-C1 

Gc1-C1 {0188}.  2CL {0189}.  ad:  CS/2C {0189}.  su:  CS2C(2A), CS2C(2B), CS2C(2D) {0189}.  

GC1-Sl 

Gc1-Sl1 {1485}. [Gc-S13 {1485}]. 2S1{334}.  ad:  CS/Ae. sharonensis {334}.  

GC2-Sl1 

Gc2-Sl1a {1485}. [Gc-S11 {1485}]. 4S1 {866}.  ad:  CS/Ae. longissima {866}.  

Gc2-Sl1b {1485}. [Gc-S12 {1485}]. 4S1 {1013}.  ad:  S/Ae. sharonensis {1013}.  ma:  An EMS-induced 
Gc-2 mutant was mapped to a wheat-Aegilops sharonensis T4B-4Ssh#1 translocation chromosome 
{10068}.  

 

GC-C1 

Gc3-C1 {1485}.  [Gc-C {1485}].  3C {333}.  ad:  CS/Ae. triuncialis {338}.  

Gc1-B1a, Gc1-B1b and Gc1-S1, classified in the same functional group, are hypostatic to the genes Gc2-
S11a and Gc2-S11b.  Gc3-C1 does not interact with the Gc genes in the other two groups.  
In addition to these genes, chromosomes carrying gametocidal genes occur in Ae. caudata {337}, Ae. 
cylindrica {336} and other strains of Ae. longissima and Ae. sharonensis {335},{1484}. 
Gametocidal genes in chromosomes in the same homoeologous group have the same gametocidal action 
{0190}. In monosomic additions of chromosomes with gametocidal effects, chromosome deletions and 
translocations are produced in gametes not having the gametocidal genes. This feature has been exploited 
to isolate genetic stocks suitable for physical mapping of wheat {0191} chromosomes, and of rye {0192} 
and barley {0193, 0194, 0195} chromosomes in a wheat background. 
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Genes with gametocidal activity (Sd1 {1647} and Sd2 {1161}) in wheat are present in homoeologous 
group 7 chromosomes of Thinopyrum elongatum {653, 1647}. A segment earlier believed to be derived 
from Thin. distichum {889, 892} is probably the same as that from Thin. elongatum {1162}. 
In the presence of both Sd1 and Sd2, Lr19 is transmitted preferentially in heterozygotes, the degree of 
distortion being determined by genetic background. In heterozygotes with the same background, and in 
the presence of only Sd2, Lr19 shows strong self-elimination. Based on these results, it seems likely that 
the Sears' translocation 7D-7Ag#7 does not carry Sd1 {939}. 
See also Pollen Killer. 

1.31.2. Suppression of gametocidal genes 

IGC1 

Igc1 {1489}.  Causes suppression of the 3C chromosome gametocidal gene of Ae. triuncialis. This alien 
gametocidal factor also promotes chromosome breakage {1486}. 3B {1488}.  v:  Norin 26 {1483, 1488};  
Nineteen wheats listed in {1483, 1488}.  

igc1. v:  Chinese Spring{1483,1488};  Forty wheats are listed in {1483,1488}.  

1.31.3 Segregation distortion 

SD1 

Sd1 {1647}.  7D {1647}.  v2:  Agatha Sd2 {1647, 1161}.  ma:  Proximal to Lr19 and distal to Xpsr165-
7D {10255}.  

SD2 

Sd2 {1161}.  7BL {1163}.  v:  88M22-149 {1163, 1161}.  
Zhang et al. {10255} question the existence of this gene and alternatively suggested a duplication or 
deletion event influencing the transmission. 

See also Pollen Killer 

1.32. Gibberellic acid response (insensitivity) 

GAI1 

Gai1.  [GAI1 {1246}, {565}].  4BS {980}. 4B {406}.  i:  See {408}.  v:  Norin 10 Der. {407, 565}.  ma:  
Xpsr622-4B (distal) – 1.9 cM – GAI1 – 8.3 cM – Xbcd110-4B (proximal) {9959}.  tv:  Messapia {9959}.  

GAI2 

Gai2.  [GAI2 {1246}, {565}].  4D {411}. 4DS {980}.  i:  See {408}.  v:  Maris Hobbit {411};  Norin 10 
Der. {565};  List in {407}.  
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GAI3 

Gai3.  [GAI3 {1246}, {565}].  4B {413}. 4BS {980}.  i:  See {408}.  v:  Minister Dwarf {413};  
Selection D6899 {359};  Tom Thumb {405};  Tom Thumb Der. {565}, {567}.  
In wheats with Gai3, the aleurone layer failed to respond to applied GA {405} 

Two studies involving crosses between Tom Thumb derivatives and tall parents suggested that gibberellic 
acid insensitivity and reduced height were controlled by one gene, i.e., Gai3 {359}, {413}. In a third 
study involving a Tom Thumb derivative, recombinants were isolated, indicating separate but linked 
genes, i.e., Gai3 and Rht-B1c {565}, {567}. Further evidence was obtained for linkage between genes for 
gibberellic acid insensitivity and Norin 10 genes for reduced height in hexaploid {568} and durum {720} 
wheats. Hu & Konzak {567} reported 27% recombination between Gai1 and Rht-B1b and 10% 
recombination between Gai2 and Rht-D1b in hexaploid wheats involving Norin 10 and Suwon 92 
derivatives. In durum derived from crosses involving Norin 10, 15% recombination was obtained between 
one of the genes for reduced height and gibberellic acid insensitivity {1246, 1247}. Gale & Law {403} 
considered Gai1 and Rht-B1b, Gai2 and Rht-D1b, Gai3/ and Rht-B1c to be pleiotropic genes. 

1.33. Glaucousness (Waxiness/Glossiness) 

The W loci are complexes of closely linked genes involved in beta-diketone synthesis. 

Glaucousness refers to the whitish, wax-like deposits that occur on the stem and leaf-sheath surfaces of 
many graminaceous species. The expression of glaucousness depends on the arrangement of wax deposits 
rather than the amount of wax {603}. Non-glaucous variants also occur and genetic studies indicate that 
non-glaucousness can be either recessive or dominant. Recessive forms of non-glaucousness are 
apparently mutants of the genes that produce the wax-like deposits. Dominant non-glaucous phenotypes 
(as assessed visually) appear to be due to mutations that affect the molecular structure, and reflectance, of 
the wax-like substances {10001}. The genes involved in wax production and the "inhibitors" are 
duplicated in chromosomes 2B and 2D. There appear to be independant genes for wax production and 
"inhibitors" {912}, {1493}, {10001}. In earlier issues of the gene catalogue the two kinds of genes were 
treated as multiple alleles {1432}. All forms of wild and cultivated einkorn are non-glaucous {10001}. 
Orthologous loci occur in barley chromosome 2HS (gs1, gs6, gs8) {467}, rye chromosome 7RL (wa1) 
{725} and maize (gl2) {211}. A gene for spike glaucousness, Ws, was mapped distally on chromosome 
1BS in the cross T. durum cv. Langdon / T. dicoccoides acc. Hermon H52 {0171}. 

1.33.1. Genes for glaucousness 

W1.  2BS {1493}, {267}.  bin:  2BS-0.84-1.00.  ma:  Xgwm210-2B – 0.77 cM – XWGGC3197 – 0.81 cM 
– W1 – 0.12 cM – XWGGC2484 – 0.32 cM – Xbarc35-2B {11247}. 

W1.  i:  Chinese Spring mono-2D/S615//10*wS615 {10001}.  v:  Bethlehem {11458}; Chinese Spring 
{1493}; P86 {11247}.  itv:  LD222*11/T. turgidum var. pyramidale recognitum {1546}.  v2:  S615 W2 
{10001}.  tv:  Kofa+Lr19 {11458};  AUS2499 {11458}.  c:  W1 is a highly duplicated, variable gene 
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cluster containing type III polyploid synthase, hydrolase and cytochrome P450 genes and is homologous 
to the Cer-cqu cluster in barley {11458}. 

 
w1.  Recessive allele for reduced glaucousness.  2BS {1432}.  su:  Bethlehem CASL*/T. dicoccoides 
TTD140 2BS(2B) {11458}.  v:  CS mono-4B mutant {1064};  J87 {11247};  Mentana {1432};  Salmon 
{1493}.  tv:  AUS2499 {11458}. 

 

W2 

W2.  i:  Chinese Spring mono-2B/S615//11*w-S615 {10001}.  v: T. compactum cv. No 44 {10001}.  v2:  
S615 W1 {10001}.  

W2a.  dv:  Glaucous forms of Ae. tauschii.  

W2b.  v:  Chinese Spring - weak hypomorph recognized at increased dosage {1432}.  
A non-glaucous spike phenotype in line L-592, a 7S(7A) substitution line, is described in {0113}. 

w1w2 {10001}.  i:  w-S615 = S615*11/Salmon {10001}.  v:  Salmon {10001};  Mentana {1432};  CS 
mono-4B mutant {1064}. 

  

W3 

W3 {11456}.  3DL { 11457}.  dv:  Aegilops tauschii KU-2126 {11457}.  ma:  Xgwm645-3DL – 8.0 cM – 
W3 – 8.9 cM – Xbarc42-3DL {11457}. 

w4.  dv:  Aegilops tauschii KU-2104 {11457}; KU-2105 {11457}.   

Glaucous synthetics LDN/KU-2104 and LDN/KU-2105 are presumed to have genotype W1W1W4W4. 

1.33.2. Epistatic inhibitors of glaucousness 

Each inhibitor inhibits all genes for glaucousness. 

IW 

IW1.  2BS {10001}.  bin:  2BS3-0.84-1.00. 

Iw1 {10001}.  [W1I {1493}, I1-W {1493}].  i:  S615/Cornell 5075//10*S615 {10001}.  v:  WE74 
{11094};  Shamrock {11090}.  tvsu:  LDNDIC521-2B {11245}.  tv  T. dicoccoides PI 481521 {11245}.  ma:  
JIC007 – 1.47 cM – IW1 – 0.18 cM – JIC010/JIC011 {11090};  Co-segregation with BF474014, 
CJ876545 and CD927782 and flanked by BE498358 and CA499581 within a 0.96 cM interval {11094}.  
c:  Iw1 encodes a long non-coding RNA (LncRNA) that putatively arose from an inverted repeat of a 
carboxylesterase gene (80% homology) in the W1 cluster that consists of WI-COE (non-annotated 
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carboxylesterase), WI-PKS (Traes_2BS_9E10D26DB, polykedide synthase) and WI-CYP 
(Traes_2BS_163390FC4, cytochrome P450-type hydroxylase) {11459}. GenBank C-DNA sequence, 
KX823910. The IR region has >94% identity to an IR region in Ae. tauschii chromosome 2 that also 
produces MiRNA and a marker-based location similar to that of Iw2 {11459}. Xgwm614-2B – 
IW1/Xbarc35-2B/CD893659/CD927782/BQ788707/CD938589 – Be498111 {11245}. 

 

IW2 

Iw2 {10001}.  [Iw3672 {10510}, I2-W {1493}, IwT {11207}].  2DS {10001}.  bin:  2DS5-0.47-1.00 
{10578};  2DS5-0.84-1.00.  i:  S615/Golden Ball Synthetic//10*S615 {10001}.  v:  Golden Ball 
Synthetic {10001};  Synthetic hexaploid line 3672 {10510};  TA4152-60 {11094};  Vernal Synthetic 
{10001}.  tv:  T. dicoccoides PI 481521 {11245}.  dv:  Non-glaucous forms of Ae. tauschii {1493}.  ma:  
In Ae. tauschii: IW2 – 30.1 cM – Xgdm35-2DS {10227}; Xbarc124-2D – 0.9 cM – IW2 – 1.4 cM – 
Xwe6(AL731727) {10510}; Xcfd56-2D – 6 cM – IW2 – 10 cM – Xcfd51-2D {10578};  Co-segregation 
with BF474014 and CJ876545 and flanked by CJ886319 and CJ519831 within a 4.4 cM interval 
{11094}. Xgwm614-2B – IW1/Xbarc35-2B/CD893659/CD927782/BQ788707/CD938589 – Be498111 
{11245}. 

 

IW3 

Iw3 {277}.  [IW3 {277}, I3-W {277}].  1BS {277}.  sutv:  Langdon*/T. dicoccoides 1B {11455}.  tv:  T. 
turgidum var. dicoccoides {277}.  ma:  XWL1967/Xfcp168-1B – 0.15 cM – XWL3096 – 0.015 cM – IW3 
– 0.12 cM – Xpsp3000-1B {11455}. 

A non-glaucous spike phenotype in line L-592. A 7S(7A) substitution line, is described in {0113}. 
A dominant gene (Vir) for non-glaucousness was located in chromosome 2BL of cv. Shamrock, a 
derivative of T. dicoccoides {10543}. This gene mapped 2 cM distal to Xgwm614-2B {10543} whereas 
the W1/Iw1 locus was placed distal to Xgwm614-2B in {10189}. Lines with Vir had delayed senescence 
('staygreen') and an average yield advantage over their glaucous sibs {10543}. Although maps 
constructed from three tetraploid crosses suggested that w1, W1 and Iw1DIC = Vir remain unresolved 
{10815}.  

1.33.3. Leaf glaucousness 

QTL 

RAC875 (non-glaucous leaf) / Kukri (glaucous leaf): QW.aww-3A, nearest marker Xwmc264-3A, 
accounted for 36-40% of the phenotypic variation; other QTL were located on chromosomes 1D, 2B (2 
QTL), 4D, 5B and 2D {11131} = {11460}. 
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GWAS of flag leaf glaucousness in a large panel of genotypes identified major QTL on chromosome 2B 
(W1/IW1) and 3A {11482}. 
 
1.33.4. Spike glaucousness 

Spike glaucousness is recessive {10666}. 

WS 

Ws {10666}.  1AS {10666}.  bin:  1AS1-0.47-1.00 {10666}.  v:  Svenno {10666}.  ma: BJ23702a – 3.5 
cM – Tc95235 – 4.8 cM – Bla {10666}.  

ws {10666}.  v:  Ciccio {10666}.  

1.34. Glume colour and awn colour 

1.34.1. Red (brown/bronze/black) glumes 

The majority of studies report a single dominant gene for red glume colour. A few papers report two 
factors {1009, 1477, 1520}. Red glume colour in Swedish land cultivars is apparently associated with 
hairy glumes {1277} suggesting, because Hg is located in chromosome 1A, that a red glume factor 
different from Rg1 is involved in the Swedish stocks. Nothing was known of the possible association of 
such a gene with Bg, another glume colour gene on chromosome 1A. See {1640} for review. A 
chromosome 1A gene, Rg3, was eventually identified by linkage with Gli-A1 {1405} and shown to 
cosegregate with Hg {624}. 

RG-A1 

RG-A1 {10378}.  [Rg3 {923}, {924}, {562}].  1AS {923}, {9906}, {924}, {562}.  

Rg-A1a {10378}.  v:  TRI 542 {10378};  White glumed genotypes.  dv:  DV92 {282};  G2528 {10378}.  

Rg-A1b {10378}.  [Rg3].  i:  Saratovskaya 29*3//F2 CS mono 1/Strela {924}.  v:  CS/Strela Seln {9906};  
Iskra {9906};  L'goskaya-47 {1405};  Zhnitsa {9906, 10378}.  v2:  Milturum 553 Rg-B1b {9906};  
Milturum 321 Rg-B1b {9906};  Strela Rg-B1b {9906}, {924};  Sobko & Sozinov {1405, 1406};  reported 
a further group of 30 international wheats which, by inference from their Gli-A1 alleles, probably carry 
Rg-A1b.  ma:  A linkage order of Rg-A1b – Hg – cent  – Glu-A1 {1405}; Xgwm1223-1A / Rg-A1 / Hg – 
2.2 cM – Xgwm136-1A – 4.2 cM – Xgwm33-1A {10635}.  

Rg-A1c {10378}.  [Bg {1304, 282}, Bg(a)].  1A {1304}, {282}.  i:  ANK-22A {10378};  S29BgHg 
{10378}.  s:  CS*7/Indian 1A {1304}.  v:  TRI 14341 {10638}.  v2:  Sears Synthetic Rg-D1c {10638}.  
dv:  G1777 {282};  G3116 {282}.  ma:  Rg-A1c(Bg) and Nor9 co-segregated in T. monococcum; 
Xutv1391-1A (distal) – 3 cM – Rg-A1c(Bg) – 1.6 cM – Hg – 2.4 cM – Gli-A1 (proximal); Xgwm1223-A1 
– 0 & 0.6 cM – Rg-A1c – 4.7 & 4.6 cM – Xgwm0136-1A {10378};  Five of 6 wheats with Rg-A1c 
possessed a 264 bp allele at Xgwm0136-1A {10378}; Rg-A1c – 0.7 cM – Xgwm1223-1A {10638}.  
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Rg-A1d  [Bg(b)].  dv:  G3116 {282}.  
At the diploid level Rg-A1c (Bga) and Rg-A1d (Bgb) were determinant and caused a solid black glume 
and a black line at the margins of the glume, respectively {282}. 
A single factor for black glumes was reported in diploid, tetraploid and hexaploid wheats {1347}. 
Linkage with Hg was demonstrated at all levels of ploidy, indicating a common gene on chromosome 1A; 
Bg is epistatic to Rg.1 

 

RG-B1 {10378}.  [Rg1, Rg].  1B {1517}.1BS {369}. TraesCS1B02G005200. 

Rg-B1a {10378}.    v:  TRI 542 {10378};  White glumed genotypes, including Chinese Spring.  dv: T. 
turgidum ssp. dicoccoides acc. MG4343 {9959}.  

Rg-B1b {10378}.  [Rg1].  s:  CS*5/Red Egyptian 1B {1304}.  v:  Diamant I {9906};  Federation 41 
{1517};  Golubka {10635};  Highbury {1121};  Jagger {11538};  Norin 60 {11538}; Red Egyptian 
{1304}; Red glume spelts {11538}; T. petrapavlovsky {9906}.  v2:  Milturum 321 Rg-A1b {9906};  
Milturum 553 Rg-A1b {9906};  Strela Rg-A1b {9906}.  tv:  Messapia {9959};  Ward {792}.  ma  
Xutv1518-1B (distal) – 7.7 cM – RG-B1 – 0.8 cM – Gli-B1 (proximal) {9959}; Xgwm1078-1B – 1.5 cM – 
RG-B1 – 3.1 cM – Xgwm0550-B1 {10378}; Xutv1518-1B – (distal) – 7.7 cM – RG-B1 – 0.8 cM – GLI-B1 
(proximal); Xgwm1078-1B – 4.6 cM – RG-B1 – 2.0 cM – MW1B002(Gli-B1) – 4.1 cM – Xgwm550-1B 
{10635}.  c:  Encodes an R2R3-MYB transcription factor {11538}. TraesJAG1B01G000800 and 
TraesNOR1B01G001100 in red glume Jagger and Norin 40, respectively, carried the same Rg-B1b_h1 
sequence; haplotype comparisons revealed that a specific group of MYB alleles was conserved in red 
glume genotypes {11538}.    

 

RG-D1 {10378}.  [Rg2].  1DS. 1DL {769}, {1241}.  

Rg-D1a {10378}.  v:  Novosibirskaya 67 {10378};  L301 {10378};  White glumed genotypes. 

Rg-D1b {10378}.  Derived from Ae. tauschii  [Rg2].  i:  Saratovskaya 29*5//T. timopheevii ssp. 
timoppheevii/T. tauschii {9906}.  v:  ITMI Synthetic W7984 {10635};  Synthetic Hexaploid-11 {10218}; 
(Triticum turgidum ssp. dicoccoides/Ae. tauschii) {769}; (Tetra Canthatch/Ae. tauschii var. strangulata 
RL 5271);  RL5404 {1240}; (Tetra Canthatch/Ae. tauschii var. meyeri RL5289);  RL5406 {648, 1240}.  
v2:  Sears Synthetic Rg-A1c {10638}.  dv:  Aegilops squarrosa accessions.  

 

Rg-D1c {10378}.  Brown or smokey-grey phenotype {729}.  [Brg {729}].  i:  ANK-23 = Novosibirskaya 
67*10/K-28535 {729}.  v:  Golubka {10378};  K-28535 {729};  K-40579 {729}; T. aestivum botanical 
varieties cinereum, columbina and albiglaucum {10378}.  ma:  Xgwm1223-1D – 1.5 cM – RG-D1 – 13.1 
cM – Xbarc152-1D {10378}; Xbarc149-1D – 6.3 cM – RG-D1 – 26.5 cM – Xbarc152-1D {10378}.  
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QTL  

Opata / W-7984 (ITMI) mapping population: QRg.ipk-1D was mapped in the {0255};  Linkage with 
GLI-D1 implied RG-D1 (Rg2). This QTL coincided with a QTL for awn colour, QRaw.ipk-1D {0255}.  
ma:  Xpsp2000-1D – 9.3 cM – RG-D1 – 21.2 cM – Xgwm106-1D {10128}; Xgwm1223-1D – 6.6 cM – 
RG-D1 / Xksud14-1D – 13.9 cM – Xgwm33-D1{10635}; RG-A1 – 3.9 cM – Xgwm1223-1D {10638}.  

1.34.2. Pseudo-black chaff 

This is a blackening condition transferred from Yaroslav emmer to Hope wheat by McFadden at the same 
time as stem-rust resistance was transferred. The association of this condition with mature-plant stem-rust 
reaction (Sr2) has been noted in a number of papers. According to {742}, the condition is recessive. Pan 
{1102} considered linkage with stem-rust reaction could be broken, but this seems unlikely. 

PBC 

Pbc.  3B {742} 3BS.  s:  CS*6/Hope 3B {742}; CS*6/Ciano 5B {939}.  

1.34.3. Black-striped glumes 

This phenotype was reported in group dicoccon.  v:  E4225 {1417}. 

1.34.4. Inhibitor of glume pigment 

An inhibitor of glume pigment was reported on chromosome 3A {106}. 

1.34.5. Chocolate chaff 

CC 

Cc {719}.  7B {719}. 7BS {665}.  tv:  Langdon mutant {719};  PI 349056 {665}.  dv:  CBC-CDd1 
{665}.  
The chocolate chaff phenotype was suppressed by a gene(s) in chromosome 7D {719}. 

1.34.6. Awn colour 

The literature on awn colour is not clear. In general, awn colour is associated with glume colour {045}. 
Occasionally, however, awn colour and glume colour may be different. According to Panin & Netsvetaev 
{1103}, black awns were determined by three complementary genes designated BLA1, BLA2, BLA3. 
BLA1 was located in chromosome 1A and linked with Gld 1A (= GLI-A1) and Hg. 

BLA1 

Bla1 {10666}.  1AS {10666}.  bin:  1AS1-0-0.47 {10666}.  v:  Svenno {10666}.  ma:  TC95235 – 4.8 
cM – BLA1 {10666}. 
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QTL  

QRaw.ipk-1A {0255}.  1AS {0255}.  v:  Opata/W-7984 (ITMI) RI mapping population {0255};  Awn 
colour was contributed by W-7984 {0255}.  ma:  Associated with Gli-A1 {0255}.  

QRaw.ipk-1D {0255}.  1DS {0255}.  v:  Opata/W-7984 (ITMI) RI mapping population {0255};  Awn 
colour was contributed by W-7984 {0255}.  ma:  Associated with GLI-D1 {0255}.  

1.35. Grain Hardness/Endosperm Texture 

Grain hardness or endosperm texture significantly influences flour milling, flour properties and end-use. 
The difference in particle size index between a hard wheat (Falcon) and a soft wheat (Heron) was 
reported by Symes {1452} to be due to a single major gene. Symes {1452} also found evidence for 
"different major genes or alleles" which explained differences amongst the hard wheats Falcon, Gabo and 
Spica. Using Cheyenne (CNN) substitution lines in CS and a Brabender laboratory mill, Mattern et al. 
{915} showed that the hard wheat milling and flour properties of Cheyenne were associated with 5D. 
Using Hope 5D substitution line in CS [CS(Hope 5D)] crossed to CS, and CS(Hope 5D) crossed to CS 
ditelosomic 5DL, Law et al. {777} showed that grain hardness was controlled by alleles at a single locus 
on 5DS. The dominant allele, Ha, controlling softness was present in Chinese Spring and the allele for 
hardness, ha, was present in the others. A similar study using CS (CNN5D)/CS recombinant inbred lines 
was reported by Morris et al. {03106}. 
A pleiotropic result of hardness is the decreased level of a 15 kD starch granule protein, friabilin, on the 
surface of water-isolated starch {470}. In endosperm, soft and hard wheats have similar amounts of 
friabilin, consequently the distinction between the two textural types depends upon the manner in which 
the friabilin co-purifies with starch. Friabilin is also referred to by the name 'Grain Softness Protein' 
(GSP) {0384}, and was later shown to be comprised primarily of puroindoline a and puroindoline b 
{0295}. Grain hardness of reciprocal soft x hard F1 kernels was well correlated with friabilin occurrence 
on starch in triploid endosperm {0381}. See IV, Proteins: 5.8 Puroindoline. GSP-1 genes, which are 
closely related to puroindolines, are also listed in the Protein section. 

HA 

Ha {777}.  Soft phenotype.  5DS {777}.  i:  Falcon/7*Heron, Heron/7*Falcon{3109};  Paha*2//Early 
Blackhull/5*Paha {203}, {298};  Early Blackhull Derivative/5*Nugaines {203}, {298}.  v:  Chinese 
Spring {3106}, {777};  Cappelle Desprez {470};  Heron {470, 1452};  Paha, Nugaines{203}, {298};  
NY6432-18 {241}.  

ha {777}.  Hard phenotype  i:  Falcon/7*Heron, Heron/7*Falcon {3109};  Paha*2//Early 
Blackhull/5*Paha {203}, {298};  Early Blackhull Derivative/5*Nugaines {203}, {298}.  s:  
CS*6/Cheyenne 5D {915};  CS*6/Hope 5D {777};  Capelle Desprez*7/Besostaya 5D {470}.  v:  Falcon 
{470, 1452};  Holdfast {470};  Early Blackhull, Early Blackhull Derivative {203, 298};  Cheyenne 
{3106};  Clark's Cream {241}.  ma:  Ha was closely linked to Xmta9(Pui1)-5D {1414}.  
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Single factor effects on hardness were found for chromosomes 2A, 2D, 5B and 6D, and interactive effects 
were found for chromosomes 5A, 6D and 7A {1414}. 
The addition of King II rye chromosome 5R converted Holdfast wheat from hard to soft {470}. A 14.5 
kD rye analogue was also isolated from 6x triticales which have soft texture {470}. All ryes have soft 
texture. 
Two genes for grain hardness were reported in {55}. 
Hard and soft NILs are listed in {0298}. 

QTL 

Courtot / CS: DH population: a major locus in chromosome 5DS coincided with Ha; minor QTLs 
mapped in chromosomes 1A (associated with Xfba92-1A) and 6D (associated with Xgwm55-6D) {0141}. 

Forno / Oberkulmer: Ten QTLs for kernel hardness (54% of the variation) were mapped in spelt 
{0280}. 

Karl*2 / TA 4152-4: QHa.ksu-3B, associated with Xksum9-3B (R2=0.09, and QHa.ksu-5D (Ha), 
associated with Xcfd-5D (R2=0.3), were identified {10273}. 

Neixiang 188 (hard) / Yanshan 1 (medium hard): RIL population: QGh.caas-1B.1 with hardness allele 
from Yanshan 1, R2 = 0.28, Xwms153-1BL – Xbarc81-1BL {10640}. 

Opata 85 / W-7984 Synthetic (ITMI population): RIL population: Two QTLs were detected {10051}. 
The QTL on the short arm of chromosome 5D was associated with Xmta10-5D, and increased hardness 
was contributed by Opata {10051}. The locus located proximally on the long arm of 5D was associated 
with Xbcd450-5D and increased hardness was contributed by the Synthetic allele {10051}. 

Using proteomic analysis of 2D-protein gels applied to 101 lines of the population, and after a 
preliminary study of a sub-group of these lines {10086}, 446 amphiphilic protein spots were resolved, 
170 specific to either of the two parents and 276 common to both {10087}. An important category of 
these proteins comprised the puroindolines. Seventy-two loci encoding amphiphilic proteins were 
conclusively assigned to 15 chromosomes. At least one Protein Quantity Locus (PQL) was associated 
with each of 96 spots among the 170 spots segregating; these PQL were distributed throughout the 
genome. The majority of the amphiphilic proteins were shown to be associated with plant membranes 
and/or play a role in plant defence against external invasions. Not only the puroindolines were associated 
with kernel hardness - a number of other amphiphilic proteins were also found to influence this trait. 

1.36. Grain quality parameters 

1.36.1. Sedimentation value 

Qsev.mgb-6A {9920}.  6AL {9920}.  tv:  Nessapia/T. dicoccoides MG4343 mapping population {9920}.  
ma:  Associated with Xrsq805-6A {9920}.  



 

40   MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS  

 

Qsev.mgb-7A {9920}.  7BS {9920}.  tv:  Messapia/T. dicoccoides MG4343 mapping population {9920}.  
ma:  Associated with Xpsr103-7A {9920}.  

Cheyenne (high quality) / CS (low quality): RIL population: QTL were associated with Glu-1 on 
chromosome arms 1AL and 1DL and Gli-1/Glu-3 on 1BS {0251}. Cultivar Cheyenne contributed the 
higher SDS sedimentation values {0251}. The QTL on 1AL coincided with a QTL for bread loaf volume 
{0251}. The QTL on 1DL and 1BS coincided with QTL for bread mixing time {0251}.  

1.36.2. Flour, semolina and pasta colour 

QTL 

Huapei 3 /Yumai 57: DH lines: 18 additive QTLs and 24 pairs of epistatic QTLs affected flour colour 
parameters; qa-1B, closely linked with Xbarc372-1B was associated with variation of a*, R2 = 0.256 
{10625}. A further study confirmed major QTL on chromosome 1RS (R2=0.319) and 7A (R2 = 0.339), 
minor QTL occurred on 1A and 4A {10716}. 

Omrabi 5 / T. dicoccoides 600545: A major QTL was detected in the distal region of chromosome 7BL. 
The QTL explained 53% of the variation and was completely linked to microsatellite marker Xgwm344-
7B. Omrabi 5 contributed the allele for high yellow pigment level. Two additional small QTLs were 
detected on 7AL {0365}.  

PH82-2 (low) / Neixiang (high): RIL population: Analysis of yellow flour pigment revealed major QTL 
on chromosomes 7A co-segregating with marker YP7A (R2 = 0.2-0.28) (see Phytoene synthase 1), and 1B 
(R2 = 0.31-0.54) probably contributed by 1RS {10501}. 

Schomburgk / Yarralinka: A QTL was detected on chromosome 7A {9936}. Cultivar Schomburgk 
contributed the yellow colour allele {9936}. Markers Xcdo347-7A and Xwg232-7A accounted for 60% of 
the genetic variation {9936}. A Sequence Tagged Site PCR marker wasdeveloped {0180}. 

W9262-260D3 (low yellow colour) / Kofa (high colour): Four QTLs identified on chromosomes 2A 
(Xgwm425-2A), 4B (Xgwm495-4B), 6B (Xgwm193-6B) and Psy-B1 (chromosome 7BL) {10230}. See 
also Enzymes Phytoene synthase. 

Other references to flour colour are given under Flour Colour, Lr19, and Sr25. 

Three QTL for peroxidase activity in the grain identified in a Doumai (high POD activity) / Shi 4185 
(low POD activity) cross were named as QPod.caas-3AL QPod.caas-4BS and QPod.caas-5AS {11233}. 
Allelic variation was found at the QPod.caas-3AL locus {11233}. 
TaPOD-1A 

TaPod-A1a {11233}.  3AL {11233}.  v:  Doumai {11233}. 

TaPod-A1b {11233}.  v:  Shi 4185 {11233}. 
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There was no apparent relationship to the Per- series identified by isozyme analyses and listed in the 
Protein section. 

1.36.3. Amylose content 

Amylose content has a significant effect on industrial quality; for example, reduced amylose wheats 
perform better in some types of noodles. The waxy protein genes have an important influence, but other 
genes are also involved. 

QAmc.ocs-4A.1 {0047}.  4AS {0047}.  v:  CS/CS(Kanto107 4A) mapping population {0047}.  ma:  
Associated with Xbcd1738-4A and Xcdo1387-4A {0047}.  

1.36.4. Milling yield 

QTL  

NY6432-18 / Clark's Cream: RIL population: A QTL associated with Pinb on chromosome arm 5DS 
was detected {0241}. Cultivar Clarks Cream contributed the higher flour yield allele {0241}. This QTL 
coincided with QTL for hardness, hydration traits (dough water absorption, damaged starch and alkaline 
water retention capacity (AWRC) and baked product traits (cookie diameter and cookie top grain) 
{0241}.  

Schomburgk / Yarralinka: A QTL was detected on chromosome 3A {0181}. Cultivar Schomburgk 
contributed an allele for the higher milling yield {0181}. RFLP markers Xbcd115-3A and Xpsr754-3A at 
LOD>3 were associated with this QTL {0181}. 

1.36.5. Alveograph dough strength W 

QTL 

Courtot / Chinese Spring: QTLs for W were detected on chromosome arms 5DS (associated with 
Xmta10-5D), 1AS (associated with Xfba92-1A), and 3B (associated with XksuE3-3B) in cross {0141}. 
The first two QTLs coincided with those for hardness. 

Forno / Oberkulmer spelt: Ten QTL for W (39% of the variation), nine QTL for P (48% of the 
variation) and seven QTL for P:L (38% of the variation) were mapped {0280}. 

1.36.6. Mixograph peak time 

QTL 

NY6432-18 / Clark's Cream: RIL population: A QTL associated with Glu-Dy1 on chromosome arm 
1DL was detected {0241}. Clark's Cream contributed the higher mixograph peak time allele {0241}. This 
QTL coincided with a QTL for bread mixing time {0241}. 

1.36.7. Starch characteristics 
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The Isoamylase-1 gene from Ae. tauschii (Iso-1) complemented the deficient rice sugary-1 mutant line 
{10295}. 

QTL 

Cranbrook (Wx-B1a) / Halberd (null Wx-B1b): QTLs for starch viscosity and swelling were associated 
with the WX-B1 locus. An additional QTL for starch viscosity was found on 7BL between markers 
Xgwm344-7B and Xwg420-7B in the first parent. This QTL disappeared when amylase activity was 
inhibited indicating that it was determined by the late maturing a-amylase activity contributed by 
Cranbrook. A QTL for starch viscosity was associated with the WX-A1 locus in the cross CD87 / Katepwa 
{0362}. 

1.36.8. Loaf volume 

LVL 

Lvl1 {10312}.  [Lvl 1 {10312}].  3A {10312}.  s:  Cappelle Desprez*7/Bezostaya 1 3A {10312}.  ma:  
Xgwm720-3A – Lvl1 appeared to be located in the Xgwm2-3A – Xgwm720-3A region {10312}.  

QTL 

Renan / Recital: RIL population: Loaf volume score was consistent across three environments and 
revealed major QTL on chromosomes 3A (flanking markers Xfbb250-3A, Xgwm666-3A, positive effect 
from Renan) and 7A (flanking markers Xcfa2049-7A, Xbcd1930-7A, positive effect from Recital) 
{10536}. 

Thirty QTLs were located on 12 chromosomes, each of which explained between 5.85 and 44.69% of the 
phenotypic variation; the QTLs of largest effect were located on chromosomes 6B and 6D {10659}. 

1.36.9. Dough rheological properties 

QTL 

Cranbrook / Halberd: DH population: environmental factors were a major determinant of dough 
extensibility whereas additive effects of alleles at the high and low molecular weight glutenin loci 
determined dough strength {10247}. 

1.36.10. Grain fructan content 

Fructans are non-digestible carbohydrates considered to have health benefits to consumers. 

QTL 

Berkut (high fructan concentration) / Krickauff (low fructan concentration): QTL detected on 
chromosomes 2B, 3B, 5A, 6D, and 7A of which QGfc.aww-6D.2 (R2 = 0.17, nearest marker, Xbarc54-
6D) and QGfc.aww-7A.1 (R2 = 0.27, Xgwm681-7A ) had the largest effects {10631}. 
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1.36.11. Water absorption 

QTL 

Neixiang 188/Yanshan 1: RIL population: XAbs.caas-5D.1 with positive effects from Yanshan 1, R2 = 
0.3, Xcfd18-5DS - Xcfd189-5DS {10640} 

1.36.12. Chinese dry noodle quality 

QTL 

Chuan 35050 / Shannong 483: RIL population: 3 QTL for noodle palate, elasticity and smoothness were 
clustered near Glu-D1 with beneficial effects associated with subunits 5+10 coming from Chuan 35050. 
A very significant taste QTL, QStas.sdau-4A.1 and positive QTLs for stickiness and total score also on 
chromosome 4A came from Shannong 483 {10647} 

QTL Quality 

AC Karma / 87E03-S2B1: DH population: 26 QTL were detected in 7 chromosomes in a large study of 
11 seed quality traits {10434}; 6 were clustered in the Glu-D1 region and 5 were clustered in the Rht-D1 
region. 

Neixing 188 / Yanshan 1: RIL population: 75 QTLs for 5 quality-related traits are reported in {10640}. 

Opata 85 / W-7984 Synthetic (ITMI population): RIL population: QTL analyses was undertaken of 10 
milling and baking quality traits (grain hardness, flour yield, grain and flour protein, alkaline water 
retention capacity (AWRC), sedimentation properties, cookie properties, lactic acid retention, dough 
strength, extensibility and mixograph properties) in the ITMI population grown in Mexico, France and 
USA (California) {10436}. 

1.36.13. Grain Traits based on homolgyREQUIRES REVISION 

Variation in grain traits based on genetic homology with other species. 

TaBAS1 

Tabas1-B1 {11198}.  2BL {11198}.  ma:  Xbarc167-2B – 10.38 cM – Tabas1 – 5.23 cM – Xcfa2278-2B 
{11198}.  c:  BAS1 is a type of 2-Cys peroxiredoxin in a large peroxidase family.  

Tabas1-B1a {11198}.  v:  Jing 411{11198}.  
Associated with higher TGW. 

Tabas1-B1b {11198}.  v:  Hongmanchun 21{11198}.  
Associated with lower TGW 
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TaGASR 

TaGASR7-A1 {11115}.  Snakin/GASA gene family.  7AL {11115}.  ma:  Xwmc301-7A – 17.9 cM – 
TaGASR7 – 10.6 cM – Xwmc9-7A{11115}.  c:  GenBank KJ000052 {11115}.  
Hap1c in Lumai 14 and Xiaoyan 81 conferred higher grain length and grain weight than Hap1g in 
Hanxuan 10 and Xinmai 10 {11115}. 

 

TaGS1 

TaGS-D1 {11116}.  7DS {11116}.  ma:  TaGs-D1 – 8.0 cM – Xbarc184 {11116}. 

TaGs-D1a {11116}.  v:  Doumai {11116};  Jingdong 8 {11116}.  c:  KF687956 {11116}.  
Associated with higher TGW and grain length {11116}. 

TaGs-D1b {11116}.  v:  Shi4185 {11116};  Yumai 21 {11116}.  c:  KF687957 {11116}.  
Associated with lower TGW and grain length {11116}. 

 

TaGW 

TaGW-A2 {11121, 11122}.  6A {11121}.  Orthologous to the rice RING-type E3 ubiquitin ligase 
OsGW2 that functions as a negative regulator of grain weight.  ma: TaGW2 was mapped on the Spark x 
Rialto DH population to chromosome 6A and linked to markers BS000072146, BS000105973 and 
CA643341 at 46.8 cM {11121}.  c:  GenBank KP749901.1 {11122}.  
A loss-of-function mutation in TaGW2-A2 was associated with a 6.6 % increase in grain weight in 
tetraploid and hexaploid wheat {11122}. 

 

TaSAP1 

TaSAP1-A1 {11117}.  Stress association protein gene family.  7A {11117}.  ma:  Xwmc530-7A – 2.1 cM 
– TaSAP1-A1 – 13.9 cM – Xbarc174-7A {11117}.  c:  GenBank KC193579 {11117}.  
Variation at this locus was associated with 1,000-grain weight, number of grains per spike, spike length, 
penuncle length and total number of spikelets per spike, but different haplotypes had different effects 
various traints {11117}. 

 

TaTGW-7A 

TaTGW-7Aa {11197}.  v:  Jing 411 {11197}.  
Associated with higher TGW. 
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TaTGW-7Ab {11197}.  v:  Hongmanchun 21 {11197}.  
Associated with lower grain weight. 

 

TaTGW-A1 

TaTGW-A1a {11196}.  v:  Doumai {11196};  Zhou 8425B {11196}.  
Associated with higher TKW. 

TaTGW-A1b {11196}.  v:  Chinese Spring {11196}.  
Associated with lower TKW. 

  

TaTGW6 

TaTGW6-A1{11196}.  3AL {11196}.  ma:  Gene-3665_61 – 2 cM – TaTGW-A1 – 18 cM – 
BobWhite_c47304_56 {11196}.  c:  TGW6 in rice encodes an indole-3-acetic acid-glucose hydrolase 
{11196}.  

TaTGW6-B1 {11196}.  3BL {11196}.  c:  TGW6 in rice encodes an indole-3-acetic acid-glucose 
hydrolase {11196}. 

TaTGW6-D1 {11196}.  3DL {11196}.  c:  TGW6 in rice encodes an indole-3-acetic acid-glucose 
hydrolase {11196}. 

1.37. Grain weight 

QTL  

Renan / Recital: QGw1.inra-2B{10071}, favourable allele from Renan {10071}. (R2 = 10.7-19.7%) 
{10071}.  ma:  Xgwm374-2B – Xgwm388-2B{10071}; QGw1.inra-5B {10071}, Ranan/Recital, 
favourable allele from Recital {10071}. (R2 = 4.9-10.4%) {10071}.  ma:  Xgwm639-5B – Xgwm604-5B 
{10071}; QGw1.inra-7A {10071}, favourable allele from Recital {10071}. (R2=5.2-10.3%) {10071}.  
ma:  Xcfa2049-7A – Xbcd1930-7A {10071}.  

RS111 / CS: RIL population: Variation at locus QGw1.ccsu-1A associated with Xwmc333-1A, accounted 
for 15% of the variation {0165}. 

Rye Selection 111 (high GW) / CS (low GW) RIL: two definitive QTLs QGw.ccsu-2B.1 and 
QGw.ccsu-7A.1 and one tentative QTL, QGw.ccsu-1A.1, were detected by CIM analysis {10363}. The 
chromosome 7A QTL co-located with a QTL for early heading {10363}. 

1.38. Grass-clump dwarfness/Grass dwarfness 
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Complementary dominant genes. Genotypes producing dwarfness: D1-D2-D3-, D1-D2D2, D1-D4-D3-, 
D1-D2-D4 and D1-D4D4. 

D1 

D1 {534}.  [G {972}].  2D {939}, {534}, {1595}. 2DS {942}.  s:  CS*7/Kenya Farmer 2D {1000}; 
CS*6/Timstein 2D {534}.  v:  Big Club {534};  Burt {1000};  Federation {942};  Mus {534};  Ramona 
50 {358};  Selection 1403 {1000}.  v2:  Hermsen's pure-breeding dwarf D2 {1000};  Falcon D3 {1172};  
Gabo D3 {944};  Timstein D3 {534};  Metzger's pure-breeding dwarf D2 D3 {1000}. 

D2 

D2 {534}.  [B I {972}].  2BL {944}. 2B {574}, {536}.  s:  CS*7/Cheyenne 2B {1000}; CS*4/Red 
Egyptian 2B {1000}.  v:  Bezostaya 1 {1595};  Crete-367 {1029};  Desprez 80 {1595};  Florence 
{1000};  Kenya W744 {944};  Loro {1172};  Mara {1595};  Marquis {1000};  Poros {1595};  Redman 
{574, 534, 1001};  Riebesel {534};  Tobari 66 {358}.  v2:  Hermsen's pure-breeding dwarf D1 {1000, 
534};  Amby D3 {358};  Cedar D3 {1000};  Mendel D3 {534};  Plantahof D3 {534};  Spica D3 {944};  
Cappelle-Desprez D4 {1595};  Brevor D4 {1000};  Cheyenne D4 {1000};  Metzger's pure-breeding 
dwarf D1D3 {1000}.  

D3 

D3 {534}.  [A {972}].  4AL {939}. 4A {534}, {1595}.  s:  CS*6/Timstein 4A {1000}, {534}; 
CS*7/Kenya Farmer 4A{1000}, {534}.  v2:  Amby D1 {358};  Falcon D1 {1172};  Gabo D1 {944};  
Kenya Farmer D1 {1000};  Timstein D1 {534};  Metzger's pure-breeding dwarf D1 D2 {1000}.  

D4 

D4 {1000}.  2D {1000, 1595}.  2DL {1598}.  s:  CS*7/Cheyenne 2D {1000}.  v2:  Cappelle-Desprez D2 
{1595};  Cheyenne D2 {1000};  Brevor D2 {1000}.  

d1d2d3d4.  v:  Chinese Spring {1000, 534}.  

Genotype lists in can be found in {358}, {534}, {972}. The effects of multiple allelism at D2, and 
possibly at D1, and modifying genes were demonstrated {1595}. 

Knott {683} described a lethal dwarf condition controlled by a dominant gene closely linked with Sr30 
(chromosome 5D) in Webster and a complementary recessive gene in LMPG. 

Phenotypes resembling grass clump dwarfs in hybrids carrying a 2BL.2RS translocation were reported in 
{916}. The complementary gene{s} in wheat was not D1, D2 or D3. The effect was suppressed at high 
temperature. 

1.39. Growth rate and early vigour 

QTL  
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Identified in Ae. tauschii: chromosomes 1D, 4D, and 7D carried QTLs for relative growth rate, biomass 
allocation, specific leaf area, leaf area ratio, and unit leaf rate. Chromosome 2D had QTLs for rate and 
duration of leaf elongation, cell production rate, and cell length. Chromosome 5D harbored QTLs for total 
leaf mass and area, number, and growth rate of leaves and tillers {10293}. 

1.40. Hairiness/Pubescence traits 

1.40.1. Pubescent auricles 

PA 

Pa {42}, {886}.  4BS{42, 886}.  s:  Saratovskaya 29*9/Yanetzkis Probat 4B {886}; Saratovskaya 
29*5/Shabati Sonora 4B {886}; Saratovskaya 29*4/Siete Cerros 4B {886}.  v:  Diamant 1 {886};  Magali 
{886};  Pirotrix 28 {886};  Shabati Sonora {886};  Siete Cerros {886};  Ulyanovka 9 {886}.  

pa.  v:  Gabo {886};  Saratovskaya 29 {886}.  This phenotype was expressed in Diamant ditelo 
4BL{886}.  

1.40.2. Hairy glumes 

HG1 

Hg1 [{Hg {1494}].  Hg {1494}.  1A {1293}. 1AS {947}.  i:  S-615*11/Jones Fife {1500}.  s:  
CS*7/Indian 1A {1293}.  v:  A well-known, widespread and easily identified dominant marker - only a 
few examples will be listed. Indian {1293};  Jones Fife {1494};  Prelude {1494}.  itv:  LD222*11/T. 
turgidum var. durum melanops {1546}.  tv:  Golden Ball {1342, 1494}.  dv:  T. monococcum lines 
{1494}.  ma:  Xutv1391-1A (distal) – 3 cM – Bg – 1.6 cM – Hg – 2.4 cM – Gli-A1 (proximal) {9959}; 
Tel.........Hg/BG605525 – 3.8 cM – Xpsp2999(Glu3)-1A {10193}. Mapped to region 1.337 – 2.162 Mb 
(CS Ref Seq v1) {11617}. 

A 1A gene controlling hairy glumes was mapped in a cross between durum cv. Messapia and T. turgidum 
ssp. dicoccoides acc. MG4343 {9959}. 

hg1 {1405}.  v:  Ulyanovka {1405};  Pionerskaya {1405, 715}.  

Evidence for multiple alleles in T. monococcum is given in {744}. 
The likelihood of three alleles, hg (hairless), Hg1 (weakly hairy) and Hg (very hairy), with hg1 being 
recessive to Hg and causing a short (weak) hairy phenotype, was mentioned in {1405}. 

HG2 

Hg2 {11508}.  2BS {11508}.  v:  CIGM86.944 [syn. Croc_1 / Ae. tauschii 518] {11508}.  tv:  Croc_1 
{11508}.  ma:  XicsH020 – 1.18 cM – HG2 – 0.84 cM – XicsHS358, corresponding to physical interval 
740.0-741.1 Mb in cv. Svevo {11508}.      

1.40.3. Hairy leaf 
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HL1 

Hl1 {316}.  Weakly hairy.  [Hl {884}].  4BL {760}. 4B {884}.  v:  Artemovka {925};  Caesium 111 
{925};  Lutescens 53/12 {925};  Lutescens 62 {925};  Milturum 321 {884};  Poltavka {925};  Pyrothrix 
28 {925};  Saratov 321 {884};  Saratovskaya 29 {760}, {884};  Sarrubra {925}.  ma:  Xgwm375-4B – 
12.1 cM – Hl1 – 2.1 cM {10516}.  

HL2 

Hl2 {316}.  7BS {316}.  v:  Hong-mang-mai {316}.  
The hairy leaf gene (HlAesp) in Ae. speltoides introgression line 102/00I was allelic with Hl2 {10516}. 

hl1 hl2. v:  Chinese Spring {884}.  
Kuspira et al. {744} provided evidence for at least three alleles at an Hl locus in T. monococcum. 

A QTL analysis of the ITMI population identified loci determining hairiness of leaf margins and auricles 
in regions of chromosomes 4B and 4D orthologous to Hl1 {10516}. Trichome number on leaf margins in 
Ae. tauschii was mapped to a 530 kb region in chromosome arm 4DL {11612}. 

1.40.4. Hairy leaf sheath 

HS 

Hs {795}.  [Hls {761}].  v:  Certain hexaploid derivatives of G25 produced in Israel {939}.  tv: T. 
dicoccoides G25 {761}.  

hs.  v:  Most hexaploid wheats {939}.  tv:  T. dicoccoides G7 {761}.  

Levy & Feldman {795} concluded that complementary genes determined hairy leaf sheath in T. 
dicoccoides. 

1.40.5. Hairy neck/Pubescent peduncle 

HP 

Hp {275}.  Derived from Secale cereale  
4BL {T4B.5R} {274}, {275}.  i:  S-615*11/CS Derivative {1500}.  
5BS {T5B-5R} {1298}.  v:  HN-2 (CS type) {1298}.  
6D {T6D-5R} {1298}  v:  HN-1 (CS type) {1298}.  
4BL {T4B.5R}. {274}, {275}.  v:  CS Derivative {1304}.  

1.40.6. Hairy node/Pubescent node 

Inheritance of hairy (glabrous) node versus non-hairy node was attributed to a single, dominant gene 
difference {396}, {837}, {910}, {914} and the Hn/hn locus was be linked with B1 (awn inhibitor). 
Observations on 5A trisomics and telosomics of Chinese Spring confirmed this location. Love & Craig 
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{837} studied a cross involving Velvet Node CI 5877 and Gaines & Carstens {396} studied an offtype 
single plant designated Velvet Node Wash. No. 1981. 

HN 

Hn.  5AL.  v:  Aurore {722};  Fylgia {722};  Extra-Kolben II {722};  Marquis {910};  Tammi {765}; T. 
vulgare erythrospermum {910}.  tv:  T. polonicum vestitum {910}.  

hn.  v:  Garnet {722};  Kimno {722};  Pika {722};  Timantii {722}.  

Multiple alleles were reported in T. monococcum {744}. 

1.41. Heat tolerance 

QTL 

Ventnor (tolerant) // Karl 92 (non-tolerant):  QTLs contributing to grain-filling duration (GFD) under 
high temperatures were associated with Xgwm11-1BS (11% of variability) and Xgwm293-5AS (23% of 
variability) in {0327}. 

1.42. Reduced height 

1.42.1 Reduced height: GA insensitive 

RHT1 [Rht-1 {371}, {0019}].  
The Rht-1 homoeoloci are orthologous with the D8 locus in maize and the GAI locus in Arabidopsis. 
They encode proteins resembling nuclear transcription factors and are involved in sensing gibberellin 
levels {0019}. Those proteins are DELLA proteins that repress plant growth, but repression is relieved by 
GA-induced DELLA repression. Common wheat and durum NIL pairs are listed in {02102}. 

RHT-A1 

Rht-A1a {0019}.  4A {10923}. 4AL {11017}.  v:  Chinese Spring {0019}.  ma: Xwmc48-4AS – 2 cM – 
Xgwm610-4A – 1 cM – Rht-A1 – 2 cM – Xgpw4545-4AL {11017}.  c:  GenBank KC767924. All 
common wheats are assumed to be monomorphic. A functional Rht-A1a allele is expressed at a similar 
level to its orthologues {10923}. 
Haplotypes named as Rht-A1b to Rht-A1g are described in {11620}. 
 
RHT-B1  

Rht-B1a {116}.  v:  Tall wheats{116};  e.g. Chinese Spring{0019}.  c:  GenBank KC767925. 

Rht-B1b {116}.  Partially recessive {024}, recessive {357}, semi-dominant {408}.  [Rht1{15}, Sd1 
{15}].  4B {109, 406, 1040}. 4BS {89, 116}.  i:  See {414}, {2102}, {408}.  v:  Frontier {1597};  
Guardian {1597};  Selection 14-53/Burt, 5 {15};  Siete Cerros {407};  Wren {1174};  WW15 {407}.  v2:  
Norin 10-Brevor, 14 Rht-D1b {15};  Oleson Rht-D1b {357};  Selection D6301 Rht-D1b {357};  Shortim 
Rht-D1b {243};  See{1062}, {407}, {1386}, {415}.  tv:  Cocorit 71 {109}, {416};  Creso {109}, {451}, 
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{416};  Malavika {1442};  Mida {450};  Sansone {109};  Valgerado {109}, {416};  Valnova {450};  
Valselva {450}.  ma,tv: Gai1/Rht-B1b – 1.8 cM –  Xpsr622-4B {110};  Co-located with Xbarc10-4B 
{10189}. 
The development of allele-specific primers for Rht-B1b was reported in {0378}. 

An EcoTILLING study of >1,500 Chinese wheat accessions identified 7 sequence variations in RHT-A1, 
8 new variants in RHT-B1 and 4 new variants in RHT-D1 {11697}. 
 

QTL: QTL for reduced plant height, peduncle length and coleoptile length contributed by Cranbrook were 
associated with XcsMe1-4B (up to 49% of variability for plant height and peduncle length and 27-45% of 
variability for coleoptile length) in the cross Cranbrook (semidwarf) / Halberd (tall). The dwarfing 
effect underlying the QTL was caused by the Rht-B1b allele {0379}. 

Rht-B1c {116}.  Semi-dominant {1040}.  [Sd3 {565}, Rht3 {565}].  i: Tom Thumb/7* Kharkov//Lancer 
{1040};  See {408}.  v:  Minister Dwarf {404};  Selection D6899 (Tom Thumb-Sonora 64/Tacuari) 
{357};  Tom Thumb {405};  Tom Pouce Blanc {1634}, {407};  Tom Pouce Barba Rouge{1634}, {407};  
Topo;  Tordo.  ma:  Xmwg634-4B (distal) – 30.6 cM – Rht-B1c – 11.9 cM – Xpsr144-4B (proximal) 
{117};  Allele-specific markers were designed from the gene sequence {10923}.  c:  The Rht-B1c 
transcript carries a 90 bp in-frame insertion within the region encoding the conserved N-terminal DELLA 
domain plus two SNPs upstream of the insertion. A much larger insertion occurs in the gDNA {10923}.  

Rht-B1d {116}.  Semi-dominant {1599}, {116}.  [Rht1S {1599}].  v:  Saitama 27 {1599};  Occurs 
frequently in Italian and Yugoslavian wheats {1599};  Argelato, Centauro, Chiarano, Etruria, Farnesse, 
Gallo, Gemini, Lario, Pandas, Produttore, Orlandi, Orso, Salvia, Sprint, Strampelli.  c:  Has the same 
point mutations as in Rht-B1b - there is likely to be another mutation outside the coding region {10923}. 
Rht-B1c carries a 2,026 bp insertion of a terminal repeat transposons in miniature (TRIM) insertion at 
position 147 bp relative to Rht-B1a; this leads to an additional 30 amino acids in the DELLA domain 
affecting affinity between GID1 and Della {11390}. Genbank JN857970 (gDNA), JN859791 (cDNA) 
{11390}.  

Rht-B1e {116}.  [Rht11 {718}, Rht1(B-dw) {1600}, RhtKrasnodari1 {452}].  v:  Karlik 1 PI 504549 
{10924};  Krasnodari 1 (a spontaneous GA-insensitive offtype of Bezostaya 1) {1600};  Polukarlikovaya 
49 and 11 derivatives {10924}.  ma:  A PCR marker distinguishes this allele from Rht-B1a and Rht-
B1b{10923}.  c:  A stop codon occurs three codons upstream of the Rht-B1b mutation {10923}. 

Rht-B1f {116}.  Semi-dominant {116}.  [RhtT. Aethiopicum {116}].  tv: T. aethiopicum accessions 
W6824D {116};  W6807C {116}.  

Rht-B1g {0019}.  v:  Highbury mutants M3 103-3 and M3 103-9 {0019}. 

Allele Rht-B1g is a fast neutron-induced mutation of Rht-B1b and produces a tall gibberellin responsive 
phenotype {0019}.  
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Haplotypes named Rht-B1h to Rht-B1o are described in {11620}. 
 

Rht-B1p {11621}.  Rht17.  v:  Chris Mutant CI 17241 {1129}.  c:  Contains a C-to-T substitution at 
position 178 leading to a stop codon {11621}. GenBank KT013263. 

 

Rht-B1IC2196 {10144}.  tv:  T. turgidum var. polonicum IC12195 {10144}. 

 

RHT-D1 

Rht-D1 {116}.  4DS {1266} {980}, {116}. 4D {583}, {1544}, {411}.  bin:  0.82-1.00 {11017}.  

Rht-D1a {116}.  v:  Tall wheats {116};  e.g. Chinese Spring.  c:  KC767927. 

Rht-D1b {116}.  Partially recessive {024}, recessive {357}, semi-dominant {408}.  [Sd2{15}, 
Rht2{15}].  4D {411}. 4DS {980}.  i:  Common wheat and durum NIL pairs are listed in {2102}.  See 
{414}, {2102}, {408}.  v:  Biscay {10574};  Combe {567};  Era {407};  Gaines Sib 2 {15};  Jaral {407};  
Kite {1174};  Maris Hobbit {411};  Pirat {10574};  Pitic 62 {567};  Rubens {10574};  Songlen {243}.  
v2:  Oleson Rht-B1b {357};  Norin 10-Brevor, 14 Rht-B1b {15};  Selection D6301 Rht-B1b {357};  List 
in {1386}.  ma:  Xpsr1871(Pki)-4D – 4 cM – Rht-D1 – 6 cM – Xubc821(PhyA)-4D {410}; Rht-D1 – 2.8 
cM – Xglk578-4D {9966}; Xpsr1871 – 1 cM – Rht-D1b – 4 cM – Xpsr821(PhyA) {0019}. The 
development of allele-specific primers for Rht-D1b was reported in {378}.  

Rht-D1c {116}.  Dominant {114}.  [Rht10 {1266}].  v:  Ai-bian {1266, 1544}.  ma:  Xpsr921-4D (4DS) 
– 0.8 cM – Rht-D1c - 28 cM – Xgwm165-4D (4DL) {117}.  

Rht-D1d {116}.  Semi-dominant {116}.  [RhtAi-bian 1a {115}].  v:  Ai-bian 1a (spontaneous mutant of 
Ai-bian 1) {115}. 

Haplotypes named as Rht-D1e to Rht-D1h are described in {11620}. 
 

Line XN004, earlier considered to have Rht21 {0230}, was shown to carry an allele at the Rht-D1 locus 
{0231}. 

Various common wheat and durum N1Ls differing at the RHT-B1 and RHT-D1 loci are listed in {02102}. 
Genotype lists in {402}, {1382}, {1612}, {1613}. 
Rht-D1b, Rht-D1c and Rht-D1d are identical across the coding region, but Rht-D1c has a fourfold 
increase in copy number relative to Rht-D1b; Rht-D1d has a reduced copy number relative to Rht-D1c 
{10923, 11016}. 

1.42.2. Reduced height : GA-sensitive 
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Borner et al. {116} found no evidence of orthologous GA-sensitive genes in rye, but reviewed evidence 
for orthologous GA-insensitive genes. The close linkage of Rht8 and Xgwm261-2D permitted the use of 
the microsatellite as a marker for the detection of allelic variants at the Rht8 locus {9962}. 

RHT4 

Rht4 {568}.  Recessive.  2BL {10249}.  v:  Burt ert 937, CI 15076 {717, 566}.  ma:  Associated with 
Xwmc317-2B {10249}.  

RHT5 Traes3B02G025600 (predicted). 

Rht5 {717}.  3BS {10249}.  v:  Marfed ert 1, M1, CI 13988 {1593}, {717}, {718}.  ma:  Approximately 
10 cM from Xbarc102-3B {10249}.  Located to an ~1 Mb interval flanked by Kasp25 and Kasp23 in the 
0-30 Mb region {11625}. The predicted gene in Marfed M has a 30 bp deletion in the first intron 
{11625}. 
 
RHT6 

Rht6 {718}.  Recessive.  v:  Brevor {569};  Burt {718}, {569}.  v2:  Norin 10-Brevor, 14 Rht-B1b Rht-
D1b {569}.  

RHT7 

Rht7 {1602}.  2A {1602}.  v:  Bersee Mutant A {1602};  Bersee Mutant C {1602}. 

RHT8.  TraesCS6A02G221900; TraesCSU03G0022100 (CS RefSeq v2.   

Rht8.  2D {1601}, {1598}, {772}. 2DS.  s:  Cappelle-Desprez*/Mara 2D {1601}.  v:  Chuan Mai 18 
{10249};  Novasadska Rana 1 {1604};  Sava {414, 1601}; Yumai 8679 {11624}.  v2:  Akakomugi Rht9 
{1191};  Mara Rht9 {1191}.  ma:  Xgwm484-2D (proximal) – 19.9 cM – Rht8 – 0.6 cM – Xgwm261-2D 
(distal) {727};  Close linkage with Xgwm261-2D {10249};  A survey of Chinese cultivars showed 13 
alleles of Xgwm261-2D {10284}.  c:  RHT8 contains two ORF with near-identical sequences. Encodes an 
unknown 808 aa protein containing a zinc finger BED-type motif and predicted Ribonuclease H-like 
domain {11624, 11642}.  CRISPR-Cas9 editing of the RNHL-A1 (Traes2A02G059900) and RNHL-B1 
(Traes2B02G073600) homoeologues caused reduced height {11624}.  
 
rht8.  RNHL-D1 {11624}.  
 
Close linkage of Rht8 and Xgwm261-2D permitted the use of the microsatellite as a marker for the 
detection of putative allelic variants at the Rht8 locus {9962}. Allele sizes for Xgwm261 in U.S. eastern 
and central wheat cultivars are given in {10868}. A series of ‘alleles’ was based on variation in the 
closely linked marker Xgwm261-2D  

Rht8a.  Associated with a 165-bp fragment of WMS 261 {9962}.  v:  Autonomia {9962};  Bobwhite 
{9962};  Brevor {9962};  Chaimite {9962};  Ciano 67 {9962};  Chris {9962};  Dugoklasa {9964};  
Federation {9962};  Frontana {9962};  Glennson 81 {9962};  Hope {0243};  Jupateco 73 {9962};  Kenya 
{9962};  Klein 32 {9962};  Lerma Rojo {9962};  Lusitano {9962};  Maringa {9962};  Marquis {0243};  
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Mentana {9962};  Michigan Amber {0243};  Nainari 60 {9962};  Newthatch {9962};  Opata 85 {9962};  
Othello {9962};  Penjamo 62 {9962};  Quaderna {9962};  Rex {9962};  Riete {9962};  Saitama 27 
{9962};  Spica {9962};  Veery S {9962};  Victo {9962}.  

Rht8b.  Associated with a 174-bp fragment of WMS 261 {9962}. s:  Cappelle Desprez*/Mara 2D {1601}.  
v:  Arthur {0243};  Balkan {9962};  Bunyip {9962};  Cappelle-Desprez {9962};  Carstens {0243};  
Diakovchanka {0243};  Eureka {9962};  Festival {9962};  Fronteira {9962};  Fultz {9962};  Gabo 
{9962};  Heine VII {9962};  Inallettabile 95 {9962};  Jena {9962};  Klein Rendidor {9962};  Leonardo 
{9962};  Lutescens 17 {9962};  Mironovskaya 808 {9962};  Norin 10 {9962};  Norin 10/Brevor 14 
{9962};  Oasis {243};  Odom {0243};  Podunavka {9962};  Purdue Abe {0243};  Record {9962};  Red 
Coat {9962};  Salzmunder Bartweizen 14/44 {0243};  Soissons {9962};  Talent {9962};  Tevere {9962};  
Timstein {9962};  Tp114/65 {0243};  Wilhelmina {9962};  Wiskonsin 245 C/11226 {0243}.  

Rht8c.  Associated with a 192 bp fragment of WMS 261 {9962}.  v:  Akakomugi {1191};  Alfa {9962};  
Aquila {9962};  Ardito {9962};  Argelato {9962};  Avrora {9962};  Banija {9964};  Baranjka {9964};  
Beauchamps {9962};  Bezostaya {9962};  Biserka {9962};  Campodoro {9962};  Centauro {9962};  
Chikushi-Komugi (Norin 121) {9962};  Chuanmai 18 {10512};  Damiano {9962};  Djerdanka {9964};  
Dneprovskaya {9962};  Duga {9964};  Etoile-de-Choisy {9962};  Etruria {9962};  Fakuho-Komugi 
(Norin 124) {9962};  Farnese {9962};  Favorite {9962};  Fedorovka {0243};  Fiorello {9962};  Fortunato 
{9962};  Funo {9962};  Gala {9962};  Haya Komugi {9962};  Impeto {9962};  Irnerio {9962};  Jarka 
{9964};  Jugoslavia {9962};  Kavkas {9962};  Kalyan {0243};  Khar'kovskaya 50 {0243};  
Khar'kovskaya 93 {0243};  Khersonskaya 86 {0243};  Kolubara {9964};  Kosava {9964};  Libellula 
{9962};  Lonja {9964};  Lovrin 32 {9962};  Macvanka-2 {9964};  Mara {9962, 119};  Marzotto {9962};  
Mv 03-89 {0243};  Mv 06-88 {0243};  Mv 17 {0243};  Neretva {9962};  Nizija {9962};  Novasadska 
Rana 1 {1604};  N.S. Rana 1 {9962};  N.S. Rana 2 {9962};  N.S. 649 {9962};  N.S. 3014 {9962};  Obrii 
{243};  Odesskaya 51 {0243};  Odesskaya 117 {0243};  Odesskaya 132 {0243};  Odesskaya 
Krasnokolosaya {0243};  Odesskaya Polukarlikovaya{0243};  Orlandi{9962};  Osjecanka {9964};  OSK 
5 5/15 {9964};  OSK 4 57/8 {9964};  OSK 3 68/2;  Partizanka {9962};  Partizanka Niska {9962};  
Poljarka {9964};  Posavka 1 {9964};  Posavka 2 {9962};  Pomoravka {9962};  Produttore {9962};  
Radusa {9962};  Roazon {0243};  Salto {9962};  Sanja {9962};  San Pastore {9962};  Sava {414, 1601, 
9962};  Siete Cerros {9962};  Sinvalocho {9962};  Simvol Odesskii {0243};  Sivka {0243};  Strumok 
{0243};  Skopjanka {9962};  Skorospelka 3B {9962};  Slavonija {9964};  Somorka{9964};  Sremica 
{9964};  Superzlatna {9962};  Svezda {9962};  Tira {0243};  Tisa {9964};  Transilvania {9962};  
Ukrainka Odesskaya {0243};  Una {9962};  Villa Glori {9962};  Vympel {0243};  Yubileinaya 75 
{0243};  Zagrebcanka {9964};  Zelengora {9964};  ZG 6103/84 {9964};  ZG 7865/83 {9964};  Zitarka 
{9964};  Zitnica {9962};  Zlatna Dolina {9964};  Zlatoklasa {9964};  Zolotava {0243}.  
Although CS carries a 192 bp fragment, sequencing showed it was a different allele than other genotypes 
with Rht8c {02103}. 
Although the 'diagnostic' association of Rht8c and Xgwm261192 applied in many Strampelli derivatives 
and European wheats, there was no association between reduced height and this allele in Norin 10 and its 
derivatives {10512}. The pedigrees of a number of Chinese wheats postulated to have Rht8c on the basis 
of the marker traced to Italian sources {10515}. 
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Rht8d.  Associated with a 201-bp fragment of WMS261 {9962}. v:  Pliska {9962};  Courtot {9962}. 

Rht8e.  Associated with a 210-bp fragment of WMS261 {9962}. v:  Chino {9962};  Klein Esterello 
{9962};  Klein 157 {9962}.  

Rht8f.  Associated with a 215-bp fragment of WMS261 {9962}. v:  Klein 49 {9962}. 

Rht8g.  Associated with a 196-bp fragment of WMS261 [{0243}].  v:  Mirleben {0243} 

Rht8h.  Associated with a 206-bp fragment of WMS261 [{0243}].  v:  Weihenstephan M1 {0243}.  

Genotypes of Indian semi-dwarf wheats based on the Ellis et al. {0378} markers are listed in {10404} and 
those for U.S. eastern and central and winter wheat cultivars are listed in {10868}. 

RHT9 

Rht9.  5AL {10249}. 7BS {1601}, {772}.  v:  Acciao {718};  Forlani {718};  Mercia 12 {10249}.  s:  
Cappelle-Desprez*/Mara 5BS-7BS {1601}.  v2:  Akakomugi Rht8 {1601};  Mara Rht8 {1601}.  ma:  
Close linkage with Xwmc410-4A {10249}. 

RHT10. See Rht-D1c. 

RHT11 

Rht11 {718}.  See Rht-B1e.  v:  Karlik 1 {718}. 

RHT12. TraesCS5A02G543100 

Rht12 {718}.  Dominant.  5A {1606, 1445}.  bin:  5AL-23, based on co-segregation with B1{1606}.  i:  N98-2105, 
Yangmai 5*5 / Karcagi 522M7K {11428}.  v:  Karcagi 522M7K {721}; Mercia, Vigour 18 and Halberd 
derivatives {11622}.  ma:  Rht12 is located distally on 5AL cosegregating with B1 and closely linked to b-Amy-
A1 {1606}; Xgwm291-5A – 5.4 cM – Rht12 {726}. The Rht12 phenotype was due to deletion of a 10.73 Mb 
terminal deletion of chromosome 5AL {11428). Reduced plant height might be due to activation of TaGA2ox-A14 
{11428}.  c:  Encodes a GA2oxA13 enzyme {11622} (previously predicted as GA2oxA14 {11428}. 
Rht12 delayed ear emergence by 6 days {1606}. 
 
RHT13 

Rht13a.   v:  Magnif 41 PI 34466.  c:  Encodes a nucleotide-binding site leucine repeat (NBS-LRR) 
protein {11626}.  Greatest sequence similarity to contig TGAC_Cadenza_U_ctg7180000823280 {11626. 

Rht13b {M23019}.  Rht13 {718}.  7BS{10249}.  v:  Magnif 41M1 CI 17689 {718}.  ma:  Associated 
with Xwms577(gwm577)-7B {10249}.  c:  A serine-240-phenylalanine mutation caused autoactivation 
leading to transcriptional upregulation of pathogenesis-related genes including class III peroxidases 
associated with cell wall modelling {11626}. The same sequence was identified in TILLING line 
Cadenza0453 {11626}. 

RHT14 
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Rht14 {718}.  Allelic with XRht16, Rht18 and Rht24 {10767, 10818}.  6AS  {10767}.  v:  Cp B 132 
{123} = Castelporziano PI 347331{718}.  ma:  Rht14 – 11.7 cM – Xbarc3-6A {10767}.  Mapped to 
genomic region 383-422 Mb flanked by GA20xA9 and Xwmc753-6A {11372}. GA2oxA9 expression was 
higher in Castelporziano than in its tall parent Capelli – see Rht18 {11301}.  c:  See RHT24. 

RHT15 

Rht15 {718}.  tv:  Durox {718}. 

RHT16 

Rht16 {718}.  Allelic with Rht14 and Rht18 {10767, 10818}.  6AS {10767}.  v:  Edmore M1 {718}.  
ma:  Rht16 – 28.0 cM – Xbarc3-6A {10767}. 

RHT17 

Rht17 {718}.  Rht-B1p {M23014}.  v:  Chris Mutant CI 17241 {1129}.  

RHT18 

Rht18 {718}.  Allelic with Rht14, Rht16 and Rht24 { 10767, 10818}.  6AS {10767}.  tv:  Icaro{718}.  
ma:  Rht18 – 25.1 cM – Xbarc3-6A {10767}. Hexaploid derivatives in the backgrounds of Fengchan 3, 
Jinmai 47 Rht8, and Xifeng 20 are reported in {11096}.  matv:  Xbarc118-6A – 1.4 cM – 
RHT18/TdGA2Ox-A9/S470865SSR4/Xbarc37-6A – 0.4 cM – IWA4371 – 0.4 cM –Xgwm82.1-6A 
{11295}.  c:  See Rht24. 

Independent ‘overgrowth’ mutants isolated from Icaris contained changes in the GA2oxA9 coding region; 
this gene is predicted to encode GA2-oxidase that metabolizes GA biosynthetic intermediates into 
inactive products thus reducing bioactive GA1 {11301}.   
 
RHT19 

Rht19 {718}.  tv:  Vic M1 {718}.  

RHT20 

Rht20 {718}.  v:  Burt M860 {718}.  

RHT21 

Rht21 {0230}.  The existence of this gene was not confirmed {0231}.  

RHT22 

Rht22 {10857}.  7AS {10857}.  tv:  Aiganfanmai {10857}. Ailanmai {11587}.  ma:  Xgwm471-7A – 
29.5 cM – Rht22 – 20.1 cM – Xgwm350-7A {10857}.  



 

56   MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS  

 

RHT23 

Rht23 {11077}.  5DL {11077}.  v:  NAUH164 {11077}.  ma:  Xgdm63-5D – 4.7 cM – Rht23 – 11.1 cM 
– Xbarc110-5D {11077}.  
NAUH164 is an EMS-derived mutant of Sumai 3 {11077}. 

 

RHT24.  c:  Encodes TaGA2ox-A9 which is more highly expressed by the Rht24b allele {11623}. Same 
locus as Rht14, Rht16, and Rht18. 

Rht24a.  Rht24 {11185}.  [QTL_height_6A_1 {11183}, QPH.caas-6A {11184}, Rht24b {11293, 
11294}.].  6AL {11185}.  v:  Aikang 58 {11185}; Solotar {11294}.  ma:  Xwmc256-6A – 2.71 cM – 
TaGa3 – 7.05 cM – TaAP2 – 0.24 cM – Rht24 – 1.61 cM – TaFAR – 13.87 cM – Xbarc103-6A {11185}. 
Excalibur_rep_c69275-346 {11294}.  
Rht24 was identified in many Chinese cultivars and a low number of European wheats based on flanking 
markers designed from TaAP2 and TaFAR {11185}. Rht24 occurs at relatively high frequency in 
European and Chinese wheat cultivars, and maps in the same region as Rht14, Rht16 and Rht18 {11293}. 

Rht24b.   v:  Chuanmai 107 {11623}; Fan 6 {11623}; Jinan 2 {11623}; Jing 411 {11623}; Taishan 1 
{11623}; Yannong 5 {11623}, Zhongmai 175 {11623}.  tv:  Also identified in wild and cultivated emmer 
and durum accessions {11623}. 

 

RHT25  TraesCS6A02G156600 

Significant differences in RHT25 haplotypes were reported in {11659}. 

Rht25a.   Platz-A1.  c:  Encodes a PLATZ transcription factor that interacts with DELLA (RHT1) 
{11659}. 

Rht25b {11300}.  QHt.ucw-6AS {11300}.  6AS {11300}.  v:  Patwin-515HP {11659};  UC1110 Rht-D1b 
{11300}.  ma:  QHt.ucw-6AS was located in a 0.2 cM interval flanked by 6A13699/6A13791/6A14397 
and 6A14825 {11300}. 

 

RHT26  
Rht26a {11739}.  v2:  Lunxuan 987 RhtB1b {11739. 
 
Rht26b.  3DL {11739}.  v:  Jing 411 {11739}.  v2:  Zhongmai 175 Rht-B1a {11739}.  ma:  Delimited to 
a 1.4 Mb interval (517.1 – 518.5 CSRefSeqv.1) flanked by markers KASP517 and KASP518 {11739}. 
 
RHT27.  GA sensitive.  3AL {11740}.   
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Rht27 {11740}.  dv:  T. urartu G1812 {11740}.  ma:  Flanked by 3T-387 and 3T-306 {11740}. 
Delimited to a 1.55 Mb region (517.5 – 528.6 Mb, CS RefSeq v1.0) containing 20 genes, 2 of which, or 
homoeologs of which, coded genes affecting plant height {11740}. 
 
rht27 {11740}.  dv:  Reduced Height 27 {11740}.   
The height of the mutant was 27% of the wild type {11740}.  
 
1.42.3. Reduced height: temporary designations 
 
Rht_NM9 {11273}.  2A {11273}.  v:  Induced mutant NM9 {11273}.  ma:  Xgwm122-2A – 1.7 cM – 
SNP34 – 1.9 cM – Rht_NM9 – 1.9 cM –  SNP41 – 14 .0 cM – Xwmc261-2A {11273}. 

1.42.4. Reduced height : QTL 

QHt.fcu-4BL {10256}.  ma:  Associated with Xbarc125-4B (R2 = 0.57) {10256}.  
Reduced height allele in Grandin {10256}. 

QHt.fcu-6AS {10256}.  ma:  Associated with Xbarc23-6A - Xcp201-6A (R2 = 0.07) {10256}.  
Reduced height allele in BR34 {10256}. 

In RL4452 / AC Domain: 

QHt.crc-2D {10287}.  2D {10287}.  ma:  Linked to BE497718-260 (LOD 4.2).  

QHt.crc-4B {10287}.  4B {10287}.  ma:  Linked to Rht-B1 (LOD 7.7) {10287}.  
Associated with QTLs for lodging and 1000-grain weight. 

QHt.crc-4D{10287}.  4D {10287}.  ma:  Linked to Rht-D1 (LOD 30.9) {10287}.  
Associated with QTLs for lodging 1000-grain weight, yield, height, and test weight. 

QHt.crc-5B {10287}.  5B {10287}.  ma:  Linked to Xwmc640-5B (LOD 6.1) {10287}.  

QHt.crc-7A{10287}.  7A{10287}.  ma:  Linked to Xwmc139-7A (LOD 3.3) {10287}.  

QHt.crc-7B{10287}.  7B{10287}.  ma:  Linked to Xgwm333-7B (LOD 3.3) {10287}.  

In Courtot / CS: 

QHt.fra-1A {9957}.  ma:  Linkage with Xfba393-1A {9957}.  

QHt.fra-1B {9957}.  ma:  Linkage with Xcdo1188-1B.2 {9957}.  

QHt.fra-4B {9957}.  ma:  Linkage with Xglk556-4B {9957}.  

QHt.fra-7A {9957}.  ma:  Linkage with Xglk478-7A {9957}.  

QHt.fra-7B {9957}.  ma:  Linkage with XksuD2-7B {9957}.  
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In Renan / Recital:  

QHt.inra-2B {10069}.  ma:  Associated with Xgwm249-2B (LOD=5.8, R2=15.4%) {10069}.  

QHt.inra-4A {10069}.  ma:  Associated with Xfba243-4A (LOD=6.5, R2=15.0%) {10069}.  

QHt.inra-5A {10069}.  ma:  Associated with Xgwm639b-5A (LOD=5.7, R2=10.8% {10069}.  

QHt.inra-6D {10069}.  ma:  Associated with Xcfd76-6D (LOD=3.7, R2=8.1% {10069}.  

QHt.inra-7A {10069}.  ma:  Associated with Xcdo545-7A (LOD=3.2, R2=7.7%) {10069}.  

 

In Opata 85 / W-7984 (ITMI) RIL mapping population: 

QHt.ipk-4A {0255}.  4AL{0255}. Tall allele contributed by Opata 85 {0255}.  ma:  Associated with 
Xmwg549-4A, Xabg390-4A and Xbcd1670-4A {0255}.  
QHt.ipk-4A coincided with QTLs for ear length (QEl.ipk-4A), grain number (QGnu.ipk-4A) and grain 
weight per ear (QGwe.ipk-4A) {0255}. 

QHt.ipk-6A {0255}.  6A {0255}. Tall allele contributed by W-7984 {0255}.  ma:  Associated with 
Xcdo29-6A and Xfba234-6A{0255}.  
QHt.ipk-6A coincided with QTLs for peduncle length (QPdl.ipk-6A) and ear length (QEl.ipk-6A) {0255}. 

In CS / CS(Kanto107 4A) mapping population: 

QHt.ocs-4A.1 {0047}.  4AL {0047}.  ma:  Associated with Xpsr119-4A and Wx-B1 {0047}.  

QHt.ocs-4A.2 {0047}.  4AS {0047}.  ma:  Associated with Xbcd1738-4A and Hd{0047}.  

In CS(T. spelta 5A) / CS(Cappelle-Desprez 5A) RI mapping population: 

QHt.ocs-5A.1 {0068}.  [Qt.ocs-5A.1 {0068}].  5AL {0068}.  ma:  Associated with the interval 
Xcdo1088-5A – Xbcd9-5A{0068}.  
This QTL coincided with a QTL for culm length, QCl.ocs-5A.1 {0068}. 

In: Sevannah / Senat DH population: 

QHt.riso-3A {10067}.  ma:  Mapped on the centromeric region between SSR markers Xwmc505-3A and 
Xwmc264-3A (LOD >6) {10067}.  

QHt.nau-2D {11463}.  Recessive.  Gibberellin-sensitive.  2DS {11463}.  bin:  2DS-0.47-1.00.  v:  EMS-
Induced Dwarf Wangshuibai {11463}.  ma:  Xbarc-2D – 2.6 cM-2D – QHt.nau-2D – 0.3 cM-2D – 
Xgpw361-2D {11463}. 
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Two QTLs for plant height were assigned to chromosome 3A in RSLs from Cheyenne*7/ Wichita 3A 
substitution line {0025}. 

Seven QTLs on chromosomes 1A, 1D, 2B, 2D and 4B affected plant height among RILs of CS / T. spelta 
duhamelianum. Effects linked with the CS alleles of Xbcd1160-1A, Xksu127-1D and XksuF11-2D 
increased height whereas those CS alleles associated with Xpsr131-2B, Xpsr125-2B, Xpsr934-2D and 
Xcs22.2-4B reduced it {0196}. 

For review and identification of 65 QTL-rich clusters associated with plant height see {11741}. 

1.43. Herbicide Response  

1.43.1. Difenzoquat insensitivity 

DFQ1 

Dfq1 {1396}.  Insensitive.  2B {1396}.  2BL {789}.  v:  CS{1396}.  

dfq1.  Sensitive.  s:  CS*6/Ciano 67 2B {1396};  CS*7/Marquis 2B {789};  CS*/Sicco 2B {1396}. v:  
Ciano 67 {1396};  Sicco {1396}.  

Busch et al. {153} reported a single dominant gene for tolerance of Era and Marshall compared with the 
susceptibility of Eureka and Waldron, but its relationship to Dfq1 is unknown. 

1.43.2. 2,4-D tolerance 

Randhawa et al. {1190} reported a single dominant gene in each of WL711, CPAN1874 and CPAN1922 
controlling tolerance. HD2009 and PBW94 were described as susceptible. 

1.43.3. Chlortoluron insensitivity 

SU1 

Su1 {1402}.  Insensitive.  6BS {799}. 6B {1402}.  v:  Cappelle-Desprez {1402}.  tv:  B-35 {735}.  

su1.  Sensitive.  v:  Chinese Spring {1402};  Poros {1402}.  tv:  B-7 {735}.  ma:  Xpsr312-6B – 5.3 cM – 
Su1 – 6.8 cM – Xpsr477(Pgk2)-6B {736}.  ma,tv:  Nor2 (6BS) – 2.7 cM – Su1 {1401}; Su1 – 5.2 cM – 
Xpsr371-6B (6BL) {735}.  
Su1 also controls insensitivity to metoxuron {1402}.  

A single dominant gene for tolerance to isoproturon was found in tetraploid wheats derived from a 
tolerant T. monococcum source {1044}. This gene is presumably different from Su1. 

1.43.4. Imidazolinone resistance 

Resistance alleles found in mutagenized populations were incompletely dominant and additive in effect 
{10099}. Resistance is due to single base pair changes in acetohydroxyacid synthase. 
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IMI1 

Imi1 {10099}.  [Fs-4 {10100}, AhasL-D1 {10101}].  6DL {10101}.  v:  BW755 = Grandin*3/Fidel-FS-4 
{10099};  CDS Teal IMI 1A {10099};  CDC Teal IMI 9A {10099};  CDC Teal IMI 10A = Fidel-FS-2 
{10099};  Clearfield WHS Janz = Janz*4/Fidel-FS-2;  Clearfield WHS Stiletto = Stiletto*3//Spear/Fidel-
FS-3;  Fidel-FS-2 = ATCC40997 {10100}.  v2:  CDC Teal IMI 15A = PTA 3955 Imi3 {10099}. 

IMI2 

Imi2 {10099}.  [AhasL-B1 {10101}].  6BL {10101}.  v:  CDC Teal IMI 11A = PTA 3953 {10099}.  

IMI3 

Imi3 {10099}.  [AhasL-A1 {10101}].  6AL {10101}.  v2:  CDC Teal IMI 15A Imi3 {10099}.  dv: T. 
monococcum mutant EM2 (mutant of susceptible line TM23 {10102}).  

Mutant EM2 has a serine to asparagine substitution near the carboxyl end of the enzyme. The same 
change led to imidazolinone resistance in hexaploid wheat, rice and Arabidopsis {10102}. 

1.44. Hybrid Weakness 

1.44.1. Hybrid necrosis 

[Progressive lethal necrosis {155}; Firing {971}]. 
Complementary dominant genes. Descriptive alleles w (weak), m (medium) and s (strong) were allocated 
by Hermsen {532}. Phenotype is affected by modifying genes (and/or genetic background) and 
environment {566}. According to Dhaliwal et al. {257} progressive necrosis is suppressed at 28C. 

NE1 

Ne1 {530}.  [Le {550}, {155}, F{971}, Le1 {1491}].  5B {1491}. 5BL {1636}.  ma: Xbarc216-5B – 8.3 
cM – Ne1 – 2 cM – Xbarc74-5B {10334}. Ne1 – 11 cM – Xgwm639-5B {11343}.  Mapped to a 4.06 Mb 
region (383.03 – 3.87.10 Mb) that was deleted in all tested non-Ne1 carriers {11517}. Co-segregation 
with the null allele of indel marker 5B-InDel385 {11517}; Mapped to a 4.45 Mb interval represented by 
Xwgrc3074-5B – 0.07 cM – NE1/5markers – 0.12 cM – Xwgrc3009-5B {11518}. Xbarc216-5B – 3.8 cM 
– Xwgrc3030 – 0.3 cM – NE1/Xwgrc1426/3009 – 4.8 cM – Xbarc74-5B {11537}; Xgwrc3030 – 1.4 cM – 
Ne1/Xwgrc3146/3147/3150/Xmag1426 – 0.12 cM – Xwgrc3150 {11537}; markers Xwgrc3146, 
Xwgrc3147 and Xwgrc3150 were dominant {11537}. Nwu_5B-4137 – 0.2 cM – NE1 – 0.3 cM – 
Nwu_5B_4114 at 383.30 – 388.01 Mb in CS RefSeq 1.0 {11594}. 

Ne1s {530}.  v:  Big Club {550}, {532}, {155};  C306 {1475};  Felix {531};  Gaza 141 PI 220429 
{532};  Luteseens 1163 {1264};  Marquillo {550}, {115}, {532};  Ponca {532};  Spica {939};  
Synthetics TA4152-19, TA4152-37, TA4152-44, TA4152-60 {10334}.  tv:  Gaza 1E PI 133460;  Gaza PI 
189262 {532};  Iumillo {532};  Kubanka {532};  PI 94587 {532, 155};  Quanah {532}.  
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Ne1s is common in tetraploid wheats {1080}.  
 

Ne1w {530}.  v:  Bobin group {532}: Kenya Farmer {532};  The Bobin selection used in breeding Gabo 
{532} and its sister selection, Timstein {532, 1556} was in fact Gular. Hence Gular, not Steinwedel, is 
the presumed source. The Sydney University accession Bobin W39 was the parent of Gabo and Timstein, 
whereas "true" Bobin carried the accession number W360. The particular accession tested by Hermsen is 
not clear. According to Metgzer {1000} Steinwedel is a non-carrier;  Federation group {532};  Cadia 
{532};  Cleveland {971};  Minister group {532};  Rieti group {532}: Mentana {532};  Mara {532}.  

Ne1m {530}.  i:  S-615*11/Prelude {1500}.  v:  Carpo {532};  Eskisehir 220-39 {532};  Garnet {532};  
Klein Aniversario {532};  Koga {532};  Mus XII/80/22 {532};  Prelude {1491, 532}. 

Unknown Ne1 alleles.  tv: HW75 {697}; HW178 {697}.  

Chinese Spring carries the weakest allele {532} and its effect can be observed in CS*7/Atlas 66 2B {939} 
relative to CS. 

NE2 TraesCS2B01G182800 {11530, 11531, 11532}; also predicted in {11529}. 

Ne2.  [F {971}, Le2 {1491}, {550}, {155}].  2B {1491}. 2BS {1085}.  ma:  Xgwm148-2B – 6.7 cM – 
Ne2 – 3.2 cM – Xbarc55-2B {10334}.  Xbarc7-2B – 3 cM – Ne2 – 6 cM – Xwmc344-2B {11343}.  
Xgwm148-2B – 5.2 cM – Xwgrc1713/Xwgrc1736-2B – 1.3 cM – NE2/3 markers {11518}; Xgwm148-2B – 
5.4 cM – Ne2/Xwrgc1774/1775/1739 – 3.0 cM – Xwmc474-2B {11537}.  

Ne2s {530}.  i: S-615*11/Kharkov {1500}.  v:  Crimean group {532}: Blackhull {550};  Chiefkan {550};  
Clarkan {550};  Kharkov {1491};  Liaochun 10 {11530}; Zhoumai 22 {11531};  Michigan Amber 
{532};  Minhardi {155};  Red Chief {550};  Stepnaja 135 {1264};  Turkey {532}.  c:  Encodes a CC-
NBS-LRR protein {11531; 11532; 11533}. One of two Ne2m haplotypes is Lr13 {11531}. GenBank 
MW756036 {11532}.  c:  Add:  N22m is an allele of the YR27/LR13 locus {M22053}.     

Ne2m? {530}.  v:  Barleta group {532}: South American wheats, e.g. Klein Titan {532};  La Prevision 
25 {532};  Lin Calel {532}.  

Ne2ms {530}.  v:  Mediterranean group {532}: Dawson {550}, {155};  Fultz {550};  Fulcaster {550};  
Fulhard {550};  Honor {550};  Jones Fife {1491};  Shepherd {550}, {971};  Trumbull {155};  
Vermillion {530};  Wabash {155}. (Although placed in this group on basis of pedigree, the last three 
stocks, as well as Fultz selection of CI 19293, appear to have the stronger allele of the Crimean group 
{532};  Mironovskaya {10630};  Noe group {532}: Vilmorin 27 {532} 

Ne2m {530}.  v:  Alsen {10334};  Squarehead group {532}: European wheats {532};  Fronteira group 
{532}: Sonalika {1475};  South American wheats and derivatives, e.g. Atlas 40 {532}: Wheats 
possessing Lr13 {939}, e.g. Manitou {939};  HD2329 {10985}.  ma:  Xbarc55-2B – 1.1 cM – Xkwh37 – 
4.9 cM – Lr13/Ne2 – 5.8 cM; Xgpw1109 – 3.7 cM – Xbarc18-2B {11068}.  
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Ne2w {530}.  v:  Vakka {532};  Varma {532}.  

Unknown Ne2 allele {532};  v:  Harvest Queen {532}. tv:  Acme {532};  Arnautka {532};  Carleton 
{532};  Langdon {1498};  Mindum {532};  Stewart {532}.  
However, Ne2 was stated to be absent or rare in tetraploid wheats {1080}. 
The Chinese Spring 2BS telosome carries an Ne2 allele that is not present in Chinese Spring {1085}. 

ne1 ne2.  v:  Chancellor {531};  Elgin {1491};  Gladden {155};  Leap {155};  Purkof {155};  Red Bobs 
{1491};  Red Egyptian {1491};  Steinwedel {1000};  S-615 {1491};  Wichita {531}. 

Genotype lists in {531}, {532}, {535}, {640}, {696}, {698}, {1093}, {1135}, {1264}, {1381}, {1473}, 
1474, 1475, 1492, 1496, 1497, 1502, 1503, 1512, 1505, 1506, 1507, 1508, 1509, 1510, 1630, 1631, 1632, 
1633, 1637, 1638, 1639, 0112, 10985}. 

The incompletely dominant Els2 mutant found in an EMS-treated M2 population of H261 was likely ne2 
{11472};  A similar situation was described in {11423} where a claimed a putatively novel gene was 
designated as yglw-1. 
 

Rye line 1R136-2 carries Ner1 {1210} that complements wheat gene Ne2 {1289, 1210} and rye gene Ne2 
{1210} to produce necrosis. Rye lines L155 and L256 carry Ne2 {1210} that complements Ne1 {630,} 
{1210} and Ne1 {1210}. 

Ner1 {1210}.  5RL {1211}.  al: S. cereale 1R136-2 {1210}.  

Ner2 {1210}.  7RL {1211}.  al: S. cereale L155, L256 {1210}.  

1.44.2. Hybrid chlorosis type 1 

CH1 

Ch1 {535}. [ma {1245}].  2A {939}, {538}.  i:  Steinwedel*2/Khapli {939}; T. macha var. colchicum 
{535}.  v: T. macha var. subletschumicum {1493, 1245}.  tv:  Khapli {1549, 1080};  T. dicoccoides var. 
kotschyanum {535};  T. dicoccoides var. straussianum {535}.  
36 group dicoccon wheats are listed in {697}. 

CH2 

Ch2 {535}.  [Ne3 {1504}, mb {1245}].  3DL {692}, {939}. 3D {1504, 1495}.  v:  Chinese Spring 
{1504}, {535}; T. vavilovi.  
Extremely widespread, very few wheats lack this gene. 
Allelic variation at the Ch2 locus was suggested {537}, {1000}. Prelude, Reward and Red Bobs were 
exceptional in producing severe symptoms and death at an early stage. Konosu 25 may carry a weak allele 
{1000}. Different alleles in C306 (strong) and Sonalika (medium) were suggested in {697}. 
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ch1 ch2.  v:  Albit {1509, 1000};  Burt {1509, 1000};  Chancellor {1000};  Garra {1549};  Kharkof 
{535};  Steinwedel {1549}.  su:  TAP 67 (= Pawnee 3Ag(3D)) {1644}.   

Lists in {535}, {697}, 1381, 1473, 1474, 1475, 1496, 1497, 1502, 1503, 1512, 1505, 1506, 1507, 1508, 
1509, 1510}. 
 

A gene, Chr1, in rye produces chlorosis symptoms in hybrids with wheats such as C306, HD2939 and 
NI5439 possessing Ch2 {1472}.  Evidence for multiple alleles of Chr1 was also presented {1472}. 

Chr1 {1472}.  dv:  Cereal rye lines, EC179188 = WSP527A {1472};  EC143825 = WSP506A {1472};  
EC338685 = Blanco {1472};  others {1472}.  

chr1 {1472}. dv:  EC179178 {1472};  EC179185 = SAR/SWPY5 {1472}.  

1.44.3. Hybrid chlorosis type 2 

CS1 

Cs1 {1511}.  [Chl1].  5A {1498}.  v:  T. dicoccum cv. Hokudai {1511}.  
Occurs at high frequency in the T. paleocolchicum group of emmers. 

CS2 

Cs2 {1511}. [Chl2 {1501}].  4G {1498}.  tv:  Many accessions of T. timopheevii and T. araraticum 
{1511},{637}.  
Multiple allelism at the Cs2 locus is discussed in {637}. 

A gene named NetJingW176 (after Ae. tauschii accession Jing Y176) was located in chromosome 2DS: 
Xgwm-102-2D – 4.5 cM – Nec2 – 3.8 cM – Xgwm515-2D {11307}. 

1.44.4. Apical lethality 

Apical lethality is caused by complementary recessive genes and is characterized by stunting and tiller 
death at the 4-5 leaf stage. The lethal genotype was designated apd1 apd1 apd2 apd2 {10492}. 

Apd1{10492}.  v:  WR95 = Kalyansona/Gigas//HD1999/Sonalika/3/T. carthlicum {10492}.  

Apd2{10492}.  v:  HD2009 {10492};  HW2041 {10492};  Lok-1 {10492};  others {10492}.  

Apd1 Apd2.  v:  Atila {10492};  Kalyansona {10492};  others {10492}.  

apd1 apd2.  Lethal genotype.  
Uniculm plants occured as heterozygous segregates among progenies, but homozygous uniculm lines 
could not be established {10492}. 

1.44.5. Hybrid necrosis type 3 
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NEC1 

Nec1 {11158}.  7DS {11158}.  v:  (T. durum cv. Langdon x Ae. tauschii KU-2828) amphiploid {11158}.  
al: Ae. tauschii KU-2828 {11158}.  ma:  Xbarac352-7D – 5.3 cM – Lr34 – Xgwm295-7D – 4.0 cM – 
Xbarc154-7D – 1.7 cM – Nec1 – 13.2 cM – Xcfd-7D {11158}.  
Although this form of hybrid necrosis is caused by complementary genes, mapping of Nec1 was based on 
a cross of necrotic and non-necrotic Langdon x Ae. tauschii amphiploids. Consequently only Nec1 was 
mapped {11158}. 

1.45. Iron deficiency 

Fe1 {921}.  7DL {927}. v:  Saratovskaya 29 {921}.  

Fe2 {921}.  7BS {927}.  v:  CS {927}.  

 

1.46. Lack of ligules 

The liguleless character is controlled by complementary recessive genes in hexaploid wheat {077}, 
{738}, {942} and by a single recessive in tetraploid wheat {047}, {050}, {939}, {10133}. One gene at 
the tetraploid level is allelic with one of those in the hexaploid {939}, {10133}. Evidence for orthology of 
lg1 and lg2 with lg of rice {170}, lg1 of maize {004}, li of barley {1155} and al of rye was presented in 
{725}.  An Imperial rye chromosome 2R addition restored the liguled condition to a liguleless CS 
derivative {939}.  An erect leaf mutant involving TaSPL8 (SQUAMOSA promoter-binding protein-like 
transcription factor), a homolog of LG1 in maize and rice and was located in chromosome 2D. Knockout 
mutants of TaSPL8 orthologs led to a fully liguleless phenotype. The gene in 2D was identified as 
TraesCS2D01G502900. TaSPL8 transcript was highly expressed in the laminar joint region and young 
spike. TaSPL8-2D transcript was produced at much higher levels than TaAPL-2B whereas TaSPL-2A was 
produced at a minimal level {11401}.  
 

LG1 

lg1 {47}.  2B {942}. 2BS {10767}.  i:  ANK33 = Novosibirskaya 67*10/K59990 {10061}.  v:  Eligulate 
W1342 lg2 lg3 {942}, {10133};  K31289 {10133};  K59990 {10061};  K53660 {10133};  Liguleless 
partial backcross derivative of CS {939};  Partial backcross derivative of CS {939}.  tv:  K17769 
{10133};  K17784 {10133}.  

LG2  TraesCS2D01G502900.  bin:  C-2DL3-0.49.  ma:  Xbarc228-2D – 12.7 cM – 
LG2/G3489_1DL12del/G3489_2DL11del – 3.3 cM – Xgdm6-2A – 47.8 cM – Xgwm301-2D {11220}. 

lg2.  2D {942}.  i:  ANK33 = Novosibirskaya 67*10/K59990.  v:  Eligulate W1342 lg1 lg3;  Liguleless 
partial backcross derivative of CS {939}.  
A dominant mutant allele for liguleless phenotype is reported in Ae. tauschii – this locus is located in 
chromosome 2DL but is independent of LG2. 
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LG3 

lg3 {10133}.  2A {10133}.  i:  ANK33 = Novosibirskaya 67*10/K59990 {10061}.  v:  Present in all 
hexaploid cultivars.  

LGt [{11220}].  bin:  C-2DL9-0.75.  ma:  Xgwm301-2DL……… Xbarc159-2D – 9.3 cM – LGt {11220}. 

Lg2t {11220}.  dv:  Liguleless mutants of Ae. tauschii accession KU20-9 {11220}. 

Genotypes of selected tetraploid wheat {10133}: 
Lg1Lg1 Lg3 Lg3: T. turgidum var. durum Ldn - dic DS 2A: T. turgidum var.  dicoccum 
Khapli and Vernal; T. turgidum var. dicoccoides Israel A; MG4343. 
Lg1Lg1 lg3 lg3: T. turgidum var. durum: Altaiskaya Niva; Castelpoziano; Langdon; Ldn-GB DS 2B; 
Golden Ball; Modoc; PI349056. 
lg1lg1 Lg3Lg3: None identified. 

1.47. Leaf characteristics 

1.47.1. Leaf erectness 

QLer.ipk-2A {0255}.  2AS {0255}.  v:  Opata/W-7984 (ITMI) RI mapping population {0255};  The erect 
leaf phenotype was contributed by Opata {0255}.  ma:  Associated with Xbcd348-2A {0255}.  
Mutants lacking ligules are known to have erect leaves. However, the QTL for leaf erectness reported 
here is not related to liguleless mutants {0255}. 

1.47.2. Leaf tip necrosis 

LTN1 

Ltn1{10281}.  [Ltn {1361}].  7D {1361}.  v:   Wheats with Lr34/Yr18 {301}, {1361};  v2:  Parula Ltn2 
{10281}.  ma:  Associated with Xgwm295-7D and Xgwm130-7D{10281}. c:  Putative ABC transporter 
{10862}.  
This gene is identical to Lr34, Sr57, Yr18, Pm38. Ltn1 reportedly has effects on response to other diseases 
and pathogens including BYDV and Biploaris sorokiniana. 

LTN2 

Ltn2 {10281}.  1B {10281}.  v:  Wheats with Yr29/Lr46 {10281};  See Yr29, Yr46.  v2:  Parula Ltn1 
{10281}.  ma:  Xwmc44-1B – 1.4 cM – Xbac24prot – 9.5 cM – Ltn2 – 2.9 cM – Xbac17R........Xgwm140-
1B {10281}; Xgwm44-1B – 3.6 cM – Ltn2 – 2.1 cM – XtG818/XBac17R.....Xgwm140-1B {10281}.  

According to Messmer et al. {0031} LTN may be caused by several QTLs and is affected by genetic 
background and environment. 

LTN3 
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Ltn3 {11070}.  i:  RL6077 {11070}.  v:  Chapingo 48 {11070}. c:  This multiple disease 
resistance/necrosis locus was identified as a hexose transporter most similar to the STP13 family and 
containing 12 predicted transmembrane helices {11070}.  

QTL 

QLtn.sfr-1B {0050}.  1BS {0050}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0050}.  
ma:  Associated with Xgwm18-1B and Xglk483-1B {0050}.  

QLtn.sfr-3A {0050}.  3A {0050}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0050}. ma:  
Associated with Xpsr570-3A and Xpsr543-3A {0050}.  

QLtn.sfr-4B.1 {0050}.  4B00 {50}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0050}.  
ma:  Associated with Xpsr921-4B and Xpsr593-4B {0050}.  

QLtn.sfr-4B.2 {0050}.  4B {0050}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0050}.  
ma:  Associated with Xpsr593-4B and Xpsr112-4B {0050}.  

QLtn.sfr-4D {0050}.  4DL {0050}.   v:  Forno/T. spelta var. Oberkulmer mapping population{0050}.  
ma:  Associated with Xpsr302-4D and Xpsr1101-4D{0050}.  

QLtn.sfr-5A {0050}.  5A {0050}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0050}.  ma:  
Associated with Xpsr549-5A and Xglk163-5A {0050}.  

QLtn.sfr-6A {0050}.  6A {0050}.  v: Forno/T. spelta var. Oberkulmer mapping population {0050}.  ma:  
Associated with Xpsr563-6A and Xpsr966-6A {0050}.  

QLtn.sfr-7B.1 {0050}.  7B {0050}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0050}.  
ma:  Associated with Xpsr350 and Xbzh232(Tha)-7B {0050}.  

QLtn.sfr-7B.2 {0050}.  7B {0050}.  v: Forno/T. spelta var. Oberkulmer mapping population {0050}.  
ma:  Associated with Xglk750-7B and Xmwg710-7B {0050}.  

QLtn.sfr-7D {0050}.  7DS {0050}.  v: Forno/T. spelta var. Oberkulmer mapping population {0050}.  
ma:  Associated with Xpsr160-7D and Xgwm44-7D {0050}.  

1.47.3. Seedling leaf chlorosis 

SC 

Sc {149}.  3BS {149}.  s:  CS*/Hope3B {149}.  v:  Hartog {149};  Suneca {149};  wheats with Sr2 
{149}.  
Leaf chlorosis is affected by temperature and light and is enhanced by infection with pathogens. The sc 
allele is completely linked with Pbc (pseudo-black chaff) and Sr2 (reaction to Puccinia graminis). 

1.47.4. Early leaf senescence 



 

67   MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS  

 

ELS1 

els1 {11326}.  2BS {11326}.  v:  ZK331 / Xiangmai 99171 // 2*Lumai 30 Line 114 {11326}.  ma:  
WGGB305 – 0.3 cM – els1/WGGB302 – 1.2 cM – WGGB303/WGGB304/WGGB306 – 0.6 cM – 
Xbarc92-2B {11326}. 

The els1 ‘mutant’ was detected in an F4 population. Since the parents had normal phenotype 
complementary genes were likely involved. The similar location of ELS1 to the NE1 locus in 
chromosome 2BS and similar phenotype suggests that this gene may be Ne2. See 49, Hybrid Weakness; 
49.1, Hybrid necrosis 

ELS2 

Els2 {11472}.  2BL {11472}.  v:  LF2099 {11472 }.  ma:  Xgpw4043-2B – 8.87 cM – Els2 – 22.27 cM 
Xwmc149-2B {11472}. 
The incompletely dominant Els2 mutant was found in an EMS-treated M2 population of H261 {11472}. 

ELS3.  Candidate gene CS2D02G332700.  ma:  Located in a 2.52 Mb interval – AX-109501942 – 2.0 cM 
– Els3 – 1.4 cM – AX109998182 {11772}. 

Els3 {11772}.  v:  Yanzhan 4110 {11772}.  c:  The candidate encodes an LRR-RLK -like gene located 
on the cell membrane {11772}. 

els3.  v:  els3 mutant {11772}. 

The mutant was identified in an EMS-mutagenized population of Yanzhan 4110 {11772}. 

1.48. Lesion Mimicry 

Add introductory sentence: Lesion mimic phenotypes are characterised by spontaneous hypersensitivity not 
unlike disease resistance. Lesions are often not produced when leaf sectors are protected from light, and 
disease levels on mutant individuals may be lower than on non-mutant sibs. Lesion mimics that resemble 
the response of plants to infection by pathogens occur in many species ({10743} for examples). 
 
LM 

lm {10743}.  1BL {10743}.  bin:  C1BL6-0.32 {10743}.  v:  Ning 7840 {10743}.  ma:  Proximal to 
Xgwm264.1-1B {10743}.  
LM was positively associated with QLr.pser.1BL {10743}. 

LM1 and LM2 

LM1 {11572}.  3BS {11572}.  ma:  Xwmc674-3B – 1.2 cM – LM1 – 3.8 cM – Xbarc133/Xbarc147-3B 
{11572}. 

lm1 {11572}.  v:  Zaosui 30 Lm2 {11572}. 
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LM2 {11572}.  4BL {11572}.  ma:  Xgwm513-4B – 1.5 cM – LM2 – 2.9 cM – Xksum154-4B {11572}. 

lm2 {11572}.  v:  Yanzhan 1 Lm1 {11572}. 

LM3 {11573}.  3BL {11573}.  ma:  Mapped to a 3 cM proximal region of chromosome 3BL {11573}. 

Lm3 {11573.  Partially dominant.  v  Line Lm3 {11573}.  
The mutant phenotype appeared in an F1 plant of cross Line 3-1/Jing 411. The plant was then backcrossed 
6 times with Line3-1 and the selected line was named Lm3. 

LM4 {11577}.  2DS {11577}.  ma:  Fine mapped within a 8.06 cM interval flanked by Xgwm210-2D and 
Xgwm455-2D using specifically developed markers m4_01_cib and lm4_02_cib {11577}. 

Lm4.  Wild type allele.  Recessive. 

lm4 {11577}.  The allele named lm4 and conferring the lesion phenotype was described as dominant 
{11577}. 
This lesion mutant appeared in a Yanzhan	1/Neixiang	188	RIL	population	in	which	the	segregation	of	
mutant	versus	normal	phenotype	was	1:1.	

LM5.  Semi-dominant.  2AL {11576}. 

Lm5 {11576}.  v:  MC21, an EMS-induced mutant in Chuannong 16 {11576}.  ma:  KASP-4211 (630.3 
Mbp) – 0.6 cM – Lm5 – 3.7 cM – KASP5353 (703.53 Mbp) {11576}. 

1.49. Lodging 

QTL 

QLd.crc-3D {10287}.  3D {10287}.  ma:  Linked to Xgwm191-3D (LOD 3.7) in RL4452/AC Domain 
{10287}.  

QLd.sfr-1B {0052}.  1BS {0052}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0052}.  ma:  
Associated with Xpsr949-1B and Xgwm18-1B {0052}.  
This QTL coincided with QTL for reduced height, increased culm stiffness and broader leaf width 
{0052}. 

QLd.sfr-2A {0052}.  2AS {0052}.  v:  Forno/T. spelta var. Oberkulmer mapping population{0052}.  ma:  
Associated with Xpsr958-2A and Xpsr566-2A {0052}.  
This QTL coincided with QTL for reduced height, increased culm stiffness, broader leaf width, more 
erect growth habit, later ear emergence and increased culm thickness {0052}. 

QLd.sfr-2D {0052}.  2D {0052}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0052}.  ma:  
Associated with Xpsr933-2D and Xglk529-2D {0052}.  
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QLd.sfr-3A {0052}.  3AS {0052}.  v:  Forno/T. spelta var. Oberkulmer mapping population{0052}.  ma:  
Associated with Xpsr598-3A and Xpsr570-3A {0052}.  
This QTL coincided with QTL for increased culm stiffness and reduced culm thickness {0052}. 

QLd.sfr-4A {0052}.  4AS {0052}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0052}.  
ma:  Associated with Xgwm397-4A and Xglk315-4A {0052}.  
This QTL coincided with QTL for reduced height, increased culm stiffness and more erect growth habit 
{0052}. 

QLd.sfr-5A {0052}.  5AL {0052}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0052}.  
ma:  Associated with Xpsr918-5A and Xpsr1201-5A {0052}.  
This QTL coincided with QTL for reduced height, increased culm stiffness, reduced leaf width, more 
erect growth habit, later ear emergence and increased culm thickness {0052}. 

QLd.sfr-5B {0052}.  5BL {0052}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0052}.  
ma:  Associated with Xpsr370-5B and Xpsr580-5B {0052}.  
This QTL coincided with QTL for increased culm stiffness, broader leaf width and more erect growth 
habit {0052}. 

QLd.sfr-6B {0052}.  6BL {0052}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0052}.  
ma:  Associated with Xpsr964-6B and Xpsr142-6B {0052}.  

QLd.sfr-7B {0052}.  7BL {0052}.  v:  Forno/T. spelta var. Oberkulmer mapping population {0052}.  
ma:  Associated with Xpsr927-7B and Xpsr350-7B {0052}.  
This QTL coincided with QTL for reduced height and later ear emergence {0052}. 

1.50. Male sterility 

1.50.1. Chromosomal 

Ms1376 {10814}.  Sterility is dominant.  v:  TR1376A {10814}.  
Male fertile counterpart: TR1376B {10814}. 
Ms1376 was discovered among progenies of a transgenic family of Xinong 1376 containing leaf 
senescence-inhibiting gene PSAG12-IPT {10814}. 

MS1  4B {268}. 4BS {64}.  TraesCS4B02G017900.  ma:  Located in a 0.05 cM region between 
X27140346 and X12360198 {11269}.  

Ms1.  c:  Encodes a glycosylphosphatidylinositol-anchored lipid transfer protein that is essential 
for pollen exine production {11269}. GenBank KX447407. Ms1 is a phospholipid-binding protein 
{11421}. Sequence: SRP113340. Encodes a 219 amino acid polypeptide with similarity to a large family 
of GPI-anchored lipid transfer proteins affecting exine development {11269}. Ms-A1 = 
TraesCS4A02G295900; Ms-B1 = TraesCS4B02G017900. 
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ms1.  Recessive alleles for sterility   

ms1a {268}.  v:  Briggle's Chancellor Derivative {268};  Pugsley's Male Sterile {268}.  c:  Terminal 
deletion {11422}. 

ms1b {268}.  v:  Probus mutant {268}.  c  Interstitial deletion {11269}. 

ms1c {64}.  v:  Cornerstone {64}.  c:  Terminal deletion {11269}. 

ms1d {619}.  v:  Mutant FS2 {619};  Ningchen mutants msd.1 and msd.2 {11421}.  c:  G329A in exon 1 
{11421, 11269}. 

ms1e {619}.  v:  Mutant FS3 {619}.  c:  G1431A del1432 {11421}; C1435T + 16 bp del in exon 2 
{11269}. 

ms1f {619}.  v:  Mutant FS24 {619}.  c:  G155A in exon 1{11269}. 

ms1g {10355, 11421}.  4BS {10354}.  v:  Lanzhou Mutant 257A {10355, 10354};  Male sterile line 
257A{10546}.  c:  Deletion of entire sequence {11421}. 

ms1h {11421}.  v:  Ningchun 4 mutant {11421}.  c:  C1762T {11421}. 

ms1i {11421}.  v:  Ningchun 4 mutant {11421}.  c:  G1603A {11421}.  

ms1j {11421}.  v:  Ningchun 4 mutant {11421}.  c:  C1775A {11421}. 

ms1k {11421}.  v:  Ningchun 4 mutant {11421}.  c:  G1397A {11421}. 

ms1l {11421}.  v:  Ningchun 4 mutant {11421}.  c:  C226T {11421}. 

ms1m {11421}.  v:  Ningchun 4 mutant {11421}.  c:  C1472T {11421}. 

ms1n {11421}.  v:  Ningchun 4 mutant {11421}.  c:  T164A {11421}. 

ms1o {11421}.  v:  Ningchun 4 mutant {11421}.  c:  G281A {11421}. 

ms1p {11421}.  v:  Ningchun 4 mutant {11421}.  c:  G155A {11421}. 

ms1q {11421}.  v:  Ningchun 4 mutant {11421}.  c:  C148T {11421}. 

ms1r {11269].  [Ms1h {11269}].  v:  Tilling mutant in Qual2000 {11269}.  c:  G178A {11269}. 

Ms1 orthologs in the A and D genomes are epigenetically silenced {11421}. 

MS2 

ms2 {806}.  Dominant allele for sterility.  [Ta1 {240}].  4DS {806}.  v:  Taigu = Line 223 {240}, {806}, 
{807}; ms2 confers sterility when present in octaploid triticale {597}.  ma:  Mapped to a 0.05 cM region 
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flanked by Xsauw27-4D and Xsdauw29-4D {11388}.  c:  Ms2 has a long terminal-repeat in miniature 
(TRIM) transposon at position -314 to -310 {11388}. Genbank KX585234 {11388}.  
The TRIM element acts as an enhancer that activates anther-specific transcription of the Ms2 allele 
{11388, 11389}. Ms2 induced male sterility in barley and Brachypodium {11388} as well as triticale 
{597}, {11388}.  
 
MS3 

ms3 {872}.  Dominant allele for sterility.  5AS {872}.  i:  Chris derivative {872};  KS87UP9 {219}.  ma:  
Xwg341-5A – 0.8 cM – ms3.......cent {0289}; Xcdo-677-5A and Xbcd1130-5A also cosegregated with 
Xwg341-5A but were located in a different region in the physical map {0289}.  

MS4 

ms4 {293}.  Dominant allele for sterility, distinguished from ms2 on the basis of different degrees of 
recombination with the 4D centromere.  4DS {0293}.  v:  Konzak's male sterile.  

MS5.  TraesCS3A02G217000.  3A {619}, 3AL {11427}. 

Ms5:  Encodes a glycosylphosphatidylinositol-anchored lipid transfer protein that is required for pollen 
exine development {11427}. TraesCS3A02G217000 {11427}. GenBank MK577897. 

ms5 {619}.  v:  Mutant FS20 {619}; H45 {11427}. 
Complete sterility conferred by ms5 is dependent on the homoeologous ms-D genotype – Ecalibur, 
Gladius and RAC 875 have an ms-D allele that restores fertility to ms5 genotypes {11427}. 

Two non-functional ms-B alleles (Chinese Spring and Synthetic W7984 types) were identified {11427}. 

1.50.2. Sterility in hybrids with wheat 

Shw {331}.  [1HL {331}].  ad:  Additions of 1H and 1HL to wheat and certain translocation lines {331}.  
ma:  Located in a 16.4 cM interval flanked by Xmwg800-1H and Xmwg943-1H. A possible relationship 
with Ncc genes is discussed {331}.  

1.50.3. Photoperiod and/or temperature-sensitive male sterility (PTGMS) 

tmsBS20T {11157}.  2BL {11157}.  v:  BS20-T {11157}.  ma:  Xgwm403-2B – 2.2 cM – tmsBS20T – 
4.5 cM – Xgwm374-2B {11157}.  

WTMS1 

wtms1 {10332}.  2B {10332}.  v:  BNY-S {10332}.  ma:  E: AAG/M:CTA163 – 6.9 cM – wtms1 – 4.8 
cM – Xgwm374-2B {10332}.  
Described as a thermo-sensitive gene (TGMS), giving complete sterility at less than 10C, but fertile at 
higher temperatures {10332}. 

WPTMS1 
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wptms1 {10333}.  5B {10333}.   v:  Line 337S wptms2 {10333}.  ma:  Xgwm335-5B – 4.2 cM – wptms1 
– 24.4 cM – Xgwm371-5B {10333}.  
wptms1 produces sterility only in the presence of wptms2. 
Chromosome 5B was also implicated in spontaneous mutant line Xinong 291S: a second gene was not 
located {11143}. 

WPTMS2 

wptms2 {10333}.  2B {10333}.  v:  Line 337S wptms1 {10333}.  ma: Xgwm374-2B – 6.9 cM – wptms2 – 
20.9 cM – Xgwm120-2B {10333}.  
wptms2 produces sterility only in the presence of wptms1. wptms1 and wptms2 were analysed and mapped 
under long photoperiod/high temperatures, but an earlier study indicated a single gene for male sterility 
under short photoperiod/low temperatures. Although mapping data are different a possible relationship 
between wtms1 and wptms2 needs to be resolved. 

1.51. Manganese efficiency 

QTL  

Stojocri 2 (Mn efficient) / Hazar (MN inefficient): durum cross: Variation associated with Xcdo583-4B 
explained 42% of the variation in Mn efficiency {0320}. 

1.52. Maturity time 

RL4452 / AC Domain:  

QMat.crc-3B {10287}.  3B {10287}.  ma:  Linked to Xwmc231-3B (LOD 3.0) {10287}.  

QMat.crc-4A {10287}.  4A {10287}.  ma:  Linked to Wx-B1 (LOD 6.1) {10287}.  

QMat.crc-7D {10287}.  7D {10287}.  ma:  Linked to Xgwm130-7D (LOD 17.5) {10287}.  

1.53. Megasporogenesis 

1.53.1. Control of megasporogenesis 

Msg {625}.  7AS {625}.  tv:  Langdon {625}.  

54. Meiotic characters 

1.54.1. Low-temperature pairing 

LTP 

Ltp {527}.  v:  Chinese Spring {527}.  
Expressed in the absence of chromosomes 5D at 12oC - 15oC, but not at 20oC. A contrasting allele, Ltp, 
for normal pairing at the lower temperature range was demonstrated in T. dicoccum. 
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1.54.2. Pairing homoeologous 

PH1. Traes……… 

Ph1 {1537}.  Ta-Zip4-B2 {11765}.  5BL {1301}.  v: Hexaploid wheat.  tv:  Tetraploid wheat.  ma:  
PCR-based assays for presence and absence of Ph1 were described {359}, {0217}, {9965}, {0214};  The 
Ph1 factor(s) was restricted to a region flanked by Xrgc846-5B and Xpsr150-5B {0219}; Ph1 was 
physically mapped in 5BL to fraction length 0.55, bracketed by deletions 5BL-1 and ph1b {446}.  
A complex Ph1 candidate structure comprising at least one 5B-specific member of the cdc2 complex 
multigenic cluster (involved in chromosome condensation), a unique repeat structure with similarities to 
repeats on chromosome 3B, and a heterochromatic sub-telomeric insertion from chromosome 3AL was 
identified {10240}.  Ta-Zip4-B2 is embedded within this complex {11765}. 

A set of homoeologous set of Ta-Zip-1 genes (Ta-Zip-A1, TaZip-B1 and TaZip-D1 genes is present in 
Group 3 chromosomes but their expression levels are very low compared to Ta-Zip-B2 {11765). 

ph1a. - Not applicable - see ph2b {1303}.  

ph1b {1301}.  v:  Sears' high pairing mutant {1301}.  ma:  A PCR-based detection system for ph1b ph1b 
individuals is described in {9965}.  Dualplex marker Xwgc2111 + Xwgc2049 behaves like a co-dominant 
marker {11359}. The Ph1b deletion involves a region of at least 60,014,523 bp {11359}. 

ph1c {593}.  tv:  Cappelli ph1 mutant {593,449};  This mutant is deficient for a terminal portion of 
chromosome 5BL{449}.  ma:  Mutant lines with ph1b and ph1c carry deletions of the chromosome 
segment possessing Ph1 in the respective parent lines {593, 447}.  
Several ph1 mutants are described in {0219}. 

PH2  TraesCS3D02G119400. 

Ph2 {1302}.  3DS {1302}. TaMSH703D {11527}. 

ph2a {1302}.  v:  Sears' intermediate pairing mutant {1302, 1301}.  ma:  ph2a is a 120-125 Mb deletion 
{11526}. 

ph2b {1304, 1303}.  [ph1a {1537}].  v:  Chinese Spring mutant 10/13 {1537}. c:  Contains a G to A transition at 
position 74,359.312 in the TaMSH7-3D gene {11527}.  TaMSH7 is a plant-specific member of the DNA 
mismatch repair (MMR) family {11527}.   
Wide cross hybrids involving ph2 mutants have a 5.5-fold increase in homoeologous pairing {11516}. 
 
1.54.3. Inhibitor of pairing homoeologous 

Ph1I.  al:  Aegilops speltoides {439}, {1218}.  

1.54.4 Asynapsis/desynapsis 
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A putative gene for desynapsis designated Ddes2 was placed between Xwmc325-3B and wPt-8983 in 
deletion bin 3BL7-0.63-1.00 by mapping of deletion hybrids {11339}. There is no mutant stock to 
represent this gene first reported in CS nullisomic 3B by Sears {1293}.  
 
TaASY1 {11766}. Encodes an axial-element-associated protein that is essential for synapsis and cross-
over formation in Arabidopsis and rice {11766}.  Mutants affect synapsis and distribution of chiasmata 
along the chromosome {11767}.  

TaASY-A1 {11767}. 

TaASY-B1 {11767}. 

TaASY-D1 {11767}. 

QTL 

QTug.sau-3B {11471}.  bin:  5BS5-0.07-0.03.  ma:  Xgwm285-3B – 1.0 cM – Xcfp11012-3B {11471}.  
Identified in T. turgidum / Ae. tauschii hybrids involving Langdon durum (high unreduced gamete 
formation) crossed with AS313 and AS2225 (low unreduced gamete formation) topcrossed with Ae. 
tauschii AS60. The QTL was located near Ttam, a homologue of the TAM (tardy asynchronous 
meiosis/CYCA1;2) cyclin gene from Arabidopsis {11471}. 

1.55. Nitrate reductase activity 

NRA 

Nra {424}.  v:  UC44-111 {424}.  

nra {424}.  v:  Anza {424}.  

1.56. Nuclear-cytoplasmic compatability enhancers 

SCS 

Scs {869}.  Derived from T. timopheevii {869}.  [scsti {10878}].  1AL {870}, {27}.  v:  T. timopheevii 
{869}.  ma:  A number of completely linked RAPD makers were identified {44}; Xbcd1449.2-1A – 0.6 
cM – SCS – 2.3 cM – Xbcd12-1A {10878}.  
Asakura et al. {44} used the symbol Ncc as a synonymn for scs pointing out that the effects of the gene 
are not limited to a single species. 

1.57. Nucleolus organizer regions 

1.57.1. 18S - 5.8S - 26S rRNA genes 

NORs were observed as secondary constrictions associated with nucleoli on satellited chromosomes, e.g. 
{221}, and by in situ hybridization to chromosome spreads {39}, {294}, {1014} of 18S-5.8S-26S 
ribosomal-DNA probes {38}, {433}. Allelic variation in gene number was demonstrated at all wheat Nor 
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sites and at Nor-R1 by filter {367} and in situ hybridization {1012}. Allelic variants of the Nor loci were 
detected by hybridization of rDNA probes to restriction endonuclease-treated DNA on Southern blots 
{37}, {288}, {917}, {1399}. Alleles Nor-B2a to Nor-B2f were identified using Taq1 digests of genomic 
DNAs hybridized to derivatives of the plasmid pTa250 {433} containing spacer-DNA fragments 
pTa250.4 {367}, {917} and pTa250.15 {288}. 
Other variants may have been isolated {1399} using BamH1/EcoR1 double digests and pTa71 {433}. The 
variants may or may not be equivalent to those described below. 

Nor1a and Nor2a.  v:  Maris Huntsman {1399}.  

Nor1b and Nor2b.  v:  Bezostaya 1 {1399}.  

Nor1c and Nor2c.  v:  Cappelle-Desprez, Maris Ranger {1399}.  

NOR-A1 

Nor-A1.  1AS {1012, 221, 367, 835}.  v:  T. spelta {1012, 221, 367, 835}.  dv:  T. monococcum {658}.  

NOR-B1 

Nor-B1.  [Nor1 {1120}].  1BS {1041, 221, 367, 835}. 1B {288, 37}.  v:  CS {288}.  
Deletion mapping divided the Nor-B1 in a proximal subregion Nor-B1p (short repeat) and a distal 
subregion Nor-B1d (long repeat) {0275} 

Nor-B1a {918}.  v:  Cheyenne, Chinese Spring, Hope, Kite, Oxley, Teal, Timstein{288}, {37};  Vasco, 8 
others {288}.  

Nor-B1a- {918}. v:  A derivative allele of Nor-B1a with a significantly reduced amount of spacer. 
Condor 64-1{918};  Sonora 64-1{918}.  

Nor-B1b.  v:  Olympic, Robin, Shortim {917}.  

Nor-B1c {918}.  v:  Banks {917};  Corella {917};  Warigal {917};  5 others {917}.  

Nor-B1c- {918}.  v:  Rosella {918}.  

Nor-B1d {918}.  v:  Maris Huntsman {918}.  

 

Nor-Agi1 {374}. 1Agi {374}.  ad:  Vilmorin27/Ag. Intermedium {374}.  

Nor-H1.  [Nor-I1 {794}].  1HS {794}.  dv:  Sultan barley {794}.  

Nor-R1.  1RS {39}.  ad:  CS/Imperial {39}.  

Nor-S1.  1SS {294}.  al:  Ae. speltoides {294}.  
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Nor-U1.  1U {906}.  su:  CS/Ae. Umbellulata {906}.  

Nor-V1 {241}.  1V {241}.  ad:  CS/D. Villosum {241}.  

 

Nor-B2.  [Nor2 {1120}].  6BS {1041}, {221}, {366}, {835}.  v:  CS.  

Nor-B2a {918}.  6B {288}.  v:  CS {37}, {917}.  

Nor-B2a- {918}.  v:  Blueboy {918};  Sonora 64-1 {918}.  

Nor-B2b.  T6B {288}.  v:  Banks, Oxley, Shortim, Timstein {37};  12 others {917}.  

Nor-B2c.  v:  Corella, Robin, Teal, 1 other {917}.  

Nor-B2d {918}.  H6B {288}.  v:  Hope {37};  Olympic {917};  Warigal {917}.  

Nor-B2d- {918}.  v:  Harrier {918};  Kite {918, 917}.  

Nor-B2e.  v:  Vasco {917}.  

Nor-B2f.  Ch6B {288}.  v:  Cheyenne {37, 917}.  

Nor-B2g {918}.  v:  Falcon; Gluclub; La Prevision {918}.  

Nor-B2h {918}.  v:  Yaktana {918}.  

Nor-B2i {918}.  v:  Maris Huntsman; Thatcher {918}.  

More detailed listings for allelic variation at Nor-B1 and Nor-B2 are given in {917}, {918}. 

 

Nor-E2.  6ES {294}.  ad:  CS/E. elongate {294}.  

Nor-G2.  6G {578}.  tv:  T. timopheevii IPSR (PBI) No. 1 {294}.  

Nor-H2.  [Rnr1 {1248}].  6H {1070}, {39}, {1248}. 6HS {794}.  al:  Clipper barley {39};  Sultan barley 
{794}.  

Nor-S2.  6SS {294}.  al:  Ae. speltoides {294}.  

Nor-A3.  5AS {658}, {1014}.  dv:  T. monococcum, T. urartu IPSR (PBI) Acc. A.  

 

NOR-D3 



 

77   MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS  

 

Nor-D3.  5DS {221}, {835}.  v:  CS;  most wheats {288}, {37}, {917}.  

 

Nor-Agi3.  5Agi {374}.  ad:  CS/Ag. intermedium {374}.  

Nor-E3.  5ES {294}.  ad:  CS/E. elongate {294}.  

Nor-H3.  [Rnr2 {1248}].  5HS {794}. 5H {1070}, {39}, {1248}.  al:  Clipper barley {39};  Sultan barley 
{794}.  

Nor-U3.  5U {906}.  ad,su:  CS/Ae umbellulata {906}.  

 

NOR-D4 

Nor-D4 {1042}.  7DL {1042}.  v:  CS {1042}.  dv:  Ae squarrosa {1042}.  

 

Nor-H4.  [Nor-I4 {794}].  7HS {793, 794}.  al:  Sultan barley {794}.  

Nor-H5.  [Nor-I5 {794}].  2HS {793, 794}.  al:  Sultan barley {794}.  

 

NOR-B6 

Nor-B6 {601}.  1BL {601}.  v:  CS;  Cheyenne, Wichita {601}.  tv:  Langdon {601}.  

 

NOR-A7 

Nor-A7 {601}.  5AL {601}.  v:  CS;  Cheyenne, Wichita {601}.  tv:  Langdon {601}.  

 

NOR-D8 

Nor-D8 {601}.  3DS {601}.  v:  Witchita {601}.  

 

NOR-A9 

Nor-A9 {120}.  [Nor-A1 {1012}, {221}, {367}, {835}].  1AS {276}, {282}.  v:  T. spelta {1012}, {221}, 
{367}, {835}. 
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NOR-A10 

Nor-A10 {120}.  [Nor-A3 {658}, {1014}].  5AS {276}, {282}.  dv:  T. monococcum {276}, {282}; T. 
urartu IPSR (PBI) Acc. A.  

Two sites designated temporarily as Nor-Ax and Nor-Ay were identified in T. monococcum ssp. 
boeoticum, but were absent in ssp. urartu. 

1.58. Osmoregulation 

Osmoregulation is a specific form of solute accumulation regulating turgor pressure and hydration during 
periods of stress with positive effects on growth. Wheat lines selected for higher osmoregulation in the 
greenhouse have greater growth and seed yields under water-limited conditions in the field. 

OR 

Or {1030}.  Low osmoregulation.  s:  CS (Red Egyptian 7A).  v:  Cappelle Desprez; Condor*4/3Ag14 
{1030};  Red Egyptian.  ma:  Or (proximal in 7AS) – 13 cM – Xpsr119-7A {1031}.  

Or {1030}.  High osmoregulation.  7AS {1031}. 7A {1030}.   v:  CS, Condor, Songlen, Takari {1030}.  

1.59. Phenol colour reaction of kernels 

Wheat genotypes vary in response when caryopses are treated with weak solutions of phenol, a dark 
colour response being indicative of a positive response. This response is believed to be related to the 
action of tyrosinase. There seems to a genetic relationship with polyphenol oxidase activity which causes 
a darkening of flour, pasta and noodle products (see also Polyphenol Oxidase (PPO) activity). 

TC 

Tc1 {10130}.  2AL {10130, 10131}.  su:  Various substitutions of chromosomes 2A into CS {10131}.  
sutv:  Langdon*/dicoccoides 2A {10130}.  tv:  Golden Ball {10130}.  

Tc2 {10130}.  2BL {10130}.  sutv:  Langdon*/Golden Ball 2B {10130}.  tv:  Golden Ball {10130}.  

Tc3 {10131}.  [Tc {10131}].  2DL {10130}.  v:  Chinese Spring (intermediate response) {10130}.  v2:  
Timstein Tc1 {10131}.  su:  CS/*Timstein 2D {10131}.  tv:  Cocorit 71 {10130};  Langdon {10130}.  
sutv:  Langdon*/CS 2D(2A);  Langdon*/CS 2B(2D) {10130}; T. dicoccoides Israel A {10130}. Lines 
with a negative phenol colour reaction.  

1.60. Pollen killer 

KI 

Ki {1306}.  Killing allele is dominant.  6BL {1306}.  v:  Chinese Spring{1306};  Mentana {929}.  
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ki.  v:  Probably the majority of wheats including Timstein, Gabo and Yalta {1306}.  
Modifiers also appear to be involved as Luig {840, and unpublished} found variation among kiki parents. 
Some F2 and F3 Sr11sr11 plants from Yalta/Chinese Spring crosses segregated with less than 50% Sr11-
phenotypes among the progeny indicating that killing extended to eggs as well as pollen. See also, 
Gametocidal Activity. 

Kato & Maeda {10164} reported both partial pollen and seed sterility in crosses involving certain 
landraces and Chinese Spring. They attributed sterility to recessive alleles of three complementary genes. 
The genes were designated Ki2, Ki3 and Ki4 {10164}, but the relationship of Ki3 to the earlier designated 
Ki was not established. Some genotypes: 
Ki2 Ki3 Ki4:  v:  Aka Kawa Aka {10165}; Hope {10165}; Marquis {10165}; Red Russian {10165} 
ki2 Ki3 Ki4:  v:  Akadaruma {10165}; Canthatch {10165}; Norin 61{10165}; Pakistani Landrace IL159 
{10164} 
Ki2 ki3 Ki4:  v:  Gabo {10165}; Thatcher {10165}; Timstein {10165}; Zlatiborka {10165} 
Ki2 Ki3 ki4:  v: Kagoshima {10165}; Komugi Jingoro {10165}; Sakobore {10165} 
ki2 ki3 Ki4:  v:  Finnish Landrace WAG4339 {10165}; Hungarian Landrace WAG4458 {10165}; 
Novosadska Jara {10165} 
ki2 Ki3 ki4:  v:  Chinese Spring {10165}; Eshima Shinriki {10165}; Ethiopian Landrace IL70 {10164}; 
Norin 26 {10165} 
Ki2 ki3 ki4:  v:  Cadet {10165}; Iraqi Landrace IL171 {10165}; Rex {10165} 
See Segregation distortion. 

1.61. Polyphenol oxidase (PPO) activity 

3,4 dihydroxyphenylalanine (L-DOPA) was used as a substrate in a non-destructive test of polyphenol 
oxidase activity in seeds. Chromosome 2D was shown to carry PPO gene(s) based on Langdon / Chinese 
Spring (2D) substitution lines and nullisomic-tetrasomic analysis {0342}. An orthologous series of genes 
affecting PPO activity in both common wheat and durum was proposed in {10149}. See also, Phenol 
colour reaction of kernels 

QTL 

Chara (mod high) / WW2449 (low): DH population: PPO activity Associated with Xgwm294b-2A 
(R2=0.82), Xwmc170-2A, Xgwm312-2A and Xwmc178-2A (R2>0.7) {10410}. 

Chara (medium high PPO) / WW2449 (low PPO): one QTL was located on chromosome 2A. Two 
markers (one SNP, one CAPS) based on BQ161439 were polymorphic between the parents and showed 
linkage or allelism with PPO loci Xtc1 and XPPO-LDOPA. – 0.6 cM – XPPO-
LDOPA/XPPO18/BQ161439 {10484}. 

M6 (high activity)/ Opata 85 (low activity): A QTL on 2D, associated with Xfba314-2D was identified 
using the L-DOPA assay {0344}.  
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NY18 / Clark's Cream: Markers significantly associated with PPO activity were also detected on 
chromosomes 2A, 2B, 3B, 3D and 6B in the population {0344}. A multiplex of markers PPO33 and 
PPO16 was reliable for selecting genotypes with low PPO activity {10418}. 

Zhongyou 9507 / CA9632: PPO18 explained 28-43% of the variation in PPO activity {10290}. 

Tetraploid wheat 
Jennah Khetifa (high) / Cham 1 (low): Associated with Xgwm312-2AL {10411}. STS marker PPO18 
based on a polyphenol oxidase (PPO) gene (GenBank AY596268) was closely linked to SSR markers 
Xgwm312-2AL and Xgwm294-2AL. 

Messopia / T. dicoccoides: RIL population: Associated with RFLP Xutv1427-2A {10411}.  

1.62. Red grain colour 

1.62.1 Red grain colour 

Red colour is probably due to the polyphenol compounds phlobaphene or proanthocyanidin, synthesized 
through the flavanoid pathway. Himi & Noda {10107} provided evidence that the R genes were wheat 
forms of R2R3-type Myb-type transcription factors (Tamyb10-3A, Tamyb10-3B, Tamyb10-3D).  Genetic 
evidence is provided in {10838}.  
Red colour is dominant to white. At each locus, the white allele is assigned a and the red allele, b. White-
grained T. aestivum and amber-grained T. durum wheats carry recessive a alleles at each locus. White-
grained CS*7/Kenya Farmer and CS*6/Timstein are considered near-isogenic to CS with R-D1b. 

R-1 

R-A1 {548}.  [R2 {548}].  3AL {1003}, {957}.  v:  Rio Blanco {10839}.  ma:  (Proximal) 
Xpsr483(Cxp1)-3A – 28 cM – R-A1 – Xpsr904-3A {370} (distal); Xwmc559-3A – 16.3 cM – R-
A1/Xgwm155-3A – 4.5 cM – Xwmc153-3ª {10839}.  

R-A1a.  ma:  Based on Tamyb10-A1 sequences this allele in CS lacks the ability to bind DNA due to 
deletion of the first half of the R2 repeat of the MYB domain {10838};  the R-A1a allele in Norin 17 has a 
2.2 bp insertion in the second intron that appears to prevent transcription {10838}. 

R-A1b.  [R2].  Tamyb10-A1 {10107}.  i:  Novosibirskaya 67*9/Solo {730}.  v:  Baron {370};  Diamant 2 
{14};  Hustler {370};  Norin 10- Brevor, 14 {17};  Maris Widgeon {370};  Mercia; {370};  Motto {370};  
Red Bobs {1003};  Sapphire {370};  Slejpner {370};  Talent {370};  Wembley {370}.  c:  GenBank 
AB191458. 

 

R-B1 {548}.  [R3 {548}].  3BL {1003}, {370}.  ma:  Xbcd131-3B – 5 cM – R-B1 – 5 cM – Xabc174-3B 
{410}; Xwmc29-3B – 5 cM – R-B1 – 5 cM – Xbarc84-3B {10280}; Xgwm4010-3B – 1.6 cM – R-B1 – 4.6 
cM – Xgwm980-3B {10839}.  
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R-B1a.  ma:  Based on the Tamyb10-B1 sequence this allele in CS has a 19 bp deletion of the CCG repeat 
region causing a frameshift mutation {10838}. 

R-B1b.  [R3], Tamyb-10-B1 {10107}.  i:  Novosibirskaya 67*9/k-28536 {730}.  v:  Canon {370};  Dollar 
{370};  Grana {370};  Supreme {370}.  c:  GenBank AB191459. 

 

R-D1 {549}.  [R1 {548}].  3DL {1291, 1293}.  v:  CS.  ma:  Xbcd131-3D/R-D1 – 15 cM – Xabc174-
3D{410}; Xgwm2-3D –.4 cM – R-D1 – 3.2 cM – Xgwm4306-3D {10839}.  

R-D1b.  [R1], Tamyb10-D1 {10107}.  i:  Novosibirskaya 67*9/CS {730}.  v:  Alexandria {370};  Apollo 
{370};  Axona {370};  CS {1293};  Dwarf A {370};  Fortress {370};  Jerico {370};  Longbow {370};  
Luna {370};  Mardler {370};  Maris Huntsman {370};  Minaret {370};  NFC 75/93/27A; Rapier {370};  
Pawnee {549};  Voyage {370};  Vuka {370}.  c:  GenBank AB19160. 

 

R-N1 {1018}.  3N {1018}.  su: CS/Ae. Uniaristata {1018}.  

R-R1 {1011}.  6RL {1011}.  ad:  Holdfast/King II {1011}.  

R-V1 {1518}.  3VL {1518}.  ad: Creso/D. villosum {1518}.  
A 3Ag chromosome from decaploid Ag. elongatum carries an allele for red grain colour which was 
transferred to Agent and the majority of Sears' 3D-3Ae#1 translocations {939}. 
Other studies have identified wheats carrying either one or two, unidentified R-1 alleles: {056, 437, 549, 
631, 654, 659, 1078, 1148, 1333, 1349, 1454, 370}. 
See also Variegated Red Grain Colour. 

R-A1b R-B1b R-D1a.  [R3, R2].  v:  Red Chief {548};  Avalon {370};  Bersee; Cappelle Desprez; 
Feuvert; Mission; Parade; Rendezvous; Yuri {370}.  

R-A1b R-B1a R-D1b.  [R1, R2].  v:  Bezostaya 1 {370};  Brigand {370};  Broom {370};  Brock {370};  
Kronjuwel {370}.  

R-A1a R-B1b R-D1b.  [R3, R1].  v:  Fenman {370};  Kharkov {1003};  Norman {370};  Pastiche {370};  
Riband {370};  Sperber {370};  Squadron {370};  Urban {370}.  

R-A1b R-B1b R-D1b.  [R2, R1, R3].  v:  Bowie; Frondoso {1148};  Frontiera {437};  Hope {206, 204};  
Japanese Bearded {1548};  Kanred {1078, 1426};  Lin Calel {1078}.  

Functional markers based on Tamyb10 sequences are given in {10838}. 
A fourth QTL for red seed colour in hexaploid wheat was detected on chromosome 1B in a GWAS of U.S 
winter genotypes {11409}. 
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R-N1 {1018}.  3N {1018}.  su: CS/Ae. Uniaristata {1018}.  

R-R1 {1011}.  6RL {1011}.  ad:  Holdfast/King II {1011}.  

R-V1 {1518}.  3VL {1518}.  ad: Creso/D. villosum {1518}.  
 

A 3Ag chromosome from decaploid Ag. elongatum carries an allele for red grain colour which was 
transferred to Agent and the majority of Sears' 3D-3Ae#1 translocations {939}. 
Other studies identified wheats carrying either one or two, unidentified R-1 alleles: {056}, {437}, {549}, 
{631}, {654}, {659}, {1078}, {1148}, {1333}, {1349}, {1454}, {370}. 
See also Variegated red grain colour. 

1.61.2. Variegated red grain colour 

Vg {498}.  v:  Line 10859 {498}.  
vgvg genotypes in Line 10859 are variegated. The Vg/vg locus was independent of the single red gene 
locus in Line 10859. In a cross to Selkirk (R-A1b, R-B1b, R-D1b) vgvg was expressed only in plants with 
one R gene {498}. Variegated red pericarp was also studied in crosses of cv. Supreme. In this case, two 
red colour genes were present {0136}. 

1.62. Reaction to black-point of grain 

Black-point, a common grain defect, is a dark discoloration of the embryo region of the kernels. Whereas 
black-point is often attributed to infection by a number of fungi, the presence of such fungi may be a 
consequence of saprophytic colonization of affected tissues rather than the cause (see {10148} for 
references). The condition may be triggered by high humidity {0845}. 

QTL  

Batavia / Pelsart (resistant): DH population: Associated with markers Xgwm319-2B and Xgwm048-4AS 
{10494}. 

Cascades / AUS1408: DH population: QTL from Cascades located in chromosomes 2D (5 cM from 
Xgwm484-2D, 18% of phenotypic variation), 2A (13%), and 7AS (12%) {10148}. 

Sunco / Tasman: DH populaion: QTL located in chromosomes 2B (15% of phenotypic variation), 3D, 
4A (from Sunco) and 1D, 5A and 7AS (from Tasman {10148}. The 2B gene was associated with the 
presence of Sr36 {10148}. 

1.63. Response to photoperiod 

One-gene {1169} and two-gene {638}, {1137}, {1170} differences were reported in inheritance studies. 
In Chinese Spring/Hope substitution lines for chromosomes 1A, 4B and 6B greater sensitivity to short 
photoperiod was found, whereas substitutions of 3B and 7D were less sensitive {487}. 
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'a' alleles are dominant. 
There is an orthologous gene series on the short arms of homoeologous group 2. The "a" alleles confer the 
insensitive response {0063}, the contrasting allele may be referred to as "b". 

PPD-A1 

Ppd-A1 {63}, {10612}.  [Ppd3 {1141}].  2AL {1268}.  v:  C591 {0057}.  tv:  GS100, Kofa (1027-bp 
deletion in the promoter) {10612};  GS105, Svevo (1117-bp deletion in the promoter) {10612};  A survey 
of Ppd-A1 allele is reported in {10915}.  ma: Xwmc177-2A – Ppd-A1, 2.2 and 2.8 cM in GS100/GS101 
and GS105/GS104, respectively{10612}.  
GS100 and GS105 had different deletions relative to GS101 and GS104, respectively, and both were 
consistently a few days earlier flowering than their near-isogenic counterparts with Ppd-A1b {10612}. 

Ppd-A1a {10612}.  tv:  GS100 {10612};  GS105 {10612}.  
Ppd-A1a was present in 39% of Chinese landraces and 97% of improved cultivars {10622}. GS100 and 
GS105 had different deletions relative to GS101 and GS104, respectively and both were consistently a 
few days earlier flowering than their near-isogenic counterparts with Ppd-A1b {10612} 

Ppd-A1b {10612}.  tv:  GS101 {10612};  GS104 {10612}.  

 

PPD-B1 

Ppd-B1.  2BS.  ma:  Xwhs2002-2B/Xgwm257-2B – PpdB1 – Xgwm148-2B.  Actual linkage value varied 
between crosses {10129}; Xpsr666-2B – 1.2 cM – Xpsr109-2B – 4.4 cM – Ppd-B1 – 4.8 cM – Xpsr804-
2B ...Cent {0062}.  
According to {10611} the Ppd-B1 allele from Japanese wheats has a stronger effect than the allele from 
CS. 

Ppd-B1a {0063}.  [Ppd2 {1566}].  i:  H(C) = Haruhikari*5 / Fukuwasekomugi {10611};  H(D) = 
Haruhikari*/5/ Fukuwasekomugi Ppd-D1a {10611}.  s:  Cappelle-Desprez*/CS 2B {0058}.  v:  CS 
{1268};  Spica {557};  Timstein {1269}.  v2:  Fukuwasekomugi Ppd-D1a {10611};  Sharbati Sonora 
Ppd-A1a {887}.  c:  Varieties with the photoperiod insensitive allele have more than one Ppd-B1 copy 
per chromosome 2B: two copies in Recital, three copies in Sonora 64, Timstein and C591, and 4 copies in 
Chinese Spring {10881}. 

Ppd-B1b {10611, 10881}.  v:  Beaver {10881};  Cappelle-Desprez {10881};  Cheyenne {10881};  
Norstar {10881};  Paragon {10881};  Renan {10881}.  v2:  Haruhikari Ppd-D1b{10611}.  c:  Varieties 
with the photoperiod sensitive allele have a single Ppd-B1 copy {10881}. 

 

PPD-D1 
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Ppd-D1.  2DS {1268}.  Comparative mapping showed that Ppd-D1 was co-linear with barley Ppd-H1 - a 
member of the pseudo-response regulator (PRR) gene family {10466}.  
Jagger amplified the 414 bp band {10466} associated with daylength sensitivity whereas 2174 amplified 
the 288 bp band associated with insensitivity {10722}. 

Ppd-D1a {0063}.  [Ppd1 {1566}].  i:  H(C) = Haruhikari*5/Fukuwasekomugi {10611};  
Haruhikari*5/Saitama 27 {10611};  H(D) Haruhikari*5/Fukuwasekomugi Ppd-B1a {10611}.  s: Capelle 
Desprez*/Ciano 2D {1598}; Capelle-Desprez*/Mara 2D {1598}; CS*/Ciano 2D Ppd-B1a {1268}.  v:  
Akakomugi {1604};  Bezostaya 1 {1604};  Festival {10466};  Kavkaz;  Mara {1604};  Orqual {10466};  
Recital {10466};  Saitama 27 {10466};  Sava {1604};  Sideral {10466};  Soissons {10466};  Sonora 64 
{1566};  Talent {10466};  Texel {10466}.  v2:  Sharbati Sonora Ppd-D1a {887};  Fukuwasekomugi Ppd-
D1a {10611}.  ma:  Stocks with Ppd-D1a had a 2,089-bp deletion upstream of the coding region leading 
to mis-expression of the 2D PRR gene {10466}.  

Ppd-A1b Ppd-B1b Ppd-D1b.  v:  Cheyenne {1141};  Diamont 1 {887};  Lancer {638}; Saratovskaya 29 
{887};  Warrier {638}.  
Two genes controlled photoperiod response in T. turgidum {788}. 
Gene Ppd-H2 on barley chromosome 2HS may be a member of the Ppd-1 orthologous series {766}. 
 

PPD-B2 

Ppd-B2 {10628}.  7BS {10628}.  su:  Favorit (F26-70 7B) {10628}.  v:  F26-70 {0093}.  ma:  
Xgwm255-7B – 20.7 cM – Ppd-B2 – 4.4 cM  – Xgwm537-7B {10628}.  
This gene confers earlier flowering under long photoperiod conditions {10628}. 

QTL 

QPpd.zafu-4AL {11443}.  4AL {11443}.  s:  CASL 4AL {11443}.  tv:  T. dicoccoides TTD140 
{11443}.  ma:  Flanked by M576 and Xwmc468-4AL in a 1.2 cM region {11443}.  
Other publications reporting Ppd genes/QTL in the same region are reviewed in {11443}. 

Trident (early)/Molineux (late): In addition to an effect associated with chromosome 2B, three QTLs 
were designated as: QPpd.agt-1AL (Xwmc304 – Xgwm497 region), QPpd.agt-7AS (Xbarc154 – 
Xbarc108) and QPpd.agt-7BS (Xgwm46 – Xgwm333) {10382}. The QTL in chromosome 1A was 
possibly orthologous to Ppd-H2 in barley. 

QTL A QTL was detected in chromosome 4BS in Courtot/CS {0132}. 

CONSTANS 

Wheat genes CONSTANS1 and CONSTANS2 interact with PPD1 to regulate photoperiodic response 
{11495}. 

CONSTANS 1  
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CO-A1 {11495}.  7A.  v:  Chinese Spring.  c:  TraesCS7A02G211300 {11295}.  tv:  Kronos {11495}.  c  
GenBank MT043302 {11495}. 

 

CO-B1 {11495}.  7B.  v:  Chinese Spring.  c  TraesCS7B02G118300 {11495}.  tv:  Kronos  {11495}. c:  
GenBank MT043303 {11495} 

 

CO-D1 {11495}.  7D.  v:  Chinese Spring.  c:  TraesCS7D02G212900 {11495}. 

 

CONSTANS 2 

CO-A2 {11495}.  6A.  v:  Chinese Spring.  c:  TraesCS6A02G289400 {11495}.  tv:  Kronos.  c:  
GenBank MT043304{11495}. 

 

CO-B2 {11495}.  6B.  v:  Chinese Spring.  c:  TraesCS6B02G319500 {11495}.  tv:  Kronos.  c:  
GenBank MT043305 {11495}. 

 

CO-D2 {11495}.  6D.  v:  Chinese Spring.  c:  TraesCS6D02G269500 {11495}. 

Triticum turgidum ssp. durum cv. Kronos: accession numbers MT043302 (CO-A2) and MT043305 (CO-
B2) (11495}. 

1.65. Response to salinity 

1.65.1. K+/Na+ discrimination 

Variation in K+/Na+ discrimination ratios correlates with salt tolerance, high ratios being indicative of 
higher tolerance. 

KNA1 

Kna1 {290}.  4DL {290}. 4BS.4BL-4DL {283}. 4BS.4BL-4DL-4BL {849}.  v:  Hexaploid wheats 
{290}.  tv,su:  Langdon 4D(4B) {283}.  tv,tr:  Various lines {290}; Selection 3*5-4 {849}.  ma:  Kna1 
was completely linked with Xabc305-4B, Xabc305-4D, Xbcd402-4B, Xbcd402-4D, Xpsr375-4D, 
Xpsr567-4B, Xpsr567-4D, Xwg199-4B and Xwg199-4D in recombined T. turgidum 4B and T. aestivum 
4D chromosomes {849}, {283}.  
Lophopyrum elongatum chromosome arms 1ES, 7ES, and 7EL enhance K+/Na+ selectivity in wheat under 
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salt stress {0065}. 
Kna1 is a possible orthologue of Nax2 and is the Na+ transporter TaHKT1;5-D {10455}. 

1.65.2. Salt tolerance 

QTL 

Opata 85 / 7984: 77 QTLs effective at different growth stages were mapped to 16 chromosomes 
{10384}. 

1.65.3. Sodium exclusion 

NAX1 

Nax1 {10452}.  2AL {10452}.  itv:  Tamaroi*6/Line 149 = P06306 {10453}.  tv:  Line 149 Nax2 = 
126775b {10452}.  dv:  AUS 90382 Nax2 = C68.101 {10455} = JIC T. aegilopoides no. 3.  ma:  Nax1 
was mapped as a QTL in the region Xpsr102-2A – 5.4 cM – Xwmc170-2A – 0.9 cM – Xksud22-
2A/Xksu16-2A – 0.8 cM – Xgwm312-2A with R2 = 0.38 in Tamaroi/Line 149 {10452}; TmHKT7-A2 was 
identified as a putative candidate Na+ transporter {10454}.  
Nax1 promotes withdrawal of Na+ from xylem in leaf bases and roots {10453}. 

NAX2 

Nax2 {10453}.  5AL {10455}.  itv:  Tamaroi*6/Line 149 = P05603 {10453}.  tv:  Line 149 Nax1 = 
126775b {10452, 10453}.  dv:  AUS 90382 Nax1 = C68.101 {10455} = JIC T. aegilopoides no. 3.  ma:  
Co-segregation with Xgwm291-5A/Xgwm140-5A/Xgpw2181-5A{10455}; TmHKT1;5-A was identified as 
a candidate for Nax2 {10455}.  
Nax2 is a likely orthologue of Kna1 {10455}. 

QTL 

Berkut / Krichauff: QTL for Na+ exclusion and seedling biomass under salt stress were detected in 
chromosomes 2A (Nax1 region) and 6A (Xcfd080-Xbarc171-6A) {10917}. 

1.66. Response to tissue culture 

Qtcr.ipk-2B.1 {84}.  [Tcr-B1 {84}].  ma:  Weakly associated with Xpsr102-2B {84}.  

Qtcr.ipk-2B.2 {84}.  [Tcr-B2 {84}].  ma:  Closely linked and distal to Ppd-B1 {84}.  

Qtcr:ipk-2B.3 {84}.  [Tcr-B3 {84}].  ma:  Linked withYr7/Sr9g {84}.  

QGpp.kvl-2A {0253}.  2AL {0253}.  v:  Ciano / Walter DH mapping population. The green plant 
percentage was contributed by Ciano {0253}.  ma:  Associated with Xpsp3045-2A {0253}.  
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QGpp.kvl-2B.1 {0253}.  2BL {0253}.  v:  Ciano / Walter DH mapping population. The green plant 
percentage was contributed by Ciano {0253}.  ma:  Associated with Xgwm388-2B {0253}.  

QGpp.kvl-2B.2 {253}.  2BL {0253}. v:  Ciano / Walter DH mapping population. The green plant 
percentage was contributed by Ciano {0253}.  ma:  Associated with AFLP markers {0253}.  

1.67. Response to vernalization 

The requirement for vernalization is particularly important for winter cereals to avoid cold injury of the 
sensitive floral organs during the winter. In wheat, vernalization requirement is controlled by four major 
genes designated VRN-1, VRN-2, VRN-3, and VRN-4. The first three genes were identified using map 
based cloning aproaches {10014, 10299, 10421}. The VRN-1 gene encodes a MADS-box transcription 
factor closely related to the Arabidopsis AP1/FRUITFULL family, responsible for the transition of the 
shoot apical meristem from the vegetative to reproductive stage in wheat {10014}. 
Deletions in the promoter (Vrn-A1a, Vrn-A1b) {10198} or the first intron of this gene (Vrn-A1c, Vrn-B1a, 
Vrn-D1a) {10202} are the most common sources of spring growth habit among landraces and 
commercial cultivars of polyploid wheat worldwide {10617, 10695, 10709}. The VRN-2 locus produces 
two linked and related proteins designated ZCCT1 and ZCCT2, characterized by the presence of a 
putative zinc finger and a CCT domain {10299}. 
Deletions and mutations involving both the ZCCT1 and ZCCT2 genes are frequent in diploid wheat and 
are associated with recessive alleles for spring growth habit {10299}. 
Among the cultivated tetraploid and hexaploid wheat species the Vrn-B2 gene is generally functional 
whereas the Vrn-A2 gene is not {10710}. At least one functional copy of Vrn-2 combined with 
homozygous recessive alleles at all three Vrn-1 loci is required to confer winter growth habit in hexaploid 
wheat. The VRN-B3 locus (formerly known as Vrn-5 or Vrn-B4) is homologous to the Arabidopsis FT 
gene {10421}. This dominant allele, found in the variety Hope, is associated with the insertion of a 
transposable element in the Vrn-B3 promoter. Natural variation at the VRN-A3 and VRN-D3 loci has been 
also described in hexaploid wheat {10533}. VRN-3 promotes the transcription of Vrn-1 and accelerates 
flowering {10421}. The Vrn-D4 allele for early flowering was originally identified in the Australian 
cultivar Gabo {671} and was backcrossed into Triple Dirk to develop the isogenic line TDF {1172}. This 
locus was mapped on the centromeric region of chromosome 5D between markers Xcfd78 and Xbarc205 
{10711}. Natural variation for flowering time at the centrometric region of homoeologous group5 
chromosomes has been found, so far, only in the D genome. Incorrect TDF seed stocks generated initial 
confusion about the existence of Vrn-D4 but molecular markers are now available to separate the 
incorrect stocks {10711}. Using genetic analyses, Iwaki et al. {10003} found the Vrn-D4 allele for spring 
growth habit occurred with a higher frequency in India and neighboring regions. The VRN-D4 locus in 
TDF includes a duplication of a 290 kb region from chromosome arm 5AL inserted into the proximal 
region of chromosome arm 5DS. This translocated segment includes a functional copy of VRN-A1 that 
carries distinctive mutations in its coding and regulatory regions {11123}. 

VRN-1 {1398}.  Synonymous with TaVRT-1 {10019}  
Orthologous series in long arms of chromosomes of homoeologous group 5. VRN-1 is a MADS-box gene 
similar to Arabidopsis APETALA1 {10014}. Spring types are associated with mutations in the promoter 
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or the first intron {10014, 10198, 10202, 10288}. Reduction of VRN-1 transcripts in transgenic hexaploid 
spring wheat delays flowering {10300}. 

VRN-A1 

Dominant spring habit alleles at the Vrn-A1 locus 

Vrn-A1a {1398}.  [Vrn1 {1172}, Sk {2}].  5AL {775}, {883}.  i:  Triple Dirk D (GenBank AY616458 & 
AY616459).  s:  Kharkov 22MC*/Rescue 5A {358}; Winalta*8/Rescue 5A {876}; Rescue*/Cadet 5A Vrn-
D1a Vrn-B1a {1221}.  v:  Cadet {1221};  Conley {1171};  Diamant II {885};  Falcon {1172};  Koga II 
{1611};  Kolben {1, 1171, 1172};  Konosu 25 {460};  Marquis {1};  Reward {1171};  Saitama 27 {460};  
Saratov 29 {883};  Saratovskaya 29 {885};  Saratovskaya 210 {883};  Shabati Sonora {885};  Thatcher 
{1171};  WW15 {1172}.  v2:  Shortandinka Vrn-B1a {885};  Takari Vrn-B1a {253};  Triple Dirk Vrn-
B1a {1173};  Hope Vrn-B4a {1424}.  ma:  Vrn-A1 – 7.5 cM – Xwg644-5A {726};  Located mid 
chromosome 5A cosegregating with Xcdo504-5A, Xwg644-5A and Xpsr426-5A {419}; Vrn-A1 – 0.8 cM – 
Xbcd450-5A/Xrz395-5A – 4.2 cM – Xpsr426-5A {9903}. Xgwm271-5A – 6.5 cM – Vrn-A1 – Xbarc232-
5A{10880}; 
Cultivars possessing Vrn-A1a are insensitive to vernalisation. Vrn-A1a is epistatic to other genes. 
According to {1221}, Vrn-A1a is not always fully dominant and not always epistatic. Kuspira et al. {745} 
attributed single gene variation in T. monococcum to the Vrn-A1a locus. Multiple recessive alleles were 
suggested {745}. Vrn-Am1 was mapped on the long arm of chromosome 5Am closely linked to the same 
RFLP markers as Vrn-A1 {279}. Vrn-Am1 was mapped to the Xcdo504-5A - Xpsr426-5A region {0312}. 
In the opinion of the curators this location may not be correct 
Multiple alleles also were reported in {9930}, and the dominant allele of Novosibirskaya 67 and the 
weaker dominant allele of Pirotrix 28 were designated Vrn1a and Vrn1b, respectively. 

Vrn-A1b {10198}.  v:  Marquis PI94548 (GenBank AY616461) {10198}.  tv:  T. turgidum var.  durum 
ST36 {10198}.  

Vrn-A1c {10198}.  This allele has a promoter similar to recessive vrn-A1a from Triple Dirk C {10198} 
and a large deletion in intron 1 {10202}.  v:  IL162 {10198};  IL369 {10198} has a 5.5 kb deletion in 
Vrn-A1 intron 1 {10202}.  tv:  Aldura PI 486150 {10202};  Leeds CI 13796 {10202};  Mexicali 75 PI 
433760 {10202};  Minos CI 15161 {10202}. Most durum genotypes have a 7.2 kb deletion in intron 1 
{10202}.  

Vrn-A1d {10198}.  tv:  T. turgidum var. dicoccoides Amrim 34 {10198};  FA15 (GenBank AY616462) 
{10198};  Iraq 8736 {10198};  Tabigha 15 {10198}.  

Vrn-A1e {10198}.  tv: T. turgidum var. dicoccum ST27 = Vernal (GenBank AY616463) {10198}. 

vrn-A1.  Copy number variation for vrn-A1 was detected in IL369 (2 copies) {10202}, Malacca (2 copies) 
and Hereward (3 copies). Higher copy number was associated with later flowering or with increasing 
requirement for vernalization (i.e. longer exposure to cold is needed to achieve full vernalization) 
{10881}. 
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vrn-A1a{10198}.  v:  Claire {10880};  Triple Dirk C {10880}.  v2:  Chinese Spring Vrn-D1a {10880}.  
c:  GenBank AY616455 {10198}.  

vrn-A1b {10881}.  v:  IL369 {10202};  Malacca {10881}.  c:  GenBank JF965396 {10881}.  
This allele has two copies of the gene, possibly arranged in tandem although the physical structure is 
unknown. Both copies are distinguished from Chinese Spring vrn-A1a by a SNP in exon 7 (T in Malacca, 
C in Chinese Spring). One copy also has a SNP in exon 4 (T in Malacca, C in Chinese Spring). 
Sequenced cDNAs from Malacca show that both copies are expressed {10881}. 

vrn-A1c {10881}.  v:  Hereward {10881}.  c:  GenBank JF965397 {10881}.  
A comparison of Claire (vrn-A1a), Malacca (vrn-A1b) and Hereward (vrn-A1c) indicated that increasing 
gene copy number is associated with lateness {10881}. Two winter alleles were identified based on an 
SNP in exon 4 {10656}. 

vrn-A1v {10916}.  v:  Don Ernesto INTA {10916};  Jagger {10916};  Norin 61 {10916};  Opal {10916}.  

vrn-A1w {10916}.  v:  Bezostaya {10916};  Bavicora M 92 {10916};  Kavkaz {10916};  Gennson 81 
{10916};  Seri M 82 {10916};  Wichita {10916}. 

A polymorphism between Jagger and 2174 was associated with vrn-A1a. A point mutation was present in 
exon 4 {10695}; 17 of 19 genotypes surveyed, including Jagalene, carried the 2174 mutation and only 
Jagger and Overley carried the Jagger allele {10695}. 

All accessions of T. aestivum ssp. petropavlovsky shared the Vrn-A1a sequence (Vrn-A1L) of Langdon 
(7,222 bp deletion 391-7,612 bp) and some other tetraploid wheat accessions {11668}. 

 

VRN-B1 

Vrn-B1.  ma:  Tsn1 – 14.8 cM – Vrn-B1 – 0.7 cM – Xwmc75-5B {10880}.  

vrn-B1.  c:  GenBank AY747604.1{10695}.  

Vrn-B1a {1398}.  [Vrn2a = Vrn2 {920}, {921}, Vrn2 {1172}, Vrn4 {1173},Vrn2b = Vrn2 {920} {921}, 
Ss {2}].  5BL {885}. 5B {885}, {920}, {921}; 5BL or 7BL {635}, {282}. 5D {635}.  i:  Ank-18 {920}, 
{921};  Triple Dirk B {1172}.  s:  Diamant 1*8 / Mironovskaya 5A {920}; Diamant 1*8 / Skorospelka 35 
5A {920}; Rescue* / Cadet 5A Vrn-A1 Vrn-D1a {885}; Saratovskaya 29*8 / Mironovskaya 808 5A 
{920}; Saratovskaya 29*8 / Odesskaya 51 5A {920}.  v:  Bersee {557};  Brown Schlanstedt {1}, {2}, 
{1171}, {1172};  Cadet {1221};  Festiguay {1172};  Magali;  Mara {1611};  Milturum 321 {920} {885};  
Milturum 885 {920, 885};  Noe {2};  Pyrothrix 28 {920};  Spica {557}; T. spelta var.  duhamelianum 
KT19-1 {10057};  Ulyanovka 9 {920}.  v2:  Borsum Vrn1-A1a {1};  Dala Vrn1-A1a {1};  Diamant 1 
Vrn1 {1}, {920};  Gabo Vrn4 {1172};  Halland Vrn-A1a {1};  Harukikari Vrn-A1a {883};  Rubin Vrn-
A1a {1};  Saratovskaya 29 Vrn-A1a {920};  Shortandinka Vrn-A1a {1221};  Triple Dirk Vrn-A1a 
{1173}.  ma:  A dCAPS marker derived from Xwg644-5B was 1.7 cM from Vrn-B1 {10006}; Vrn-B1a – 
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1.6 cM – Xwg644-5B – 2.5 cM – Xgwm408-5B {10004};  Closely linked to Xgwm408-5B in Diamant 
I*/Mironovskaya 808 5A // Bezostaya 1 {10007};  A close association of Vrn-B1 with Xcdo1326-5B was 
reported in {10057}.  When mapped as a QTL Vrn-B1 showed closest association with Xgwm408-5B 
{10007}.  c:  GenBank AY74603.1 {10695}. 
All common wheat genotypes carrying Vrn-B1a studied so far have a 6.8 kb deletion in intron 1 (Triple 
Dirk B, Bersee, Festiguay, Mara, Milturum, Noe, Spica) {10202}. 
Two variants of Vrn-B1a were distinguished in {920}, {921}. Carriers of an earlier designated Vrn2b 
(characterized by Diamant 1*8/Skorospelka 35 5A) showed accelerated flowering after 15 and 30 days of 
vernalization, whereas carriers of Vrn-2a, (characterized by Ank-18 and Saratovskaya 29*8 
/Mironovskaya 808 5A) did not respond to these periods of vernalization. This distinction was not made 
in the above list.  

Vrn-B1b {10695}.  v:  Alpowa {10695};  Ciano 67 {10991};  Polo {10991};  Yaktana 54 {10991}.  c:  
GenBank FJ766015. Relative to Vrn-B1a (Triple Dirk B), Vrn-b1b has a G-C SNP at position 1656 and a 
36 bp deletion at 1661-1696 {10695}.  

Vrn-B1c {10880}.  tv:  T. turgidum ssp. carthlicum PI 94749 {10880}.  Much more common in durum 
cultivars from Russia and Ukraine than from Europe {11771}.  c:  GenBank JN817430 contains a 5,463 
retrotransposon insertion in the 5' UTR region {10880}.  

Vrn-B1d [{11520}].  Vrn-B1c {11520}.  v:  Paragon and 24 others {11521}; Saratovskaya 29 and 5 
others {11521}.  c:  Carries a 0.8 kb deletion and 0.4 kb duplication in intron 1 relative to vrn-B1 {11520, 
11521}. 

 
Vrn-B1e [{11522}].  Vrn-B1d {11522}.  v:  Hongchunmai {11522}  c:  Differs from vrn-B1 by 2 
deletions, a SNP and TTTT to ACAA change in in intron 1 {11522}; GenBank HQ130482 {11523}; 
HQ593668 {11521}. 

 
Vrn-B1f {11523}.  v:  Barta {11523}.  c:  Has a partially duplicated 837 bp sequence in intron 1 
{11523}.  

 

VRN-D1 

Vrn-D1 {1398}.  Vrn3 {1172}  5DL {775, 883}.  
Vrn-D1a, Vrn-d1b and Vrn-D1 were present in 27.3, 20.6 and 52.1% of 689 Chinese wheat accessions 
{11072}. 

Vrn-D1a.  i:  Triple Dirk E {1172}.  s:  Rescue* / Cadet 5A Vrn-A1a {1221}.  v:  Chinese Spring 
{1172};  Loro {1172};  Norin 61 {460};  Shinchunaga {460};  Shirasagi Komugi {460};  Ushio Komugi 
{460}.  v2:  Rescue Vrn-B1a {1221}.  
All the common wheat genotypes carrying Vrn-D1a studied so far have a 6.8 kb deletion in intron 1 
(Triple Dirk E, Chinese Spring, Norin 61, Shinchunaga, Shirasagi Komugi, Ushio Komugi) {10202}.  

Vrn-D1b.  v:  Additional Chinese germplasm{11072}.  
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A Vrn-D1 variant named Vrn-D1s contained a 844 bp TE insertion in the first intron of the wild type vrn-
D1 allele {11628}. GenBank KF800714. Identified in three T. spelta and one T. compactum accessions.  
v:  T. aestivum ssp. spelta PI 348700 {11628}. 

Stock: Genotype: Vernalization Response 
Triple Dirk, Kolben: Vrn-A1a Vrn-B1b Vrn-D1b: No  
Triple Dirk B, Festiguay: Vrn-A1b Vrn-B1a Vrn-D1b: Yes 
Gabo Vrn-A1b Vrn-B1a Vrn-D1b: Yes  
Triple Dirk E, Chinese Spring:Vrn-A1b Vrn-B1b Vrn-D1a: Yes 
Triple Dirk F, Vrn-A1b Vrn-B1b Vrn-D1b Vrn-D5a: Yes 
Triple Dirk C, Vrn-A1b Vrn-B1b Vrn-D1b Vrn-D5b: Yes, winter type. 

Vrn1 {10014}.  Spring type.  dv:  G2528 {10014}.  

vrn1 {10014}.  Winter type.  dv:  DV92 {10014};  G1777 {10014};  G3116 {10014}.  c:  Vrn1 was 
completely linked to MADS-box genes AP1 and AGLG1.  AP1 was considered a better candidate than 
AGLG1 and differences between winter and spring genotypes appeared to be related to differences in the 
promoter region of AP1 {10014};  The involvement of AP1 in vernalization response conditioned by Vrn-
1 was also reported in {10019}. 

VRN-1 genotypes in Pacific Northwest USA wheats are listed in {10695}. 

VRN-2 {1398}. 

Orthologous series in chromosomes of homoeologous group 4. Vrn-Am2 was located in T. monococcum 
{279} on chromosome 5Am on the 4Am translocated region. Vrn-Am2 was mapped to the distally located 
Xwg114-5A - Xwec87-5A region {0312}. Vrn-H2 (sh/sgh1) occurs in barley chromosome 4H {1455} and 
is probably orthologous to Vrn-Am2 based on comparative maps {279, 767}. Vrn-2 is a zinc-finger/CCT 
domain transcription factor (ZCCT1) {10299}, and repressor of flowering down-regulated by 
vernalization and short days {10301}. Reduction of Vrn-2 transcripts in transgenic hexaploid winter 
wheat accelerates flowering {10299}. A triple Vrn2 mutant (PI 676269), synthetic vrn2-null) is available 
in hexaploid wheat combining the non-functional vrn-A2 allele present in most polyploid wheats with a 
Vrn-B2 deletion from tetraploid wheat, and a non-functional vrn-D2 allele from Ae. tauschii {11124}. 

VRN-A2 

Vrn-A2a{279}.  Winter habit, dominant in diploid wheat {279}.  dv:  G1777 {279};  G3116 {279}.  

Vrn-A2b {279}.  Spring habit, recessive in diploid wheat.  dv:  DV92 {279};  PI 355517 {10299};  PI 
345242 {10299};  PI 352475 {10299};  PI 277137 {10299}.  
Contains a non-functional mutation in the CCT domain {10299}. 

Vrn-A2c {10299}.  Spring habit, recessive in diploid wheat.  dv:  PI 352484 {10299};  PI 323437 
{10299};  PI 286068 {10299};  PI 591871 {10299};  PI 542474 {10299};  PI 428175 {10299};  PI 
237659 {10299};  PI 221329 {10299};  PI 225164 {10299};  PI 377662 {10299};  PI 377648 {10299};  
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PI 362610 {10299}.  
Complete deletion of the ZCCT1 gene {10299}. 

 

VRN-B2 

Vrn-B2.  4BL {11163}. A study of winter wheats 2174 and Jagger showed that 2174 has a tandem repeat 
of Vrn-B2 whereas Jagger has a deletion of this gene {11163}. Identical apparently functional sequences 
of Vrn-B2 were found in contig sequences of Chinese Spring obtained from chromosomes 4BS, 2BS and 
5DL {11163}. 

Vrn-D2.  4DL{11163}.  

 

VRN3 [Vrn3 {1398}].  Orthologous series in chromosomes of homoeologous group 1 predicted from 
orthology with Vrn-H3 (Sh3) in barley chromosome 1H {1455,1316}. Aneuploid and whole chromosome 
substitution experiments showed that all group 1 chromosomes of wheat carry genes affecting response to 
vernalization {773}. 

In both wheat and barley VRN-3 is completely linked with a flowering promoter gene homologous to 
Arabidopsis FLOWERING LOCUS (FT) {10421}. Polymorphisms in the A and D genome copies of 
TaFT are associated with variation of earliness components in hexaploid wheat {10533}. 

Vrn-A3.  7AS. 

An earlier variant of T. dicoccum line TN28 was caused by a novel allele. Line TN26 lacked a 7 bp 
insertion, including a cis-element GATA box, in the Vrn-A3 promoter region {11370}. 

 

VRN-B3 

Vrn-B3 {10421}.  [Vrn-4B {279}, Vrn5, eHi {769}, {779}, {771}].  7BS {769}, {768}, {771}.  s:  
CS(Hope 7B) Vrn-D1a {768}.  v2:  Hope Vrn-A1a {1424}.  tv:  Very common in durum cultivars from 
Russia and Ukraine {11771}.  ma: Vrn-B3 is completely linked to TaFT and 1 cM distal to Xabc158-7B 
on the region of 7BS proximal to the translocation with homoeologous group 5 {10421}.  
The dominant Vrn-B3 allele in Hope has a retrotransposon insertion in the TaFT promoter (GenBank 
DQ890165) {10421}. Transformation of winter wheat Jagger with the dominant Vrn-B3 significantly 
accelerated flowering {10421}. Different Hope seed sources were heterogeneous for this insertion 
{10421}. The retrotransposon insertion in the TaFT promoter is present in the CS (Hope 7B) {10421}. 

vrn-B3.  v:  Chinese Spring Vrn-D1 (GenBank DQ890162) {10421}.  
TaFT are associated with variation of earliness components in hexaploid wheat {10533}. 
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Vrn-H3 {10421}.  [Sh3].  ma:  Completely linked to HvFT and 1 cM distal to Xabc158 on 7HS. 
Originally mapped incorrectly on 1H based on loose linkage {1455, 1316}.  

 

VRN4 

Vrn4 {279}.  [Vrn5 {769}, {771}, Vrn-D5 {10004}].  5DL {10004}. 5D {10002}.  i:  Triple Dirk F 
{10711}.  v:  v2:  CS (Hope 7B) VrnD1a {768};  Gabo Vrn-B1a {1172}; IL47/Vrn-A1a {10005}; 
Common in T. sphaerococcum accessions {11123}.  bin:  Centromeric region.  ma: Xgdm3-5D – 11.5 & 
4.5 cM – Vrn4 {10004};  Located in a 1.8 cM interval flanked by markers Xcfd78-5D and Xbarc205-5D 
{10711}.  c:  Vrn4 is located in a translocated segment from chromosome 5A containing a modified copy 
of Vrn-A1 {11123}. 
Eight land races with only Vrn4 were detected in {10003}; others combined Vrn4 with other Vrn genes. 
Stelmakh {1424} doubted the existence of Vrn4. Goncharov {10108} confirmed the existence of Vrn4 
but failed to confirm its location on chromosome 5D. References to additional studies are given in 
{1424}.  
Vrn4 was mapped on the centromeric region of 5D. Incorrect TDF seed stocks generated confusion about 
Vrn-D4 existence {10711}. Eight land races with only Vrn4 were detected in {10003}; others combined 
Vrn4 with other Vrn genes. Stelmakh {1424} doubted the existence of Vrn4. Goncharov {10108} 
confirmed the existence of Vrn4 but failed to confirm its location on chromosome 5D. 

 

VRN5 

VRN-D5  

Vrn-D5a {10004}.  [Vrn4 {1172}, Vrn-D5 {10004}].  5D {10002}. 5DL {10004}.  i:  Triple Dirk F 
{1172}.  v2:  Gabo Vrn-B1a {1172};  IL47 Vrn-A1a {10005}.  ma:  Xgdm3-5D – 11.5 & 4.5 cM – Vrn-
D5a {10004}.  
Eight landraces with only Vrn-D5a were detected in {10003}; others combined Vrn-D5a with other Vrn 
genes. Stelmakh {1424} doubted the existence of Vrn-D5a. Goncharov {10108} confirmed the existence 
of Vrn-D5a but failed to confirm its location on chromosome 5D. References to additional studies are 
given in {1424}.  
 

Three genes up-regulated by vernalization were cloned from T. monococcum {10531}. These were VIN3-
like genes similar to Arabidopsis VIN3. 

Vil-1 {10531}.  GenBank DQ886919 {10531}.  ma:  T. monococcum chromosome 5Am {10531}.  

Vil-2 {10531}.  GenBank DQ886917 {10531}.  ma:  T. monococcum chromosome 6Am {10531}.  
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Vil-3 {10531}.  GenBank DQ886918 {10531}.  ma:  T. monococcum chromosome 1Am {10531}.  

A QTL analysis of Courtot / CS is reported in {0132}. 

A QTL on chromosome 5BL was linked to Xgwm604-5B (this QTL explained 11% of the variance in 
flowering time) {10075} 

Allelic variations at the Vrn-1 and Vrn-B3 loci in Chinese wheat cultivars are summarized in {10617}. 
Aneuploid and whole chromosome substitution experiments showed that all group 1 chromosomes of 
wheat carry genes affecting response to vernalization {773}.  

Stem-elongation in winter wheat: In regions where wheat is used as a dual purpose crop for grazing and 
grain production a relatively long vegetative phase is required to maximize the vegetative tissue and to 
delay the stem elongation phase. Variation in this attribute occurs among winter wheats such as Jagger 
(early stem elongation) and 2174 (late elongation). 
In a Jagger / 2174 RIL population, QTL for stem elongation included Qste.ocs-5A (associated with the 
Vrn-A1 locus), Qste.ocs-1BL, Qste.ocs-2D (associated with the Ppd-D1 locus) and Qste.ocs-6A {1010}. 
In 2007 the respective R2 values were 0.289, 0.155, 0.067 and 0.058. Jagger alleles on chromosome 5A, 
1B and 6A promoted stem elongation whereas the allele on chromosome 2D had a delaying effect 
{10722}. 

1.68. Restorers for cytoplasmic male sterility 

1.68.1. Restorers for T. timopheevi cytoplasm 

RF1 

Rf1 {823}.  1A {1619}, {873}, 1224}. 1AS {868}.  v:  L22 {868}; (T. timopheevii / Aegilops squarrosa) 
// 3*Dirk {1619}.  v2:  T. timopheevii / 3*Marquis Rf2 {823};  R113 Rf4 {873}.  
The second gene referred to as Rf4{1619} in the last stock was located in chromosome 7D, but its 
relationship to Rf2 in {823} was unknown. 

RF2 

Rf2 {823}.  7D {871}.  v:  T. timopheevii / 3*Marquis Rf1 {823}.  

RF3 

Rf3 {1453}.  1BS. 1B {1453}.  v:  R18 {10222};  R9034 {10222}; T. spelta var. duhamelianum {1453}.  
v2:  Primepi Rf7 {11476}.  ma:  Xcdo388-1B – 1.2 cM – Xabc156-1B{9934};  RFLP markers Xcdo442-
1B and Xbcd249-1B were found to be associated with Rf3 on 1BS{860};  Mapped as a QTL in the region 
Xbarc207-1BS – Xgwm131-1BL – Xbarc61-1BL in crosses R18/ND36 and R9034/ND36 {10222};  
Xbarc128-1Bs – 5.3 cM – IWB14060 – 2.0 cM – Rf3/IWB72107/IWB73447 – 14.5 cM – Xwmc406-1B 
{11476}. 
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RF4  

Rf4 {1619}.  [Rf2 {1619}].  1BS {868}. 6B {1619}, {873}.  v:  L3 {868}; (T. timopheevii/Aegilops 
squarrosa) / 3*Canthatch Rf5 {1619};  R113 Rf1 {873}.  

RH5 

Rf5 {1619}.  [Rf3 {1619}].  6D {1619}.  v:  (T. timopheevii / Aegilops squarrosa) / 3*Canthatch Rf4 
{1619}.  

RF6 

Rf6 {865}, {859}.  6BS [T6BL.6BS-6U] {865}. 6AS [T6AL.6AS-6U] {865}.  tr:  Line 2114 {865};  
Lines 040-5; 061-1 {865};  061-4 {865}.  
Genes Rfc3 in chromosome 6RL and Rfc4 in chromosome 4RL were reported in {225}. Novel Rf genes 
were identified on 5AL linked to Xcdo786-5A and XksuH1-5A {860}. 

RF7 

Rf7 {11473}.  [Rf6 {11473}].  5DS {11473}.  v2:  Primepi Rf3 {11474}. 

RF8 

Rf8 {11474}.  2DS {11474}.  v:  PWR4099 {11474}.  ma:  Xwmc503-2D – 3.3 cM – Rf8 – 5.8 cM – 
Xgwm296-2D – 0.9 cM – Xwmc112-2D {11474}. 

RF9 

Rf9 {11475}.  6AS {11475}.  v:  Gerek 79 {11475}.  ma:  IWB72413-6A – 4.3 cM – Rf9 – 4.7 cM – 
IWB1550-6A {11475}. 

Minor restorer effects were associated with Xbarc330-5A in R18 and Xgdm130-7D in R9034 {10222}. 
The relationships of these QTL with previously located restorers in chromosomes 5A {860} and 7D (Rf2) 
are unknown. 

1.68.2. Restorers for Aegilops longissima cytoplasm 

Vi {867}.  1B {870}. 1BS {27}.  v:  T. turgidum {867}.  
Probably derived from a cv. Selkirk (T. aestivum) line with Ae. cylindrica cytoplasm {867}. 

1.68.3. Restorers for photoperiod-sensitive Aegilops crassa cytoplasm 

Morai & Tsunewaki {1047} described photoperiod sensitive CMS caused by Ae. crassa cytoplasm in 
wheat cv. Norin 26. Almost complete sterility occurred when plants were grown in photoperiods of 15 h 
or longer. 
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Rfd1 {1047}.  7BL {1047}.  v:  Chinese Spring {1047}.  
A different system of restoration occurs in cv. Norin 61 where at least four chromosomes, 4A, 1D, 3D and 
5D, appear to be involved {1046}. Several Japanese wheats carry a similar or equally effective gene 
combination {0335}. 

1.68.4. Restorers for temperature-sensitive Aegilops kotchyi cytoplasm 

Two recessive genes for temperature-sensitive sterility as follows. 

rfv1
sp {11151}.  1BS {11151}.  v2:  MS line KTP116A rfv2 {11151}.  ma:  Xgwm413-1B – 8.9 cM – rfv1

sp 
– 12 cM – Xgwm11-1B {11151}.  

rfv2 {11151}.  2A {11151}.  v:  MS line KTP116A rfv1
sp {11151}.  ma:  Xwmc474-2A – 23.9 cM – rfv2 – 

13.7 cM – Xwmc644-2A {11151}. 

1.68.5. Restorers for multi-species cytoplasm 

Restorer of Ae. kotschyi, Ae. uniaristata and Ae. mutica cytoplasmic male sterility. 
 
Rfmulti {11477}.  1BS {11477}.  v:  All common wheat genotypes except T. spelta var. duhamelianum 
{11477}.  ma:  All common wheat genotypes except T. spelta var. duhamelianum {11477}. 
 
rfmulti.  v:  T. spelta var. duhamelianum {11477}. 
 
Sterility in the same plasmons is also found in lines with the 1BL.1RS translocation. Hohn & 
Lukaszewski {11478} produced a chromosome 1B1:6 translocation with a short rye insert replacing the 
Rfmulti region (rfmulti equivalent) causing partial sterility that can be restored by most common wheat 
genotypes.  
 
1.69. Ribosomal RNA 

The 5S-Rrna-1 loci were physically mapped in 1AS, 1BS, and 1DS and the 5S-Rrna-2 loci were 
physically mapped in 5AS, 5BS and 5DS of Chinese Spring using deletion lines {1043}. 
Table 1 in {276} lists the chromosome or chromosome arm locations of rRNA loci in 12 Triticeae 
species. 

5S rRNA genes 

Within the Triticeae there are basically two sets of 5S rRNA loci. One set, identified by repetitive units 
320-468 bp in length, is located on group 1 chromosomes. The other set, identified by repetitive units 
469-500 bp in length, is on group 5 chromosomes. Within species the repetitive units at a locus are 
extremely uniform in size and sequence. They remain stable in foreign genetic backgrounds. 

5S-Rrna-A1.  [5SDna-A1 {295}].  1AS {658, 295}.  v:  CS {1043}.  
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5S-Rrna-B1.  [5SDna-B1 {295}].  1BS {39}, {295}.  dv:  T. monococcum.  ma:  A PCR marker specific 
5S-Rrna-B1 was developed {9974}.  

5S-Rrna-D1.  [5SDna-D1 {295}].  1DS {295}. 1D {295}, {758}.  v:  CS {295}, {758}.  dv:  Ae. tauschii 
{758}.  ma:  A PCR marker specific for 5S-Rrna-D1 was developed in {9974}.  

 

5S-Rrna-E1.  [5SDna-E1 {960}].  1E {1290}.  dv:  L. elongatum.  

5S-Rrna-R1.  [5SDna-R1 {1206}].  1RS {1206}, {39}.  al:  S. cereale.  ma:  A PCR marker specific for 
5S-Rrna-R1 was developed in {9974}.  

5S-Rrna-Sc1.  [5SDna-Sc1 {960}]. 1Sc {1290}.  al:  Elymus ciliaris.  

5S-Rrna-St1. [5SDna-St1 {960}]. 1St {1290}.  al:  E. trachycaulus.  

5S-Rrna-Y1.  [5SDna-Y1 {960}].  1Y {1290}.  al:  E. ciliaris.  

 

5S-Rrna-A2.  [5SDna-A2 {295}].  5AS {658},{ 295}.  v:  CS {295}.  dv:  T. monococcum {658, 295}.  

5S-Rrna-B2.  [5SDna-B2 {295}].  5BS {295}.  v:  CS.  

5S-Rrna-D2.  [5SDna-D2 {295}].  5DS {758}. 5D {295}, {758}.  v:  CS {295}, {758}.  dv: Ae. Tauschii 
{758}.  

 

5S-Rrna-R2.  [5SDna-R2 {1206}].  5RS {1206}.  al:  S. cereale.  

5S-Rrna-Ht2.  [5SDna-Ht2 {960}].  5Ht {1290}.  al:  E. trachycaulus.  

5S-Rrna-U2.  [5SDna-U2 {295}].  5U {295}.  al:  Ae. umbellulata.  

5S-Rrna-V2.  [5SDna-V2 {960}].  5V {1290}.  al:  D. villosa.  

 

5S-Rrna-H3.  [5SDNA-H3{793}].  2H{710}. 2HL{793}.  al:  Betzes Barley; Sultan barley.  

5S-Rrna-H4.  [5SDNA-H4{793}].  3HL{793}.  al:  Betzes barley; Sultan barley.  

5S-Rrna-H5.  [5SDNA-H5 {793}].  4HL {793}.  al:  Betzes barley; Sultan barley.  

5S-Rrna-H6.  [5SDNA-H6 {793}].  4HS {793}.  al:  Betzes barley; Sultan barley.  
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1.70. Segregation distortion 

See also, Gametocidal Genes. 

QSd.ksu-1D {9931}.  1DL {9931}.  dv:  Ae. tauschii var. meyeri acc. TA1691; Ae. tauschii var. typica 
acc. TA1704 {9925}.  ma:  Association with Xcmwg706-1D {9931}.  

QSd.ksu-3D {9931}.  3DS {9931}.  dv: Ae. tauschii var. meyeri acc. TA1691; Ae. tauschii var. typica 
acc TA1704 {9925}.  ma:  Association with Xwg177-3D {9931}.  

QSd.ksu-4D {9931}.  4DS {9931}.  dv:  Ae. tauschii var. meyeri acc. TA1691/var. typica acc. TA1704 
{9925}.  ma:  Association with XksuF8-4D {9931}.  

QSd.ksu-5D.1 {9931}.  5D {9931}.  dv:  Ae. tauschii var. meyeri acc. TA1691; Ae. tauschii var. typica 
acc. TA1704 {9925}.  ma:  Association with Xcdo677-5D {9931}.  

QSd.ksu-5D.2 {9931}.  5DL {9931}.  dv:  Ae. tauschii var. meyeri acc. TA1691; Ae. tauschii var. typica 
acc. TA1704 {9925}.  ma:  Association with Xglk614-5D (synonym 'Xtag614-5D') {9931}.  

QSd.ksu-5D.3 {9931}.  5DL {9931}.  dv:  Ae. tauschii var. meyeri acc. TA1691; Ae. tauschii var. typica 
acc. TA1704 {9925}.  ma:  Association with Xwg1026-5D {9931}.  

QSd.ksu-7D {9931}.  7DS {9931}.  dv:  Ae. tauschii var. meyeri acc. TA1691; Ae. tauschii var. typica 
acc. TA1704 {9925}.  ma:  Association with Xglk439-7D (synonym 'Xtag439-7D') {9931}.  

1.70. Short roots 

A 'very short root' phenotype was produced by heterozygous genotypes from selected crosses between 
Chinese Spring and certain synthetics. The Vsr1 locus was localized to a 3.8 cM interval on chromosome 
5DL {11014}. 

Vsr1 {11014}.  5DL {11014}.  ma:  Xwmc765-5D – 7.7 cM – Vsr1 – 1.1 cM – Xbarc144-5D{11014}; 
Xwmc765-5D – 1.9 cM – XWL938 – 3.3 cM – XWL2506 – 3.3 cM – Vsr1 – 0.5 cM – XWL954 – 0.5 cM – 
Xbarc144-5D {11014}.  

Vsr1a.  v:  Chinese Spring {11014}.  

Vsr1b.  v:  TA4152-71 {11014}.  

1.71. Soft glumes  

SOG was considered to be an homologue of TG1 and TG2. See Tenaceous glumes. The Soft Glume locus 
was not considered to be an orthologue of Tenacious Glumes {10769}. 

SOG 
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Sog {10555}.  dv:  T. monococcum ssp. boeoticum ID49 {10555}; T. monococcum ssp. aegilopoides 
TA4342-96 {10769}.  

sog {10555}.  2AS {10555}.  bin:  C-2AS5-0.78.  dv:  T. monococcum ssp. monococcum var. sinskajae 
(syn. aegilopoides) UD69 {10555};  Tm-9, a mutant of TA4342-96{10769}.  ma:  Co-segregation with 
AFLP loci Xe4232041 and Xe373311 {10555}; Xgwm71-2A – 3.3 cM – sog  – 3.5 cM – Xbcd120-2A 
{10769}.  

1.72. Sterol esterification in kernels - Synthesis of b-sitosterol esters 

Two sterol-ester phenotypes, p-L (palmitate + linoleate) and L (linoleate) are inherited as alleles at a 
single locus. 

Pln {428}.  [P-L {428}].  7DS {1476}.  v:  Aradi {428};  Aragon 03 {428}.  

pln {428}.  [L {428}].  v:  Mara {428};  Pane 247 {428}.  

1.73. Stem solidness 

Solid stem, caused by increased pith in normally hollow stem regions, is associated with resistance to 
wheat stem sawfly, Cephus cinctus. Solid stem confers resistance to wheat stem sawfly. See also Reaction 
to Cephus spp. 

Qsst.msub-3BL.  3BL {10206}.  bin:  3BL11-0.81-1.00.  v:  Fortuna {11230}; Genou {11230}; Judee 
{11230}; Rampart PI 59388 {10206}; Rescue {11230}; S-615 {11230}; Vida {11230}.  ma:  Linked to 
microsatellite markers Xgwm247-3B, Xgwm340-3B, and Xgwm547-3B. These markers explained 76% of 
the total variation for stem solidness in Rampart/Jerry {10206}.  
 
Haplotype analyses in a range of hexaploid and tetraploid accessions suggested the possibility of multiple 
alleles or loci in the QTL region {11230, 11239}. Conan with an intermediate level of stem solidness 
represents a different haplotype from other North American cultivars {11230}. 
Stem solidness in chromosome 3B of Golden Ball was verified in Langdon-Golden Ball disomic 
substitution lines {10730}. 
 

Qsst.msub-3DL.  [Qss.msub-3DL {10395}].  3DL {10395}.  
Associated with Xgwm645-3DL (R2=0.31), Xwmc656-3DL (R2=0.1), and Xcfd9-3DL (R2=0.13) {10395}. 
This gene acted as an enhancer of Qsst.msub-3BL {10395}. 

Qsf.spa-3B {10351}.  tv: Kyle*2 / Biodur (solid stem) // Kofa (hollow) DH population: Qsf.spa-3BL was 
located to a 21.3cM interval flanked by Xgwm247-3B and Xgwm114-3B {10351}. Mapped as a single 
gene, Xgwm247-3B – 6.9cM – Qsf.spa-3B –.4cM – Xgwm114-3B {10351}. This location was confirmed 
in two other crosses involving G9580B-FE1C and Golden Ball as the solid stem parents {10351}. 

1.74. Temperature-sensitive winter variegation 
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This phenotype involves reduced vigour and chlorotic patches on leaves of certain genotypes in Ae. 
umbellulata cytoplasm when grown at low temperatures {1596}. 

Vgw.  Variegation is dominant {1596}.  [Vg {1021}].  5BL {1021}.  v:  Bersee {1596};  Cappelle-
Desprez {1596};  Hobbit Sib {1596};  Mara {1596}.  

vgw {1021}.  v:  Besostaya I {1596};  CS {1596};  Poros {1596};  Sava {1596}; T. spelta {1596}.  

1.75. Tenacious glumes 

TG1 

Tg1 {1240}.  Derived from Ae. tauschii. Dominant.  [Tg {1240}].  2DS {1240}.  bin:  2BS-3 1.00-0.84.  
v:  Synthetic ABD wheats {652}.  ma:  Placed in a 12 cM interval between Xwmc112-2D and Xbarc168-
2D {10497}.  

TG2 

Tg2 {0046}.  Derived from T. dicoccoides  2BS {0046}.  v:  TA 3419 = Tetra Canthatch / Ae. tauschii 
ssp. meyeri TA1599{10769}.  ma:  Tg2 is associated with Xrsq805(Embp)-2B and Xpsr899-2B{0046}; 
Xgwm261/Xwmc503-2D – 2.3 cM – Tg2 – 5.9 cM – Xfba88/Xfbc400-2D {10769}.  

Soft Glume locus is not an orthologue of Tenacious Glumes {10769}.  
A QTL analysis of the relationship of glume tenacity (Gt) with threshability (Ft) and the size of the glume 
base scar (Gba) after glume detachment in two crosses, viz. the ITMI population and CS*/CS (Ae. 
tauschii 2D), was undertaken {10497}. In the first cross QFt.orst-2D.1 and QGt.orst-2D.1 were closely 
associated with Xgwm261-2D, and XFt.orst-2D.2 and XGt.orst-2D were associated with Xgwm455-2D, in 
the second population only the first pair along with Xba.orst-2D were detected; these appeared to 
correspond with Tg1 {10497}. 

1.76. Tiller inhibition / Tiller number 

TIN1 

Tin1  [Tin {1212}].  1A {10193}. 1AS {1212}. 

tin1 {1212}.  Restricted tiller number is recessive{1212}   v:  Israel Uniculm 494 {1212};  Banks + tin 
{10193};  Oligoculm 390 {10193};  Uniculm 492 {10193}.  ma:  Xpsp2999(Glu3)-1A – 3.9 cM – 
tin1/Xgwm136-1A – 2.4 cM – Xwhs179-1A{10193};  the 350 bp allele of Xgwm136-1A was diagnostic of 
tin1{10193}.  c:  A candidate gene identified by map-based cloning was predicted to encode a cellulose 
synthase-like (Csl) protein with homology to members of the CslA clade; allelic variation was attributed 
to dinucleotide repeat-length polymorphism in the 5 ́UTR region of the Csl gene {11657}. 
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A near recessive gene, ftin, was located proximal to the TIN1 locus in putative Agropyron cristatum 
derivative Pubing3558{11462}: Xgwm136-1A – 4.3 cM – Xpsp2999-1A – 0.7 cM – Xcfa2153-1A – 1.0 
cM – FTIN {11462}. 

TIN2.  2A {9909}. 

Tin2  Tiller-reducing affect of this allele was dominant {9909}.   

tin2 {1212}.  [Tin {9909}].  v:  88 F2 185 {9909}.  

TIN3.  AmL {10329}. 

tin3 {10329}.  dv:  T. monococcum TA4443 = TA4342-96 mutant {10329}.  ma:  Xbcd131/Xbcd1431-
3A – 9.6 cM – tin3/Xpsr1205-3A – 4.7 cM – Xcfa2076-3A {10329}.  

TIN4.  2DL {11574, 11575}. 

Tin4 {11575}.  QLtn.sicau-2D {11574}.  Low tillering.  i:  H461/Chuannong 16 NIL7A {11575}.  v:  
H461 {11574, 11575}. 

tin4.  High tillering.  i:  H461/Chuannong 16 NIL7A {11575}.  v:  Chuannong 16 {11574, 11575}. 

An EMS-derived, reduced tiller number mutant allele identified in YZ4110 was named tn1 {11650}. The 
TN1 allele in YZ4110 encoded a transmembrane ankyrin (ANK) repeat protein and the TN1 locus was 
identified as TraesCS6B02G013100 (CS REFSeq 1.0) {11650}. Tn1 likely promoted tillering by 
inhibiting ABA biosynthesis and signalling {11650}. 

QTL 

Fukuho-Komugi / Oligoculm: DH population: A QTL of large effect on spike number per plant in a DH 
population of mapping to the Hg – Xpsp2999(Glu3)-1A region {10218} probably corresponds to Tin1. 

Three QTL were located on chromosomes 2DL (Qltn.siau-2D), 2BL and 5AL in a RIL population from 
H461 (low tillering) / CN16 (high tillering), but only the 2DL QTL was confirmed in H461 / CM107 
and H461 / MM37 RIL populations {11465}.  

1.77. Uniculm stunt 

Stunting is favoured by a combination of long days and low night temperatures {581}. Caused by 
duplicate recessive genes, us1 and us2, located in chromosomes 4A and 5B, respectively {200}. 
Genotypes: Normal:  v:  Us1 us2: Alfa {581}; Jaral {581}. 
Normal:  v:  us1 Us2: Mabruk {581}. 
Stunted:  v:  us1 us2: Line 492 {581}. 

1.78. Yield and yield components 
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1.78.1. Grain number per spike 

QGnu.ipk-4A {0255}.  4AL {0255} v:  Opata / W-7984 (ITMI) RI mapping population {0255};  Higher 
grain number was contributed by Opata {0255}.  ma:  Associated with Xmwg549-4A, Xabg390-4A and 
Xbcd1670-4A {255}.  
QGnu.ipk-4A coincides with QTL for height (QHt.ipk-4A), spike length (XEl.ipk-4A) and grain weight per 
ear (QGwe.ipk-4A) {0255}. 

QKps.unl-3A.1 {10044}.  3AS {10044}.  v:  Cheyenne / Cheyenne(Wichita 3A) RI mapping 
population{10044};  a higher kernel number of 0.3 kernels was contributed by Wichita and the QTL 
explained 15.5% of the phenotypic variation {10044};  The QTL coincided with QTLs for grain yield, 
kernel number per square metre and 1000-kernel weight {10044}.  ma:  Associated with Xbarc12-3A 
{10044}.  

Qkps.unl-3A.2 {10044}.  v:  Cheyenne / Cheyenne(Wichita 3A) RI mapping population {10044};  a 
higher kernel number of 0.3 kernels was contributed by Cheyenne and the QTL explained 9.5% of the 
phenotypic variation{10044}.  ma:  Associated with Xbcd141-3A {10044}.  

Three QTL for kernel number per spike were assigned to chromosome 3A in RSLs from 
Cheyene*7/Wichita {0025}. 

1.78.2. Grain volume weight 

QGvwt.unl-3A.1 {10044}.  3A {10044}.  v:  Cheyenne / Cheyenne(Wichita 3A) RI mapping population 
{10044};  higher grain volume weight (+23 kg/hL) was contributed by Wichita and the QTL explained 
43.1% of the phenotypic variataion {10044};  the QTL coincided with a QTL for spikes per square metre 
{10044}.  ma:  Associated with Xbcd1380-3A {10044}.  

1.78.3. Grain weight 

50-grain weight 

QFgw.ocs-4A.1 {0047}.  4A {0047}.  v:  CS / CS(Kanto107 4A) mapping population{0047}.  ma:  
Associated with Xbcd265-4A and Xbcd1738-4A {0047}.  

1000-grain weight 

TaGW2-A1  6AS, a homolog of OsGw2 {11690}.  
 
gw-A1.  A TILLING mutation (mutant T4-2235; G2373A) in tv:  Kronos backcrossed to Kronos and v:  
Paragon caused increased TGW, grain length and grain width; the increased grain size was attributed to 
larger carpel size {11690}.QTL 

TaCKX6-D1 {11407}.  3D {11407}.  Encodes a cytokinin oxidase/dehydrogenase.  v:  Hap a associated 
with high TKW has an 18 bp deletion relative to hap b: Wenmai 6, Yanzhan 1, Lumai 14 {11407}; Hap 
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b: Bainong 321, Chinese Spring, Hanxuan 10, Neixiang 188 {11407}.  ma:  Xcfd70-3D – 3.7 cM – 
TaCKX6-D1 – 2.0 cm – Xwmc533-3D {11407}. 

TaCwi-A1 {10812}.  ma: Xbarc15-2A – 10.9 cM – TaCwi-A1 – STS markers Cwi21 and Cwi22 – 17.6 
cM – Xgwm71-2AL {10812}.  
TaCwi-A1 was cloned based on the rice GIF1 gene encoding a cell wall invertase (GenBank accession 
EU095553), and STS markers Cwi21 and Cwi22 were developed from the polymorphisms between two 
allelic variants. On average, TaCwi-A1a had 1,000 grain weights 2.4 g higher than TaCwi-A1b {10812}. 

TaGW2-6A {10781}.  ma:  Xcfd80-6AS.2 – 0.6 cM – TaGW2-CAPS – 0.5 cM – Xbarc146-
6A.1/Xwms132.4-6A {10781}.  
Based on its OsGW2 orthologue in rice this gene was characterized and mapped as a CAPS marker in 
wheat {10781}. SNPs in the promoter region allowed distinction of two haplotypes. Hap-6A-A was 
mainly present in southern Chinese wheats; Hap6A-G was present in varieties from central and eastern 
Europe. On average Hap-6A-A had 1,000 grain weights more than 3g higher than Hap-6A-G {10781}.  
Encodes an E3 RING ligase {11122}. 

QTL 

Cheyenne / Cheyenne(Wichita 3A): RI mapping population: QTkwt.unl-3A.1{10044}.  3AS {10044}.  
Higher kernel weight of 0.27% was contributed by Cheyenne and the QTL explained 12.7% of the 
phenotypic variation {10044};  The QTL coincided with QTLs for grain yield, kernel number per square 
metre and kernels per spike {10044}.  ma:  Associated with Xbarc12-3A and Xtam55-3A {10044}.  

Cheyenne*7 / Wichita 3A: RSL population: Two QTL for 1,000-kernel weight were assigned to 
chromosome 3A {0025}. 

Forno / Oberkulmer spelt: Eight QTLs for 1,000-kernel weight accounted for 54% of the variatio) were 
mapped in {0280}. 

Opata / W-7984 (ITMI): RI mapping population:  QTgw.ipk-5A {255}.  5AL {255}. v:  };  The higher 
yielding allele was contributed by W-7984 {255}. ma:  Associated with Xfba351-5A and Xcdo1312-5A 
{255}.  

RS111 / CS: mapping population:  QGw1.ccsu-1A {0165}.  1AS {0165}.  ma:  Associated with 
Xwmc333-1A {0165}.  

RS111/CS: RIL population {0236}: QTLs for grain size were identified on chromosome arms 1DS, 2DL 
and 6BL.  

RL4452 / AC Domain: QGwt.crc-3D {10287}.  3D {10287}.  ma:  Flanked by Xgwm341-3D – 
Xwmc552-3D (LOD 4.3) {10287};  QGwt.crc-4A {10287}.  4A {10287}.  ma:  Flanked by Xgwm494-4A 
– Xgwm162-4A (LOD 6.7) {10287};  QGwt.crc-6D {10287}.  6D {10287}.  ma:  Flanked by Xgwm325-
6D – Xgwm55-6D (LOD 3.9) {10287}.   
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1.78.4 Test weight 

QTL 

In RL4452 / AC Domain{10287}. 

QTwt.crc-1B {10287}.  1B {10287}.  ma:  Linked to Xgwm374.1-1B (LOD 3.9) {10287}.  

QTwt.crc-1D {10287}.  1D {10287}.  ma:  Linked to Xgdm126-1D (LOD 5.8) {10287}.  

QTwt.crc-2D {10287}.  2D {10287}.  ma:  Linked to Xgwm349-2D – Xbarc59-2D (LOD 5.2) {10287}.  

QTwt.crc-3B {10287}.  3B {10287}.  ma:  Linked to Xwmc625-3B – Xbarc164-3B (LOD 15.4) {10287}.  

QTwt.crc-3D {10287}.  3D {10287}.  ma:  Linked to Xbarc71-3D (LOD 5.2) {10287}.  

QTwt.crc-5D {10287}.  5D {10287}.  ma:  Linked to Xgdm63-5D – Xwmc765-5D (LOD 5.3) {10287}.  

1.78.5. Grain weight/ear 

QTL 

CS / CS(Kanto107 4A): mapping population: QGwe.ocs-4A.1 {0047}.  4AS{0047}.  ma:  Associated 
with Xbcd1738-4A {0047}.  

In Opata / W-7984 (ITMI): RI mapping population: 

QGwe.ipk-2D {0255}.  2DS {0255}.  Higher grain weight was contributed by Opata {0255}.  ma:  
Associated with Xcdo1379-2D and Xbcd1970-2D {0255}.  

QGwe.ipk-4A {0255}.  4AL {0255}.  Higher grain weight was contributed by Opata {0255}. ma:  
Associated with Xmwg549-4A, Xabg390-4A and Xbcd1670-4A {0255}.  
QGwe.ipk-4A coincided with QTLs for height (QHt.ipk-4A), spike length (XEl.ipk-4A) and grain number 
(QGnu.ipk-4A) {0255}. 

1.78.6. Grain yield 

CS / CS(Kanto107 4A): mapping population: QYld.ocs-4A.1 {0047}.  4AS {0047}.  ma:  Associated 
with Xbcd1738-4A {0047}.  

Cheyenne / Cheyenne(Wichita 3A): RI mapping population:  QGyld.unl-3A.1 {10044}.  3AS {10044}. 
Higher grain yield of 32 kg/ha was contributed by Wichita and the QTL explained 6.6% of the phenotypic 
variation {10044};  The QTL coincided with QTLs for kernel number per square metre, 1000-kernel 
weight and kernels per spike {10044};  QGyld.unl-3A.2 {10044}.  3A {10044}. Higher grain yield of 82 
kg/ha was contributed by Wichita and the QTL explained 28.1% of the phenotypic variation {10044};  
The QTL coincided with a QTL for kernel number per square metre {10044}.  ma:  Associated with 
Xbarc67-3A and Xbcd366-3A {10044}.  
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Renan / Recital: QYld.inra-7D {10071}.  ma:  Xcdf69-7D (R2=3.7-15.7%) {10071}.  

RL4452 / AC Domain:  QYld.crc-2A {10287}.  ma:  Linked to Xgwm339-2A (LOD 3.0) {10287}.  
QYld.crc-2B {10287}.  ma:  Linked to Xgwm257-2B (LOD 9.4) {10287}.  QYld.crc-4A {10287}.  ma:  
Linked to Xgwm130-4A (LOD 4.4) {10287}.  

Shamrock / Shango: DH population: Non-glaucous (virescent) lines had higher yields than glaucous sibs 
{10543}; see Glaucousness, subsection Epistatic inhibitors of glaucousness. 

Tetrapoloid wheat 

Langdon(DIC5B) / Langdon:  QYld.ndsu-5B {10161}.  [QGy.ndsu-5B {10161}]. Higher yield 
contributed by contributed by Langdon {10161}.  ma:  Mapped to the Xbcd1030-5B - Xgwm604-5B 
interval {10161}.  

Grain yield under drought stress 
Dharwar Dry (drought tolerant)/Sitta: SSR locus Xwmc89-4AL was the most closely associated marker 
with a QTL for grain yield, grain fill rate, spike density, grains/m2, biomass and drought susceptibility 
index covering a genetic distance of 7.7 cM {10488}. 

1.78.7. Kernel number per square metre 

QTL 

Cheyenne / Cheyenne(Wichita 3A): RI mapping population:  QKpsm.unl-3A.1 {10044}.  3AS{10044}. 
Higher kernel number (170 kernels) was contributed by Wichita and the QTL explained 14.6% of the 
phenotypic variation {10044};  The QTL coincided with a QTL for grain yield{10044}. ma:  Associated 
with Xbarc12-3A {10044};  QKpsm.unl-3A.2 {10044}.  3A{10044}.  ma:  Associated with Xbarc67-
3A{10044}.  

1.78.8. Spikelet number/spike 

NO FUL1 - CHECK 

FUL2 

FUL2 

Ful2 {11384}.  Loss of function mutation in gene FUL-A2 (Kronos mutant T4-837) and FUL-B2 (Kronos 
mutant T4-2911) resulted in significant increases in spikelet number {11384}. 

Flowering Locus T2 

FT2 
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Loss-of-function mutations in FT2 increased spikelet number per spike but reduced but reduced fertility 
{11604}. 

FT-A2.  TraesCS3A02G143100.  3AL {11605}. 
A natural mutation causing an aspartic acid (v:  Pavon;  tv:  Kronos) to alanine (v:  Chinese Spring; 
Berkut) change at position 10 (D10A) in FT-A2 was associated with significant increases in SNS and 
grain number per spike with no negative effect on fertility {11605}. 

 
WAPO-1 Aberrant Panicle Organization 1 (Wheat ortholog of rice APO1 and Arabidopsis UFO). 

WAPO-A1.  TraesCS7A02G481600 {11383}. 7AL {11383}. 
WAPO-A1 is the causal gene for QSNS.ucw-7A {11383} that also affects grain number per spike and 
spike yield {11603}. 

WAPO-A1a {11383}.  Associated with low SNS; has a 115-bp promoter deletion and a D384N amino 
acid change {11383}.  v:  RAC875, Clark, Lancer, CDC Lanmark, Julius, Arina, Jagger, Cadenza, 
Robigus, and SY_Mattis {11383}.  tv:  Kronos, Ben {11383}. Most frequent allele in durum {11383}. 

WAPO-A1b {11383}.  Associated with high SNS; has a C47F amino acid change and no promoter 
deletion {11383}.  v:  Berkut, Ning7840, PI 41025, MPV57, Platte {11383}. Most frequent allele in T. 
aestivum.  tv:  Rare in durum {11383}. 

WAPO-A1c {11383}.  Associated with low SNS; has the ancestral C47 and D384 amino acids and no 
promoter deletion {11383}. v:  T. dicoccoides PI 471033 and PI 355455; T. dicoccum CItr 14135, PI 
94638, and PI 298586; T. durum PI 286539 {11383}. 

WAPO-A1d {11383}.  Associated with low SNS; has the ancestral C47 and D384 amino acids and no 
promoter deletion but differs from WAPO-A1c by a C667 and G764A DNA changes {11383}.  tv:  T. 
durum Rusty and Lang; T. dicoccum CItr14919, PI 193877, PI 193882, PI 217640, PI 221400, PI 225332, 
PI 273980, and PI 94657 {11383}. 

SVP1 and VRT2 
Loss-of-function mutations of both homoeologs in SVP1 (TraesCS6A02G313800 and 
TraesCS6B02G343900) and VRT2 (TraesCS7A02G175200 and TraesCS7B02G080300) in tetraploid 
wheat increase number of spikelets per spike, delay heading time and reduce plant height {11607}. 
 

QTL 

QSns.sau-2DS {11424}.  2DS {11424}.  v:  RIL populations from Line 20828 / Chuanong 16, Line 
20828 / Shumai 51 and Line 20828 / Sy95-71; LOD score 3.47 – 38.24, PV 10 – 46% in 8 environments. 
Located in a 2 cM interval flanked by Ax-109836946 (32.8 Mb) and AX-111956072 (34.43 Mb) {11424}. 

QSns.ucw-7AL {11496}.  7AL {11383}.  v:  Underlying gene: WAPO1. 
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CS / CS(Kanto107 4A): mapping population: QSpn.ocs-4A.1 {0047}.  4AS {0047}.  v:  {0047}.  ma:  
Associated with Xbcd1738-4A {0047}.  

1.78.8. Spike number per plant 

Line 05210/Laizhou 953: QSn.sdau-4BL {10784}.  ma:  Xwmc657-4B – 4.6 cM – QSn.sdau-4B – 1.6 
cM – Xgwm495-4B {10784}.  
QSn.sdau-4BL was resolved as a single gene in {10784}. It was associated with decreased spike length 
and grain number per spike. 

1.78.9 Spike number per square metre 

QTL 

Cheyenne*7 / Wichita 3A: RSL: A QTL for spike number per square metre was assigned to chromosome 
3A {0025}. 

1.78.10. Spike length 

QTL 

Courtot / Chinese Spring:  Five QTL for spike length were detected in {0114} but only one on 
chromosome arm 5AL was consistent for at least two years. 

Opata / W-7984: (ITMI) RI mapping population: QEl.ipk-1B {0255}.  1BL {0255}. Longer ear was 
contributed by Opata {0255}.  ma:  Associated with Xbcd388-1B and Xwg605-1B {0255}.  QEl.ipk-4A 
{0255}.  4AL {0255}  Longer ear was contributed by Opata{0255}.  ma:  Associated with Xmwg549-4A, 
Xabg390-4A and Xbcd1670-4A {0255}. This QTL is likely to be a pleiotropic effect of the gene 
underlying the height QTL, QHt.ipk-4A {0255};  QEl.ipk-5A {0255}.  5AL{0255}.  Longer ear was 
contributed by W-7984 {0255}.  ma:  Associated with Xmwg522-5A {0255}.  

1.78.11. Tiller number/plant 

CS / CS(Kanto107 4A): mapping population: QTn.ocs-4A.1 {0047}.  4AS {0047}.  ma:  Associated 
with Xpsr163-4A {0047}.  

1.79. Yellow berry tolerance 

QTL  

RS111 / CS:  A QTL for yellow berry tolerance, contributed by RS111, was associated with Xgwm190-
5D and Xgwm174-5D in a RIL population from {0237}. A tolerance QTL contributed by CS, the 
susceptible parent, was detected on 6B {0237}. 
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Wheat Gene Catalogue – 2. Proteins 
 
2.1. Grain protein content	
Thirteen QTLs for grain protein content were identified in a RI population from the cross WL711 (low 
protein content)/PH132 (high grain content) {10055}. The QTLs that were identified using more than one 
method or in more than one environment are listed below. Also listed is a QTL that was identified in the 
mean over the four environments and was therefore deemed important {10055}. QTLs for grain protein 
content were detected on chromosome arms 6AS (associated AFLP marker, XE38M90v200v) and 1BL 
(associated RFLP marker, Xcdo1188) in Courtot/Chinese Spring’ {0141}. 
	
QGpc.ndsu-6Ba {623}.  6B.  tv:  Langdon {623}. 
 
QGpc.ndsu-6Bb {10071}, {623}.  6B.  tv:  Langdon-T. dicoccoides 6B {623}.  v:  Glupro {0179}. ma: 
QGpc.ndsu-6B was associated (LOD score = 18.9) with the interval Xmwg79-6B - Xabg387-6B.  These 
loci were mapped in 6BS: Xmwg79-6B – 5.9 cM – Xabg387-6B – 9.0 cM – centromere {623};  Located in 
the 4 cM interval flanked by Xmwg79-6B and Xcdo365-6B {0244};  Flanking microsatellite markers and 
PCR-specific markers for Glupro are available {0179}. 	
	
GPC-B1 
Gpc-B1a.  [QGpc.ndsu-6Ba {623}]. 	
This allele, fixed in cultivated durum, is a non-functional frame-shift mutation {10438}. A similar non-
functional allele, or a complete deletion of GPC-B1, is fixed in hexaploid wheat {10438}. 
	
Gpc-B1b {10296}.  [QGpc.ndsu-6Bb {10071}, {623}, Gpc-6B1 {10299}, NAM-B1 {10995}].  6BS.  i:  
Yecora Rojo NIL PI 638740 {10138}.  v:  As II {10995};  Burnside {11044};  Diamant {10995};  
Glencross {11044};  Glupro {10138};  Lilian {11044};  Prins {10995};  Somerset {11044};  Stanley 
{10995}; T. spelta Altgold {10995}.  tv: T. dicoccoides FA-15 {10138}.  ma:  Mapped to a 0.3 cM 
interval flanked by Xucw79-6B and Xucw71-6B {10229}; Xcdo365-6B – 1.5 cM – Gpc-B1 – 1.2 cM – 
Xucw67-6B {10296.  A high-throughput codominant marker, Xuhw89-6B, was then mapped less than 0.1 
cM from Gpc-B1 {10297}.  
Gpc-B1b, the functional allele {10438} in T. dicoccoides, affects senescence and maturity in addition to 
grain protein content, accelerating senescence and maturity {10298}. Gpc-B1 is a NAC transcription 
factor designated Nam-B1 {10438}. A paralogous copy of this gene is present in homologous group 2 
(Nam2).  
This allele was relatively frequent in Scandinavian and Finnish common wheats, landraces and spelts 
{10995}. 
	

PRO1 {777}.  5DL {777}.  s:  CS*6/Hope 5D {777}. 	
May be identical to VRN-D1. 
	
PRO2 {777}.  5DS {777}.  s:  CS*6/Hope 5D {777}.  
QGpc.ccsu-2B.1 {10055}.  2BL {10055}.  v:  WL711/PH132 RI mapping population {10055}; higher 
protein content was contributed by PH132 and the QTL explained 13.4% of the phenotypic variation 
{10055}.  ma:  Associated with Xgwm1249-2B {10055}.  
	

QGpc.ccsu-2D.1 {0015, 10055}.  2DL {0015, 10055}.  v:  WL711/PH132 RI mapping population 
{10055, 0015}; higher protein was contributed by PH132 and the QTL explained 19% {0015} and 14% 
{10055} of the phenotypic variation.  ma:  Associated with Xgwm1264-2D {10055}. 
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QGpc.ccsu-3D.1 {10055}.  3DS {10055}.  v:  WL711/PH132 RI mapping population {10055}; higher 
protein content was contributed by PH132 and the QTL explained 16.3% of the phenotypic variation 
{10055}.  ma:  Associated with Xgwm456-3D {10055}. 

 	
QGpc.ccsu-3D.2 {10055}.  3DS {10055}.  v:  WL711/PH132 RI mapping population {10055}; higher 
protein content was contributed by PH132 and the QTL explained 14% of the phenotypic variation 
{10055}.  ma:  Associated with Xgwm892-3D {10055}.  
	

QGpc.ccsu-7A.1 {10055}.  7AS {10055}.  v:  WL711/PH132 RI mapping population {10055}; higher 
protein content was contributed by PH132 and the QTL explained 32.4% of the phenotypic variation 
{10055}.  ma:  Associated with Xgwm1171-7A {10055}.  
	

QGpc.ipk.7B {10628}.  v:  F26-70 {10628};  Closely associated with Ppd-B2 {10628}.  su:  Favorit 
(F26-70 7B) {10628}. 	
See Response to Photoperiod. 
	

QGpc.ndsu-5B.1 {10161}.  5B {10161}.  v:  LDN (DIC5B)/LDN, contributed by DIC5B {10161}.  ma:  
Nearest marker, Xgwm604-5B {10161}.  
	

QGpc.ndsu-5B.2 {10161}.  5B {10161}.  v:  LDN (DIC5B)/LDN, contributed by DIC5B {10161}.  ma:  
Nearest marker, Xabc310-5B {10161}.  
	

QGpc.ndsu-5B.3 {10161}.  5B {10161}.  v:  LDN (DIC5B)/LDN, contributed by DIC5B {10161}.  ma:  
Nearest marker, Xwg909-5B {10161}. 

 	
QGpc.ndsu-6B {623}.  6BS {623}.  tv:  Langdon {623}. 

 	
QPro.inra-2A {10071}.  2A {10071}.  v:  Renan/Recital {10071}.  ma:  XksuD18-2A – Xgwm614-2A 
(R2 = 4.4-8.9%) {10071}.  
	

QPro.inra-3A {10071}.  3A {10071}.  v:  Renan/Recital {10071}.  ma:  Xcfd79-3A – Xfbb250-3A (R2 = 
4.1-8.3%) {10071}.  
	

QPro.inra-4D {10071}.  4D {10071}.  v:  Renan/Recital {10071}.  ma:  Linked to Xcfd71-4D (R2 = 4.6-
10.3%) {10071}. 

 	
QPro.inra-7D {10071}.  7D {10071}.  v:  Renan/Recital {10071}.  ma:  Xcfd69-7D – Pch1 (R2=6.4-
10.4%) {10071}.  
	

QPro.mgb-4B.  Associated with Gai1 and Xpsr622-4B {110}2. 
 	

QPro.mgb-5A.  Associated with Xpsr911-5A {110}2 and Xcdo412-5A {0343}*.  
	

QPro.mgb-6A.1.  Associated with Xpsr167-6A and XksuG8-6A {110}2.  
	

QPro.mgb-6A.2.  Associated with Xmgb56-6A {110}2 and Xpsr627-6A {0343}*.  
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QPro.mgb-6B.  Associated with Gli-B2-6B {110}2 and Nor-2 {0343}*.  ma: QGpc.ndsu-6B was 
associated (LOD score =18.9) with the interval Xmwg79-6B – Xabg387-6B. These loci were mapped in 
6BS: Xmwg79-6B – 5.9 cM – Xabg387-6B – 9.0 cM – centromere {623}.  
	

Qpro.mgb-7A.  Associated at P<=0.01 with Pan2 {0343}*.  
	

QPro.mgb-7B.  Associated with Xpsr490(Ss1)-7B, Pc {110}2 and Xutv913-7B {0343}*. 	
QTLs for grain protein content were detected on chromosome arms 6AS (associated AFLP marker, 
XE38M60200) and 1BL (associated RFLP marker, Xcdo1188-1B) in Courtot/Chinese Spring {0141}. 
	

Forno / Oberkulmer spelt: Nine QTLs (51% of the variation) were mapped in cross {0280}. 
 

Cheyenne (high quality wheat) / CS (low quality wheat): RSL population: A QTL for grain and flour 
protein content, contributed by CS, was associated with XTri-1D/Centromere {0251}.	

 
Renan / Recital: Four QTL conferring grain protein content {10071}; only QTL stable over at least 4 of 
6 locations were presented. Renan contributed the four alleles for high grain protein content. 

 
Ning 7840 / Clark: RIL population: QTL from Ning 7840 were detected on chromosomes 3AS 
(Xwmc749-3AS – Xgwm369-3AS; R2 = 0.09-0.11) and 4B (Xgwm368-4B – Xwmc617-4B, R2 = 0.08-0.11) 
{10702}. 

 
Tetraploid wheat 

 
T. dicoccoides / Latino: In line 3BIL-85 high grain protein was detected in chromosomes 2AS 
(associated with Xcfa2164-2A, R2 = 17%), 6AS (Xp39M37250-6A, R2 = 17%) and 7BL (Xgwm577-7B, R2 = 
9%) {10338}. 
	

2.2. Enzymes	
2.2.1. Acid phosphatase	
ACPH-1 
Acph-A1 {504}.  [Acph-B1 {936}, Acph3 {516}, Acph2 {516}].  4AS {504, 516}.  v:  CS. 

  
Acph-B1 {504}.  [Acph8 {516}, Acph4 {516}, Acph-A1 {936}].  4BL {504}, {516}.  v:  CS.  

 
Acph-D1 {504}.  [Acph5 {516}, Acph6 {516}].  4DL {504}, {516}.  v:  CS.  

 
Acph-H1 {1153}.  4H {1153}.  ad:  CS/Betzes.  
Acph-Mv1 {237}.  [Acph-Mv1 {985}, Aph-v {237}].  4Mv {237}.  tr:  H-93-33 {984}. 	
Acph-R1.  7R {1457}. 7RS {506}.  ad:  CS/Imperial.  
Acph-Ss1 {1140}.  4Ss {1140}.  ad:  CS/T. searsii.  
	

ACPH-2 
Acph-D2 {10407, 10309}.  [Acph1 {10309}].  2DL {10309}.  dv:  Acph-D2100 and Acph-D295 alleles 
distinguished accessions of Ae. tauschii ssp. tauschii and strangulata, respectively {1030}.  tv: Ae. 
tauschii {10407}.  ma:  Cent ... Acph-D2 – 4 cM – Xgwm157- 2D {10309}.  
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Acid phosphatase gene loci were reported for 7RL in S. cereale {1251}, chromosomes L1 (= 7Agi) and 
L4 (= 4Agi) of Thin. intermedium {361}, and chromosome E of Ae. umbellulata {0069}. Two loci on 7R 
were separated by 25 +or- 5.2 cM {1534}.  Wehling {1559} identified four acid phosphatase loci in S. 
cereale, three of which were in 7R.	
	

2.2.2. Alcohol dehydrogenase (Aliphatic)	
ADH-1 
ADH-A1 {502}.  [Adh-B1 {504}, AdhB {502}].  4A {502}. 4AL {504}, {516}.  v:  CS.    

 
ADH-B1 {501}, {502}.  [Adh1 {501}, AdhA {502}, Adh-A1 {504}]. 4B {502}. 4BS {504},{516}.  v:  
CS.  
Adh-B1a {1442}.  [Adh11 {501}, Adh-A1a {1442}].  v:  CS.  tv:  PI 226951 {501};  Malavika {1442}. 	
Adh-B1b {1442}. [Adh12 {501}, Adh-A1b {1442}].  v:  Rageni derivative {1443}.  tv:  CI 4013 {501}; 
Bijaga Yellow {1442}. 	
Adh-B1b was the only variant ADH-1 allele detected in study of a large number of T. aestivum and T. 
turgidum accessions {503}. 
 
ADH-D1 {504}. [AdhD {502}]. 4D {502}. 4DS {504, 516}.  v:  CS.  ma: Adh-D1 [Adh1, Adh2] was 
mapped 4 cM distal to Xpsr163-4D and closely proximal to Xcsiha114-4D.1. [XcsIHA114-1a'] {757}. 
 
ADH-C1 {1278}.  [G {1278}].  ad:  T. aestivum cv. Alcedo/Ae. caudata line G.	
ADH-Agi1 {560}, {374}.  [Adh-X1 {361}].  4Agi {560}.  ad:  Vilmorin 27/Th. intermedium; Caribo/Th. 
intermedium. 	
ADH-E1 {518}.  4ES {518}.  ad:  CS/E. elongata. 	
ADHG-H1 {520}.  4H {520}.  ad:  CS/Betzes. 	
ADH-Mv1 {984}.  [ADHmu {984}, Adh-Mv1 {985}]. 4Mv {984}.  v:  H-93-33. 	
ADH-R1{1457}.  [AdhR2 {582}].  4R {1457, 582}. 4RS {506}.  ad:  CS/Imperial {1457, 506};  
FEC28/Petkus {43};  Holdfast/King II {582}. 	
ADH-V1 {1026}, {242}.  4V {1026}.  ad:  CS/D. villosum. 	
 
Three Adh genes were identified in Hordeum vulgare and H. spontaneum {144}, {490}, {493}, {520}. 
Two of these were tightly linked at the Adh-H1 locus {144}. The third gene was tentatively located in 5H 
{490}.	
A low-level of aliphatic alcohol dehydrogenase activity is commonly observed on zymograms in the 
absence of added substrate {513}; this may account for the observation of wheat lactate dehydrogenase 
that was reported in {1465}.	
The gene series formerly designated Adh-2 and Adh-3 appear under Aromatic Alcohol Dehydrogenase 
	

2.2.3. Aminopeptidase	
AMP-1 
 
AMP-A1 {504}.  6AS {504}, {516}.  v:  CS.  
Amp-A1a.  v:  CS {1533}.   
Amp-A1b.  v:  Vitka {1533}.  
	
AMP-B1 {504}.  6BS {504}, {516}.  v:  CS. 
Amp-B1a.  v:  CS {1533}.  
Amp-B1b.  v:  Iskra {1533}.  
Amp-B1c {703}, {1244}.  Null allele.  v:  T. spelta IPSR 1220017 {703};  Sinvalocho M.A {1244}. 
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AMP-D1 {504}.  6DS {504}, {516}.  v:  CS. 	
Amp-D1a {703}.  v:  CS.  
Amp-D1b {703}.  v:  Sears' Synthetic IPSR1190903. 	
 
AMP-Age1 {1575}.  6Age {1575}.  ad,su:  Rescue/Th. elongatum. 	
AMP-Agi1 {703}. 6Agi {703}.  ad:  Vilmorin 27/Th. intermedium. 	
AMP-C1 {1278}.  6D {1278}.  ad:  Alcedo/Ae. caudata line D. 	
AMP-E1 {518}.  6E {518}.  ad:  CS/E. elongata. 	
AMP-H1 {520}.  6H {520}.  ad:  CS/Betzes. 	
AMPp-R1 {1457}.  6R {1457, 1280}.  ad:  CS/Imperial {1457}; Holdfast/King II {1280}.  
	

AMP-2 
 
AMP-A2 {703}.  4AL {703}.  v:  CS. 	
Amp-A2a {703}.  v:  CS. 	
Amp-A2b {703}.  v:  T. spelta IPSR 1220017. 

 
AMP-B2 {703}.  4BS {703}.  v:  CS 	
Amp-B2a {703}.  v:  CS.	
Amp-B2b {703}.  v:  Timstein. 	
Amp-B2c {703}.  v:  Hope. 

	
AMP-D2 {703}.  4DS {703}.  v:  CS.  
Amp-D2a {703}.  v:  CS. 	
Amp-D2b {703}.  v:  Sears' Synthetic IPSR 1190903. 	
Amp-D2c {703}.  v:  Bersee.  

	
AMP-Agi2 {703}.  4Agi {703}.  ad:  Vilmorin27/Th. intermedium. 	
AMP-E2 {703}.  4E {703}.  ad:  CS/E. elongata. 	
AMP-H2 {703}.  4H {703}.  ad:  CS/Betzes. 	
AMP-Hch2 {703}.  4Hch {703}.  ad:  CS/H. chilense. 	
AMP-J2 {703}.  4J {703}.  ad:  CS/Th. junceum. 	
AMP-Mv2 {235}.  4Mv {235}.  su:  H-93-33 {235}. 	
AMP-R2 {703}.  4RS {702}, {93}. 4R {703}.  ad:  CS/Imperial. 	
AMP-Sl2 {703}.  4SlL {703}.  ad:  CS/Ae. sharonensis {180}.  tr:  4DS.4DL-4SlL {660}. 	
AMP-V2 {703}.  4V {703}.  ad:  CS/D. villosum. 

 
AMP-3 
 
AMP-A3 {703}.  7AS {703}.  v:  CS. 	
Amp-A3a {703}.  v:  CS. 	
Amp-A3b {703}.  v:  Timstein.  

	
AMP-H3 {703}.  7H {703}.  ad:  CS/Betzes.  
	

2.2.4. Alpha-amylase	
a-AMY1 
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a-Amy1c {1083}.  [a-Amy-B4].  tv:  T. durum ssp. georgicum. 	
The presence of a-Amy1 reported in {1084} was confirmed by tests of segregation in a CS/Jones Fife 
population and in a population derived from a tetraploid cross {1083}. Recombinations with a-AmyB1 
were 9.3% and 22.3%, respectively.	
A further set of a-amylase genes, Xa-Amy-5 [a-Amy3], was identified in 5A, 5B and 5D by cross-
hybridization with a-AMY-1 and a-AMY-2 probes {80}. Only one gene copy appears to be present at each 
locus. In rye, evidence was obtained for three a-Amy-1 genes, two or three a-Amy-2 genes and three a-
Amy-3 genes {907}.	
Synthesis of a-amylase isozymes controlled by a-Amy-1 genes on chromosomes 6A and 6D is reduced in 
DT6BS compared to euploid CS. This result suggests the presence of a gene(s) on the long arm of 
chromosome 6B, which is (are) required for GA-induced alpha-amylase synthesis in the aleurone {0072}. 

	
a-AMY-1   
 
a-AMY-A1 {7}.  [Amy6A {1082}].  6AL {412}, {1082}.  v:  CS. 	
a-Amy1a {1083}.  [a-Amy-B1a].  v:  CS. 	
a-Amy1b {1083}.  [a-Amy-B1b].  v:  CS.  
 
a-AMY-A1 
a-Amy-A1a {7}.  [Amy 6A1 {1084}].  v:  CS.  
a-Amy-A1b5 {7}.  v:  Bezostaya 1; Kavkaz. 	
a-Amy-A1c5.  [Amy 6A1m {1084}].  v:  Aka. 	

 
a-AMY-B1 
a-Amy-B1a {7}.  [Amy 4 {1084}, Amy 6B2o {1084}, Amy 6B1 {1084}].  v:  CS {7};  Rare. 	
a-Amy-B1b {7}.  [Amy 4m {1084}, Amy 6B1o {1084}, Amy 6B2 {1084}].  v:  Mara {7}. 	
a-Amy-B1c {7}.  [Amy 6B1 {1084}, Amy 6B2 {1084}, Amy 4 {1084}].  v:  Sava {7};  Rare. 	
a-Amy-B1d {7}.  [Amy 4m {1084}, Amy6B2o {1084}, Amy 6B1o {1084}].  v:  Sicco {7};  Rare. 	
a-Amy-B1e {7}.  [Amy 6B2o {1084}, Amy 6B14' {1084}, Amy 4m {1084}].  v:  Cappelle-Desprez {7}. 	
a-Amy-B1f {7}.  [Amy 6B14 {1084}, Amy 6B2o {1084}, Amy4m {1084}].  v:  Sappo {7}. 	
a-Amy-B1g {7}.  [Amy 4 {1084}, Amy 6B2o {1084}, Amy 6B14 {1084}].  v:  Cheyenne {7}. 	
a-Amy-B1h {7}.  [Amy 6B2o {1084}, Amy 6B1o {1084}, Amy 4 {1084}].  v:  T. macha Line 1 {7};  Rare. 

 
a-AMY-D1 {7}.  [Amy6D {1082}].  6DL {412, 1082}.  v:  CS. 	
a-Amy-D1a {7}.  [Amy6D1 {1084}, Amy 6D2 {1084}].  v:  CS. 	
a-Amy-D1b {7}.  [Amy 6D2 {1084}, Amy6D1 {1084}].  v:  Prelude {1082};  Cappelle-Desprez {7}. 	
a-Amy-D1c.  [Amy6D1m {1084}, Amy 6D2 {1084}].  v:  T. spelta var. duhamelianum. 

 
a-AMY-Agi1 {374}.  6Agi {374}.  ad:  Vilmorin 27/Th. intermedium.  
a-AMY-E1 {13}.  6E {13}.  ad:  CS/E. elongata. 	
a-AMY-H1.  [a-Amy1 {146}].  6H {146,1 051}.  ad:  CS/Betzes. 	
a-AMY-R1 {13}.  6RL {13}.  su,ad:  CS/Imperial;  CS/King II;  Holdfast/King II. 	
a-AMY-Rm1 {13}. 6RmL {13}.  ad:  CS/S. montanum. 	
a-AMY-S1 {598}.  6SS {598}.  v:  Wembley derivative 31.  al:  Ae. speltoides. 
 
Two types of nomenclature were assigned to the genes encoding the a-AMY-1 isozymes. In one, allelic 
states were defined for individual isozymes {1084} whereas in the other, several isozymes were 
considered the products of compound loci {7, 412}. This listing shows the 'alleles' described in {1084} 
which are assumed in {7} to be synonymous with the a-Amy-B1a through a-Amy-B1h nomenclature. Amy 
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4 and Amy 41 are unmapped alternatives {1084} which appear to be identical to zymogram bands [bands 
9 and 9b {7}] forming part of the a-AMY-B1 phenotype. Amy 6B1 [with forms Amy 6B1o, and Amy 6B14', 
considered to be mutually exclusive {1084}] and Amy 6B2 [with forms Amy 62 and Amy 6B2o {1084}] 
describe further aspects of a-AMY-B1 {7}. See a-Amy1 below for further consideration of Amy 6B2 
{1084}.	

 
a-AMY-2 
a-AMY-A2 {7}.  [Amy7A {1082}].  7AL {412, 1082}.  	
 
a-AMY-B2 {7}.  [Amy7B {1082}].  7BL {412}, {1082}.  v:  CS. v:  CS.  
a-Amy-B2a {412}.  [Amy 7B 1 {1084}, Amy 7B2 {1084}].  v:  CS. 
a-Amy-B2b {412}.  [Amy 7B1 {1084}, Amy 7B2m {1084}].  v:  Hope. 	
The alternative states of Amy 7B2, namely, Amy 7B2 and Amy 7B2m {1084}, are identical to the variation 
in band 2 {412}. The complete description of the a-Amy-B2 variation also includes variation in band 11 
{412}.	
 
a-AMY-D2.  [Amy7D {1082}].  7DL {412, 1082}.  v:  CS. 	
a-Amy-D2a {412}.  [Amy 7D1 {1084}].  v:  CS. 	
a-Amy-D2b {417}.  [Amy 7D1o {1084}].  v:  Largo {7};  Sears' Synthetic {7};  VPM1 {417}. 	
It was estimated {902} that there are two a-Amy-1 genes in chromosome 6A and five or six in both 6B 
and 6D, and three or four a-Amy-2 genes at each of the 7A, 7B, and 7D loci. 
	
a-AMY-Agi2 {374}.  7Agi {374}.  ad:  Vilmorin 27/Th. intermedium. 	
a-AMY-E2 {13}.  7EL {13}.  ad:  CS/E. elongata. 	
a-AMY-H2.  [a-Amy2 {146}].  7HL {146, 1051, 793}.  ad:  CS/Betzes. 	
a-AMY-Hch2 {1015}.  7Hchbeta {1015}.  su,ad:  CS/H. chilense. 	
a-AMY-R2 {13}.  7RL {13}.  su,ad:  CS/Imperial;  CS/King II;  Holdfast/King II. 	
a-AMY-Sb2 {13}.  7Sb {13}.  ad:  Holdfast/Ae. bicornis. 	
a-AMY-U2 {13}.  7U {13}.  ad:  CS/Ae. umbellulata. 	
Three other a-Amy2 loci, namely, Amy 6B2, Amy 6D2, and Amy 7B2, were reported {1084}. No variation 
was observed for the products of Amy 6D2 and Amy 7B2, although nullisomic analysis located the genes 
in 6DL and 7B, respectively. In accordance with the Guidelines, these genes are assumed to be part of the 
a-Amy-D1 and a-Amy-B2 loci, respectively. Amy 6B2 was observed to produce alternative phenotypes 
{1084}. In a test of the segregation of these phenotypes relative to two alternative products of Amy 6B1, 
the two loci were found to be linked with a recombination frequency of 20.6% {1084}. However, an 
attempt to confirm the presence of more than one a-Amy locus in 6BL was unsuccessful {7}. 
	
a-Amy1 {1084, 1083}.  [Amy 6B2 {1084}, Amy-B2 {1083}].  6BL {1084, 1083}.  v:  CS.  
a-Amy1a {1083}.  [a-Amy-B1a].  v:  CS. 	
a-Amy1b {1083}.  [a-Amy-B1b].  v:  CS. 	

	
2.2.5. b-amylase	
b-AMY-1 
 
b-AMY-A1 {227}, {8}.  [b-Amy-A2 {8}, b-Amy-B1 {1331}].  5AL {227}, {8}.  v:  CS {8}.  s:  
CS/Federation {227}.  
b-Amy-A1a {8}.  [b-Amy-A2a {8}, b-B1a {936}].  v:  CS. 	
b-Amy-A1b {8}.  [b-B1b {936}, b-Amy-A2b {8}].  v:  Koga II.. 	
b-Amy-A1c {8}.  [b-B1c {936}, b-Amy-A2c {8}].  v:  T. macha IPSR 1240005. 	
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b-Amy-A1d {8}.  [b-Amy-A2d {8}, b-B1d {936}].  v:  Holdfast. 	
b-Amy-A1e {8}.  [b-Amy-A2e {8}, b-B1e {936}].  v:  Bezostaya I. 	

	
b-AMY-B1 {628}.  [b-Amy-A1 {8}].  4BL {628, {8}.  v:  CS.  
b-Amy-B1a {1330}.  [b-Amy-A1a {1330}}, {8}].  v:  CS. 	
b-Amy-B1b {1330}.  [b-Amy-A1b {1330}, {8}].  v:  Sears' Synthetic IPSR 1190903. 	
b-Amy-B1c {1330}.  [b-Amy-A1c {1330}, b-Amy-A1b {8}].  v:  Ciano 67. 	
Amy-B1d {1330}.  [b-Amy-A1c {1330}, {400}].  v:  Manella. 

 
b-AMY-D1 {8}.  4DL {628, 8}.  v:  CS. 
b-Amy-D1a {8}.  v:  CS. 	
b-Amy-D1b {8}.  v:  Bersee. 
b-Amy-D1c {8}.  v:  Sears' Synthetic. Rare. 	
Previously listed alleles b-Amy-D1d and -D1e were found to be b-Amy-B1 alleles {400}.	
Two b-Amy-Dt1 alleles were predominant in 60 accessions of T. tauschii {1578}.	
	

b-AMY-Agi1 {168}, {13}.  4Agi {168}.  ad:  Vilmorin27/Th. intermedium. 	
b-AMY-C1 {1278}.  B {1278}.  ad:  Aestivum cv. Alcedo /Ae. caudata line B. 	
b-AMY-Eb1 {661}. 5EbL {661}.  tr:  5AS.5EbL. 	
b-AMY-H1.  4H {1153}.  ad:  CS/Betzes. 	
b-AMY-Hch1 {13}.  4Hch {13}.  ad:  CS/H. chilense. 	
b-AMY-R1.  [b-AmyR1 {43}, b-Amy-R2 {13}].  5R {1280, 103}. 5RL {43}.  ad:  FEC 28/Petkus {43};  
Holdfast/King II {43}, {1280}.  tr:  CS/Imperial 5BL-5RL {43}. 	
b-AMY-Sl1 {13}.  D {13}. 4Sl {13}.  ad:  CS/Ae. sharonensis D {13}.  su:  CS/Ae. sharonensis.  ad:  
CS/Ae. longissima. 	
b-AMY-U1 {13}.  [b-Amy-U2 {13}].  5U {13}.  su:  CS/Ae. umbellulata.  

 
A second set of loci with homology to b-Amy-1 genes was identified in 2AS, 2BS and 2DS and 
designated the Xb-Amy-2 [b-Amy-2 {1331}] set. Evidence for these genes derived from cross-
hybridization with a b-AMY-H1 cDNA probe {1331}. Further members of the same set were identified in 
2H {732}, and 2R and 2U {1331}.	
	
2.2.6. Endopeptidase	
EP-1 
EP-A1 {516}.  7AL {516}.  v:  CS. 
Ep-A1a {516}, {708}.  v:  CS. 	
An EP isozyme encoded by Ep-A1a of CS is visible on zymograms following starch gel electrophoresis 
{516}. The product of this allele is not observable, however, on zymograms following isoelectric 
focusing {708}. 
Ep-A1b {708}.  v:  Cappelle-Desprez {708}; Hobbit {704}; Rendezvous {1603}. 	
Ep-A1c {708}.  v:  Sears' Synthetic. 
Ep-A1d {894}.  Isozyme 6.  v:  PI 294994 {894}. 	

 
EP-B1 {516}.  [Ep1 {516}].  7BL {516}.  v:  CS. 	
Ep-B1a {708}.  v:  CS. 	
Ep-B1b {708}.  v:  Cappelle-Desprez. 	
Ep-B1c {708}.  v:  Ciano 67. 	
Ep-B1d {708}.  v:  Bersee. 	
Ep-B1e {708}.  v:  Sears' Synthetic. 
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EP-D1 {516}.  7DL {516}.  v:  CS. 	
Ep-D1a {708}.  v:  CS. 	
Ep-D1b.  [EP-V1 {973}].  v:  5L 219 {1521};  H-93-70 {1521};  Hyak {21};  Madsen {20};  Rendezvous 
{708};  VPM1 {973}. 	
Assuming that Ep-D1 encoded an oligopeptidase G, comparative genetics were applied to develop a STS 
marker for identifying resistance gene Pch1 {10513} (see Reaction to Tapesia yallundae.	
Ep-D1c {708}.  v:  Sears' Synthetic. 	
Ep-D1d {1587}.  Null allele.  v:  Wheats with Lr19 {1587}. 	
Ep-D1e {894}.  Isozyme 5.  v:  PI 294994 {894}. 	
	

EP-E1 {518}.  7EL {518}.  al:  CS/E. elongata. 	
EP-H1 {520}.  7HL {520}.  al:  CS/Betzes. 	
EP-Hch1 {708}.  7Hch {708}.  su:  CS/H. chilense. 	
EP-Ht1 {1037}.  7HtS {1037}.  ad:  CS/E. trachycaulus. 	
EP-Mv1 {985}.  [Ep-Mv1 {985}].  7MvL.  su:  7Mv. 	
EP-R1 {92}, {708}, {266}.  6RL {92}.  ad:  CS/Imperial. 	
EP-Sb1 {708}.  7Sb {708}.  su:  Holdfast/Ae. bicornis. 	
EP-Sl1 {517}.  4Sl {517}.  ad:  CS/Ae. longissima. 	
EP-Ss1 {1140}.  7Ss {1140}.  ad:  CS/T. searsii. 	
EP-U1 {708}.  7U {708}.  su:  CS/Ae. umbellulata. 	
EP-V1 {708}.  7V {708}.  ad:  CS/D. villosum. 	

 
EP-2 
EP-B2 {599}.  6BS {599}. 	
	
An Ep locus was located in 4RS in King II rye {1280}, using Holdfast/King II addition lines and in 4R in 
Imperial {266} using Chinese Spring/Imperial addition lines. 
 
2.2.7. Esterase	
Genetic control of esterases [carboxylic ester hydrolases (E.C.3.1.1.1)] was the subject of a comparative 
study {814}.	
EST-2, EST-5 and EST-8 are controlled by genes on 3L and where a recombination test was possible 
between EST-D5 and EST-D8, no segregation was observed. The different gene symbols were retained 
because of the different tissue specificities and polymerisation profiles of the enzymes. The same 
arguments surround the EST-1 and EST-6 genes located in the 3S arms {814}.	
The EST-6 gene of rye was mapped {249}. The EST-6 genes of wheat were mapped comparatively in the 
proximal regions of chromosomes 2S {256}. The EST-2, EST-5 and EST-8 were mapped to the extreme 
distal regions in the 3L arms {247}.	
 
EST-1	
EST-1 is a dimeric enzyme that electrofocuses around pH4.0 and is expressed in all tissues except 
endosperm {814}.	
EST-A1.  [EstA {61}].  3AS {60}.  v:  CS. 	
 
EST-B1.  [EstB {61}].  3BS {100}.  3B {60}.  v:  CS.   
	
EST-D1.  [EstD {61}].  3D {60}. 3DS {100}.  v:  CS.  
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Each of 208 hexaploid accessions carried the same Est-1 allele except accessions of T. compactum var. 
rubriceps, each of which carried an Est-B1 or Est-D1 electrophoretic mobility variant {585}.	
 
EST-E1 {518}.  3ES {518}.  ad:  CS/E. elongata. 	
EST-H1 {814}.  3H {814}.  ad:  CS/Betzes. 	
EST-R1. [EstR {61}].  3R {1254,60}.  ad:  CS/Imperial {60};  Holdfast/King II {100};  Kharkov/Dakold 
{100}. 	
EST-S11 {814}.  3S1 {814}.  ad:  CS/Ae. longissima. 	
	
EST-2	
EST-2 is a coleoptile-specific monomeric enzyme that electrofocuses at low pI.	
EST-A2.  [Est-2A {585}].  3A {585}.  v:  CS. 	
 
EST-B2.  [Est-2B {585}].  3BL {585}.  v:  CS. 	
Among 208 hexaploid accessions, an apparent Est-B2 null allele occurred frequently in accessions of T. 
macha and T. sphaerococcum and occasionally in accessions of T. compactum. The allele was not 
observed in T. aestivum and T. spelta accessions {585}. 
EST-D2.  [Est-2D {585}].  3DL {585}.  v:  CS. 	
	
EST-3	
EST-3 is a monomeric enzyme that is expressed in young seedlings (this enzyme was not observed in 
{814}).	
 
EST-B3.  [Est-3B {585}].  7BS {585}.  v:  CS. 	
 
EST-D3.  [Est-3D {585}].  7DS {585}.  v:  CS. 	
 
EST-H3 {520}.  7H {520}.  ad:  CS/Betzes. 	
One accession carrying an apparent Est-B3 null allele and one carrying an apparent Est-D3 null allele 
were found among 208 hexaploid accessions {585}.	
A 7AS locus encodes three esterase isozymes in immature grains {009}. 
	
EST-4	
EST-4 is a monomeric, leaf-specific enzyme that electrofocuses around pH 4.5.	
 
EST-A4.  [Est-4A {585}].  6AL {585, 919}.  v:  CS.  
	
EST-B4.  [Est-4B {585}].  6BL {585, 919}.  v:  CS.  
	
EST-D4.  [Est-4D {585}].  6DL {585, 919}.  v:  CS. 	
 
Probable Est-A4 and Est-D4 null alleles were detected in several accessions of T. compactum var. 
rubriceps {585}; otherwise, no Est-4 variant occurred among 208 hexaploid accessions {585}. 
	
An esterase gene was located in chromosome L7 (= 6Agi) of Th. intermedium {361}.	
 
EST-5 {9}.  	
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EST-5 consists of 20 or more monomeric, grain-specific isozymes that electrofocus between pH 5.6 and 
7.0.	
 
EST-A5 {9}.   
Est-A5a {9}.  3AL {9}.  v:  CS. 	
Est-A5b {9}.  v:  Kalyansona{9}; T. compactum AUS12084{756}. 	
 
EST-B5 {9}.  3BL {9}.  v:  CS. 	
Est-B5a {9}.  v:  CS. 	
Est-B5b {9}.  v:  Big Club. 	
Est-B5c {9}.  v:  Timstein. 	
Est-B5d {9}.  v:  Sears' Synthetic. 	

 
EST-D5 {9}.  3DL{9}. v:  CS.  
Est-D5a {9}.  v:  CS  
Est-D5b {9}.  v:  T. macha. 	
Est-D5c {9}.  v:  Hobbit 'S'. 	
Est-D5d {9}.  v:  T. macha Line 1. 	
Est-D5e {756}.  v:  T. macha WJR 38548. 	
Sixty Ae. tauschii lines revealed six Est-Dt5 alleles {1578}. 
 
Encoding of the endosperm esterases of hexaploid wheat by 12-15 genes in five compound loci located in 
3AL, 3BL, 3DL, 3AS and 3DS was postulated in {1204}.	
Three and six alleles at Est-Dt5 (in Ae. tauschii) were reported in {756} and {1578}, respectively.	
 
In S. cereale, in addition to EST-R1, genes encoding leaf esterases were located in three chromosomes 
{1561}. These included a gene designated EST8 in 6R in cvs. Imperial and King II, a gene designated 
EST2 and two genes, designated EST6 and EST7, which are part of a separate compound locus {1560}, in 
5RL in Imperial, and a gene designaged EST10 in 4R of King II and 4RL of Imperial. In Hordeum 
vulgare, genes encoding leaf esterases were in 3H {1071; see also, 520,580} and 7H {520}. 
	
EST-Agi5 {374}.  3Agi {374}.  ad:  Vilmorin 27/Th. intermedium. 	
EST-H5 {10}.  3H {10}.  ad:  CS/Betzes. 	
EST-Hch5 {10}.  3Hch {10}.  ad:  CS/H. chilense. 	
EST-R5 {10}.  [EstA {737}].  6R {43}, {1280}.  ad:  CS/Imperial {10, 43};  Kharkov/ Dakold 6RL 
{10}, {1280};  CS/King II {10};  Holdfast/King II {43}, {1280}. 	
A second S. cereale gene encoding grain esterases, designated EstB, was located in 4RL in King II and 
Petkus and in 7RS in Imperial {737}.	
EST-Rm5 {10}.  [EstB  {737}].  6RmL {737}. 6Rm {10}.  ad:  CS/S. montanum. 	
EST-Sb5 {10}.  3Sb {10}.  su,ad: CS/Ae. bicornis. 	
EST-Sl5 {10}.  3Sl {10}.  ad:  CS/Ae. longissima. 	
 
EST-6	
EST-6 is a dimeric enzyme that electrofocuses around pH 7.6 and is specific to endosperm.	
EST-A6 {1130}.  2AS {1130}.  v:  CS. 	
Est-A6a {1130}.  v:  CS. 	
Est-A6b {1130}.  v:  Ceska Previvka.  

	
EST-B6 {1130}.  2BS {1130}.  v:  CS. 	
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Est-B6a {1130}.  v:  CS. 	
Est-B6b {1130}.  v:  Hope.  

	
EST-D6 {1130}.  2DS {1130}.  v:  CS. 	
Est-D6a {1130}.  v:  CS. 	
Est-D6b {1130}.  v:  Sears' Synthetic IPSR 1190903. 	

	
EST-M6 {1130}.  2MS {1130}.  su: CS/Ae. comosa. 	
EST-R6 {370}.  2RS {370}.  al:  DS2 x RxL10 rye popn. 	
 
A group of leaf esterase isozymes controlled by the long arms of the homoeologous group 3 
chromosomes were reported {919}. The relationship of these esterases to EST-2 and to the leaf esterase 
designed EST-6 reported in {629} was not determined. 
	

EST-7	
EST-7 is a monomeric enzyme that electrofocuses in the same region as EST-6 but is specific to green 
tissues. 
	
EST-A7 {812}.  2AL {812}.  v:  CS. 	
 
EST-B7 {812}.  2BL {812}.  v:  CS. 	
 
EST-D7 {812}.  2DL {812}.  v:  CS.  
Est-D7a {812}.  v:  CS. 	
Est-D7b {812}.  v:  Synthetic {IPSR 1190903}. 	
	

EST-E7 {812}.  2E {812}.  ad:  CS/E. elongata. 	
EST-H7 {812}.  2HL {812}.  ad:  CS/Betzes. 	
EST-R7 {812}.  2RL {812}.  ad:  CS/Imperial.  su:  Holdfast/KingII. 	
EST-Rm7 {812}.  2Rmalpha {812}.  ad:  CS/S. montanum. 	
EST-U7 {812}.  2U {812}.  ad:  CS/Ae. umbellulata. 	
EST-V7 {812}.  2V {812}.  ad:  CS/D. villosum. 	
 
EST-8	
EST-8 consists of about 10 isozymes that electrofocus between pH 4.5 and 6.5 and are expressed only in 
vegetative tissues. EST-8 is likely to be the enzyme previously described in {919} and {629}.	
EST-A8 {629}, {814}.  [Est-A6 {629}].  3AL {629}.  v:  CS. 	

 
EST-B8 {613}, {814}.  [Est-B6 {629}].  3BL {629}.  v:  CS. 	

 
EST-D8 {629}, {814}.  [Est-D6 {629}].  3DL {629}.  v:  CS. 	

 
EST-R8 {613}, {814}.  6RL {629}.  ad:  CS/Imperial, CS/King II. 	
 
EST-9	
EST-9 is a monomeric enzyme that electrofocuses around pH 5.0 and is expressed only in embryos.	
EST-A9 {814}.  3AS {814}.  v:  CS. 	
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EST-B9 {814}.  3BS {814}.  v:  CS. 	

 
EST-D9 {814}.  3DS {814}.  v:  CS.  
	

2.2.8. Glucosephosphate isomerase	
Varietal differences in GPI zymograms were noted in {1127}.	
GPI zymogram phenotypes observed in Triticum and Aegilops species are reported in {456, 457}.	
GPI-1	
GPI-A1 {507}.  1AS {507, 195}.  v:  CS. 	

 
GPI-B1 {507}.  1BS {507, 195}.  v:  CS.  
 
GPI-D1 {507}.  1DS {507, 195}.  v:  CS.  
Gpi-D1a {195}.  v:  CS. 	
Gpi-D1b {195}.  v:  CS variant and certain CS aneuploids. Rare.	
No allelic variation at Gpi-Dt1 was found in 60 accessions of Ae. tauschii {1578}. 
 
GPI-Agi1.  [Gpi-X1 {361}].  1Agi {361}.  ad:  Vilmorin 27/Th. intermedium. 	
GPI-E1 {518}.  1ES {518}.  ad:  CS/E. elongata. 	
GPI-H1 {1153}.  1HS {1153}.  ad:  CS/Betzes. 	
GPI-Hch1 {195}.  1Hch {195}.  ad:  CS/H. chilense. 	
GPI-R1 {195}.  1R {195}.1RS {779}.  ad:  CS/King II {195}.  al:  2a, 2b, and R14 {779}. 	
GPI-Rm1 {195}.  1R {195}.  ad:  CS/S. montanum. 	
GPI-Sl1 {1228}.  1S1S {1228}.1S1 {517}.  ma:  In Ae. longissima 2 x Ae. longissima 10, GPI-Sl1, two 
glutenin loci, and three gliadin loci were mapped relative to one another as follows: GLU-Sl1 – 15.9 cM – 
GPI-Sl1 – 38 cM – GLI-Sl4 – 7.1 cM – GLU-Sl3 – 0.9 cM – GLU-Sl1 – 5.6 cM – GLI-Sl5{1228}; GLU-Sl1 
is located in 1SlL and the other loci are in 1SlS. 	
GPI-Ss1 {1140}. 1Ss {1140}.  ad:  CS/Ae. searsii. 	
GPI-U1 {195}.  1U {195}.  ad:  CS/Ae. umbellulata. 	
GPI-V1 {1026}.  1V {241, 1026}.  ad:  CS/D. villosum. 	
 
2.2.9. Glutamic oxaloacetic transaminase	
GOT-1 
GOT-A1 {505}.  6AS {505}.  v:  CS. 	

 
GOT-B1 {505}.  6BS {505}.  v:  CS. 	

 
GOT-D1 {505}.  6DS {505}.  v:  CS. 	
 
Wehling {1559} identified a GOT locus designated Got1 in 4RL of S. cereale 
 
GOT-2 
GOT-A2 {505}.  6AL {505}.  v:  CS. 	

 
GOT-B2 {505}.  6BL {505}.  v:  CS. 	

 
GOT-D2 {505}.  6DL {505}.  v:  CS.  ma:  Cent – Got-D2 – 2 cM – Xpsr154-6D {757}. 	

 
GOT-Age2 {1575}.  6Age {1575}.  ad,su:  Rescue/Th. elongatum. 	
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GOT-E2 {518}.  6EBeta {518}.  ad:  CS/E. elongata. 	
GOT-H2 {520}.  6H {520}.  ad:  CS/Betzes. 	
GOT-Ht2 {1037}.  6Ht {1037}.  ad:  CS/E. trachycaulus. 	
GOT-R2 {1457}.  [Got3 {1559}].  6R {1457}; 6RL {1280}.  ad:  CS/Imperial 6R {1457};  
Holdfast/King II 6RL {1280}. 	
GOT-V2 {1026}, {242}.  6V {1026}.  ad:  Creso/D. villosum. 	

 
GOT-3 
GOT-A3 {505}.  3AL {505}.  v:  CS. 	

 
GOT-B3 {505}.  3BL {505}.  v:  CS. 	

 
GOT-D3 {505}.  3DL {505}.  v:  CS. 	

 
GOT-Age3 {521}.  3AgeL {521}.  ad:  CS/TAP 67.  su:  CS/TAP 67.  tr:  Certain CS 3D/Ag lines. 	
GOT-C3 {1278}.  F {1278}.  ad:  T. aestivum cv. Alcedo /Ae. caudata line C. Got-E3 {518}.  3EL 
{518}.  ad:  CS/E. elongata. 	
GOT-H3.  [Got-b3 {90}].  3H {90}.  ad:  CS/Betzes. 	
GOT-Hch3 {351}.  3Hch {351}.  ad:  MA/H. chilense. 	
GOT-R3 {1457}.  [Got3 {1559}].  3R {1457}.  ad:  CS/Imperial {1457};  Holdfast/ King II {1253};  
Kharkov/Dakold {1253}. 	
GOT-Ss3 {1140}.  3Ss {1140}.  ad:  CS/Ae. searsii. 	
GOT-V3 {1518}, {242}.  3VL {1518}.  ad:  Creso/D. villosum. 	

 
GOT-4 
 
GOT-R4.  [Got1/7R {1203}, Got2 {1559}].  7RL {1203}.  al:  S. cereale. 	
	

2.2.10. Hexokinase	
HK-1 

 
HK-B1 {6}.  1BS {6}.  v:  CS.  
	

HK-D1 {6}.  1DS {6}.  v:  CS. 	
 

HK-2 
Allelic variation was observed in three of 55 hexaploid wheat accessions {6}.	
 
HK-A2 {810}.  3A {810}.  v:  CS. 	
Hk-A2a {810}.  v:  CS. 	
Hk-A2b {810}.  s:  CS*/Sears' Synthetic 3A.  v:  Sears' Synthetic IPSR 1190903. 	

 
HK-B2 {6}.  3BS {810,6}.  v:  CS. 	

 
HK-D2 {810}.  3DS {810}.  v:  CS. 	
Hk-D2a {810}.  v:  CS. 	
Hk-D2b {810}.  v:  Sears' Synthetic IPSR 1190903. 	
 
HK-E2 {6}.  3ES {6}.  ad:  CS/E. elongata. 	



	

15	 	 	 	 	 PROTEINS 	
	
 
2.2.11. Lipoxygenase	
The LPX-1 gene in wheat corresponds to barley LoxA (GenBank L35931). The LPX-B1 locus is 
duplicated, with the LPX-B1.1 and LPX-B1.2 loci corresponding to GenBank sequences DQ474240 and 
DQ474241, respectively. The Lpx-B1b allele corresponds to a deletion associated with a 4.5-fold 
reduction in lipoxygenase activity. The LPX-2 gene in wheat corresponds to the barley LoxC gene 
(GenBank L37358) whereas the LPX-3 gene in wheat corresponds to the barley LoxB gene (GenBank 
L37359).	
LPX-1 
LPX-A1 {516}.  [Lpx-B1 {516}].  4AL {516}.  v:  CS {516}.  ma:  Xksu919(Lpx-1)-4A {0091}. 	

 
LPX-B1 {516}.  [Lpx-A1 {516}].  4BS {516}.  v:  CS {516}.  ma:  Xcn110(Lpx-1)-4B {0367, 0269}. 	
Lpx-B1a {1533}.  [Lpx-A1a {936}].  v:  CS.	
Lpx-B1b {1533}.  [Lpx-A1b {936}].  v:  Bosanka {1533}.  

	
LPX-B1.1 {10303}.  4BS {10303}.  ma:  Xksm62-4B – 8 cM – LpxB1.1 – 13 cM – Xwmc617b-4B 
{10303}.  
Lpx-B1.1a {10303}.  tv:  UC1113 {10303}.	
Lpx-B1.1b {10303}.  tv:  Kofa, deletion {10303}. 

 
LPX-B1.2 {10303}.  4B {10303}.  v:  CS. 	

 
LPX-D1 {516}.  4DS {516}.  v:  CS. 	

 
LPX-E1 {518}.  4ES {518}.  ad:  CS/E. elongata.  
LPX-H1 {716}.  4H {716}.  ad:  CS/Betzes. 	

 
LPX-2 
LPX-A2 {516}.  5AL {516},{10303}.  v:  CS.  ma:  Xksu919(Lpx-2)-5A {91}.  
 
LPX-B2 {516}.  5BL {516},{10303}.  v:  CS.  ma: Xksu919(Lpx-2)-5B {91}; Xcn111(Lpx-2)-5B {269}. 	
 
LPX-D2 {516}.  5DL {516}.  v:  CS. 	
 
LPX-E2 {518}.  5EL {518}.  ad:  CS/E. elongata.  
LPX-H2 {716}.  5H {716}.  ad:  CS/Betzes.  
LPX-Ss2 {1140}.  5Ss {1140}.  ad:  CS/Ae. searsii.  
LPX-V2 {242}.  5V.  ad:  CS/D. villosum. 	

 
LPX-3 
LPX-A3 {10303}.  4AL {10303}.  tv:  UC1113 (GenBank DQ474244) and Kofa (GenBank DQ474242) 
{10303}.  ma:  Xwmc617a-4A – 10 cM – Lpx-A3 – 15 cM – Xgwm192b-4A {10303}. 	

 
LPX-B3 {10303}.  4B {10303}.  tv:  UC1113 and Kofa (GenBank DQ474243) {10303}. 	
 
2.2.12. Malate dehydrogenase	
MDH-1 
MDH-A1.  [Mdh2A {87}].  1AL {87}.  v:  CS. 	
Mdh-A3a {811}.  v:  CS. 	
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Mdh-A3b {811}.  v:  Bersee. 	

 
MDH-B1.  [Mdh2B {87}].  1BL {101, 87}.  v:  CS.  
Mdh-B3a {811}.  v:  CS. 	
Mdh-B3b {811}.  v:  Hope. 	

 
MDH-D1.  [Mdh2D {87}].  1DL {87}.  v:  CS. 	

 
MDH-H1 {1153}.  1HL {1153}.  ad:  CS/Betzes. 	
MDH-Hch1 {352}. 1Hch {352}.  ad:  MA/H. chilense. 	
MDH-R1.  [Mdh2-1 {1252}].  1RL {1252}.  ad:  CS/Imperial 1R;  Kharkov/Dakold 1R;  Holdfast/King 
II 1RL. 	
MDH-Ss1 {1140}.  1Ss {1140}.  ad:  CS/T. searsii. 	
	

MDH-2 
 
MDH-H2.  [Mdh2-b2 {90}].  3H {90}. 	
MDH-R2.  [Mdh2-2 {1252}].  3R {1252}.  ad:  CS/Imperial. 	
 
A third set of dimeric MDH isozymes identified in mature grain was separable from MDH-1 and MDH-2 
by their higher pI's in IEF {811}.	
MDH-3 
MDH-A3 {811}.  5AS.  v:  CS. 	
Mdh-D3a {811}.  v:  CS. 	
Mdh-D3b {811}.  v:  Sears' Synthetic. 	

 
MDH-B3 {811}.  5BS.  v:  CS. 	

 
MDH-D3 {811}.  5DS.  v:  CS. 	

 
MDH-E3 {811}.  5ES.  ad:  CS/E. elongata. 	
MDH-H3 {811}.  5H.  ad:  CS/Betzes. 	
MDH-U3 {811}.  5U.  ad:  CS/Ae. umbellulata. 	
MDH-R4 {360}.  1RL {360}.  v:  Various crosses. 	
 
2.2.13. Peroxidase	
Peroxidase (EC1.11.1.7) isozymes have high tissue specificity. Staining and electrophoretic systems are 
reviewed in {118}. PER-1, -2, -3, -4 and -5 are all reported in {816}.	
PER-1. PER-1 is expressed in leaf {12} and coleoptile {816} tissues. 
 
PER-B1 {12}.  1BS {919, 12}.  v:  CS.  
	
PER-D1 {12}.  1DS {919, 12}.  v:  CS. 	
Per-D1a {12}.  v:  CS. 	
Per-D1b {12}.  v:  Sears' Synthetic. 	

	
PER-Hch1 {12}.  1Hch {12}.  ad:  CS/H. chilense. 	
PER-R1 {12}.  [Prx {1561}].  1RS {1561, 12}.  ad:  CS/King II {12};  Holdfast/King II {1561}.  tr:  
Veery 'S' {12}. 	
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PER-V1 {241}.  1V {241}.  ad:  Creso/D. villosum. 	
 
PER-2. PER-2 is expressed in young leaf {118}, coleoptile and root {816} tissues.	
PER-A2.  2AS.  v:  CS. 	
Per-A2a {816}.  v:  CS. 	
Per-A2b {816}.  v:  Timstein. 	

	
PER-B2 {118}.  2BS {118}.  v:  CS. 	
Per-B2a {816}.  v:  CS.  
Per-B2b {816}.  v:  Sears' Synthetic IPSR1190903.  

	
PER-D2 {118}.  2DS {118}.  v:  CS. 	
 
PER-H2 {118}.  [Per-5 {95}].  2H {118}.  ad:  CS/Betzes. 	
PER-R2 {118}.  2RS {118}.  ad:  CS/Imperial;  Kharkov/Dakold. 	
 
PER-3. PER-3 is expressed in embryo {119, 816} and scuteller {119} tissues.	
PER-A3 {119}.  3AL {119}.  v:  CS.  
Per-A3a {816}.  v:  CS. 	
Per-A3b {816}.  v:  Timstein. 
Per-A3c {816}.  v:  Hobbit 'S'. 	
	

PER-B3.  [Per4 {961}].  3BL {86, 119}.  v:  CS. 	
Per-B3a {816}.  v:  CS. 	
Per-B3b {816}.  v:  Hope. 	
Per-B3c {816}.  v:  T. macha IPSR1240005. 	
Per-B3d {816}.  v:  Timstein. 	
Per-B3e {816}.  v:  Sears' Synthetic IPSR1190903. 	

 
PER-D3.  [Per5 {961}].  3DL {86, 119}.  v:  CS. 	
Per-D3a {816}.  v:  CS. 	
Per-D3b {816}.  v:  Hope. 	
Per-D3c {816}.  v:  Timstein. 	
Per-D3d {816}.  v:  T. macha IPSR 142005. 	
Per-D3e {816}.  v:  Sava. 	
Per-D3f {816}.  v:  Cheyenne. 	
Per-D3g {816}.  v:  Sears' Synthetic IPSR 1190903. 	
 
Varietal variation for PER-3 was reported in {94}.	

 
PER-4. PER-4 is expressed in endosperm tissue {86, 119}.	
PER-A4.  [Per3 {961}].  7A {695}. 7AS {694, 086, 119}.   v:  CS. 	
Per-A4a {816}.  v:  CS. 
Per-A4b {816}.  v:  Hope. 	
Per-A4c {816}.  v:  Sicco  

 
PER-B4.  [Per2 {961}].  4A {695}. 4AL {694, 86, 119}.  v:  CS. 	
Per-B4a {816}.  v:  CS. 	
Per-B4b {816}.  v:  Hope. 	
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Per-B4c {816}.  v:  Thatcher. 	

 
PER-D4.  [Per1 {961}].  7D {695},7DS {694, 86, 119}.  v:  CS. 	
Per-D4a {816}.  v:  CS. 	
Per-D4b {816}.  v:  Thatcher. 	

	
PER-Age4.  7AgeS {694}.  tr:  Certain CS 7D/Age lines. 	
PER-Agi4.  [Per-Agi3 {374}].  7Agi {168}.  ad:  Vilmorin 27/Th. intermedium. 	
Cultivar variation for Per-4 was reported in {94}.	
 
PER-5.  PER-5 is expressed in roots {816}. 
	
PER-D5 {816}.  2DS {816}.  v:  CS.  
	
PER-Sl5 {816}.  2Sl {816}.  ad:  CS/Ae. longissima. 	
 
3.2.14. Phosphodiesterase	
PDE-A1.  [Pde-A3 {1590}].  3AS {1589}.3A {1590}.  v:  CS.  
	

PDE-B1.  [Pde-B3 {1590}].  3BS {1589}.3B {1590}.  v:  CS.  
	

PDE-D1.  [Pde-D3 {1590}].  3DS {1590}.  v:  CS.  
	

PDE-Sl1.  3SlS {172}.  ad:  CS/Ae. longissima. 	
PDE-V1 {1518}.  3VS {1518}.  ad:  CS/D. villosum. 	
 
2.2.15. Phosphogluconate dehydrogenase	
PGD1 {282}.  [Pgd-A3 {963}, Pgd3 {282}].  7AmS {282}.  v:  T. monococcum {664}. 	

 
PGDR1.  4RL {1191}.  ad:  CS/Imperial; Holdfast/King II. 	
 
PGDR2.  6RL {1191}.  ad:  CS/Imperial; Holdfast/King II. 	
 
Loci were also identified in 6B {1435}, 1EL {1435}, 1HL {147}, {1072}, 1Hch {352} and 1RL {779}.	
 
2.2.16. Phosphoglucomutase	
PGM-A1 {88}.  [Pgm-B1 {88}].  4AL {88}.  v:  CS.  
	

PGM-D1 {88}.  4DS {88}.  v:  CS. 	
 

PGM-Agi1.  [Pgm-X1 {361}].  4Agi {361}.  ad:  Vilmorin 27/Th. intermedium. 	
PGM-H1.  [Pgm-b1 {90}].  4H {90}.  ad:  CS/ Betzes. 	
PGM-Hch1 {351}.  4Hch {351}.  ad:  MA/H. chilense. 	
PGM-R1.  4RS {1561, 1253}.  ad:  CS/Imperial 4RS {1561, 1253};  Kharkov/Dakold 4R {1253};  
Holdfast/King II 4RS{1561, 1253}. 	
 
2.2.17. Shikimate dehydrogenase	
SKDH-1 
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SKDH-A1 {1065}, {706}.  5AS {1065}, {706}.  v:  CS. 	

 
SKDH-B1 {1065}, {706}.  5BS {1065}, {706}.  v:  CS. 	

 
KDH-D1 {1065}, {706}.  5DS {1065}, {706}.  v:  CS. 	

 
SKDH-H1 {85}.  5H {85}.  ad:  CS/Betzes. 	
SKDH-Ht1 {1037}.  5Ht {1037}.  ad:  CS/E. trachycaulus. 	
SKDH-Mv1 {985}.  [Skdh-Mv1 {985}].  5Mv.  su:  5Mv(5A), 5Mv(5D). 	
SKDH-R1 {706}.  5RS {706}. 5R {85}.  ad:  CS/King II {85};  CS/Imperial {706};  Kharkov/Dakold 
{85}.  tr:  CS 4AS-5RL;  CS 5BL-5RL. 	
SKDH-Sl1 {85}.  5SlS {85}.  ad:  CS/ Ae. longissima. 	
SKDH-Ss1 {1140}. 5Ss {1140}.  ad:  CS/Ae. searsii. 	
SKDH-U1.  5U {706}.  ad,su:  CS/Ae. umbellulata. 
SKDH-V1 {85}.  5V {85}.  ad:  CS/D. villosum. 	

 	
2.2.18. Superoxide dismutase	
SOD-1 
SOD-A1 {1066}.  2AL {1066}.  v:  CS.  
	

SOD-B1 {1066}.  2BL {1066}.  v:  CS.  
	

SOD-D1 {1066}.  2DL {1066}.  v:  CS.  
	

SOD-E1 {808}.  VI E {808}.  ad:  CS/E. elongata. 	
SOD-H1 {716}.  2H {716}.  ad:  CS/Betzes. 	
SOD-R1 {1066}.  [Sod-3 {586}].  2R {1066}.  ad:  CS/Imperial. 	
SOD-Ss1 {1140}. 2Ss {1140}.  ad:  CS/Ae. searsii. 	
SOD-VI {1026}.  7V {1026}.  ad:  CS/D. villosum. 	
 
2.2.19. Triosephosphate isomerase	
TPI-1 
TPI-A1 {1139}.  3AS {1139}.  v:  CS.  
	

TPI-B1 {1139}.  3BS {1139}.  v:  CS.  
	

TPI-D1 {1139}.  3DS {1139}.  v:  CS.  
	

TPI-E1 {1139}.  3E {1139}.  ad:  CS/E. elongata. 	
TPI-H1 {1139}.  3H {1139}.  ad:  CS/Betzes. 	
TPI-R1 {1139}.  3R {1139}.  ad:  CS/Imperial; Kharkov/Dakold. 	
TPI-Sl1 {1139}.  3Sl {1139}.  ad:  CS/ Ae. longissima. 	

 
TPI-2 
TPI-A2 {1139}.  5AL {1139}.  v:  CS. 

 	
TPI-B2 {1139}.  5BL {1139}.  v:  CS.  
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TPI-D2 {1139}.  5DL {1139}.  v:  CS. 

 	
TPI-Agi2 {374}.  5Agi {374}.  ad:  Vilmorin 27/Th. intermedium. 	
TPI-H2 {1139}.  5H {1139}.  ad:  CS/Betzes. 	
TPI-R2 {1139}.  5R {1139}.  ad:  CS/Imperial;  Kharkov/Dakold. 	
TPI-Sl2 {1139}.  5Sl {1139}.  ad:  CS/Ae. longissima. 	
TPI-U2 {1139}.  5U {1139}.  ad:  CS/Ae. umbellulata. 	
	

2.2.20. Aromatic alcohol dehydrogenase	
AADH-1 
AADH-A1.  [Adh-A2 {584}].  5AL {584}.  v:  CS.  ma:  XksuG44-5A(proximal) - 6.9 cM - AADH-A1 - 
24.7 cM - Xcdo412-5 (distal) {9959}. 	
Aadh-A1a.  v:  CS;  133 other accessions {584}. 	
Aadh-A1b.  v:  T. spelta;  K-24696;  other accessions {584}.  

	
AADH-B1.  [Adh-B2 {584}].  5BL {584}.  v:  CS. 	
Aadh-B1a.  v:  CS {1533}. 	
Aadh-B1b.  v:  Drina {1533}. 	

 
AADH-D1.  [Adh-D2 {584}].  5DL {584}.  v:  CS.	
	

AADH-C1 {1278}.  C {1278}.  ad:  Alcedo/Ae. caudata line C. 	
AADH-E1.  [Adh-E2 {518}].  5EL {518}.  ad:  CS/E. elongata. 	
AADH-R1.  5RL {1280}.  ad:  Holdfast/King II. 	

 
AADH-2 
AADH-A2.  [Adh-A3 {508}].  6A {1279}.6AL {513}, {587}.  v:  CS {513};  Carola {1279}. 	
 
AADH-B2.  [Adh-B3 {508}].  6B {1279}.6BL {513}.  v:  CS {513};  Carola {1279}. 	
 
AADH-D2.  [Adh-D3 {508}].  6DL {513}.6D {1279}.  v:  CS {513};  Carola {1279}. 	
 
AADH-Age2 {1575}. 6Age {1575}.  ad,su:  Rescue/Th. elongatum. 	
AADH-E2.  [Adh-E3 {518}].  6EBeta {518}.  ad:  CS/E. elongata. 	
AADH-R2.  6RL {1280}.  ad:  Holdfast/King II. 	
AADH-V2 {241}.  6V {241}.  ad:  CS/D. villosum. 	
 
The AADH-1 and AADH-2 loci were designated with the synonyms Adh-2 and Adh-3, respectively, in 
some publications in addition to {508}, {518}, {584}. These include: {510}, {509}, {511}, {519}, 
{517}, {587}, 1066, 1139}.	
 
2.2.21. Aconitase	
ACO-1 
ACO-A1 {189}.  6AL {189}.  v:  CS.  
Aco-A1a.  v:  CS {1533}. 	
Aco-A1b.  v:  Dubravka {1533}. 	

 
ACO-B1 {189}.  6BL {189}.  v:  CS. 	
Aco-B1a.  v:  CS {1533}. 	
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Aco-B1b.  v:  Dubravka {1533}. 	
Aco-B1c.  v:  Slavonka {1533}. 	
	

ACO-Age1 {1575}.  6Age {1575}.  ad,su:  Rescue/Th. elongatum. 	
ACO-E1 {189}.  6Ebeta {189}.  ad:  CS/E. elongata. 	
ACO-H1.  [Aco-1 {147}].  6HL {189}.6H {147}.  ad:  CS/Betzes. 	
ACO-R1 {189}.  6RL {189}.  ad:  Sturdy/PI 252003. 	
ACO-Sl1 {189}. 6Sl {189}.  ad:  CS/Ae. longissima. 	
ACO-Ss1 {1140}. 6Ss {1140}.  ad:  CS/Ae. searsii. 	
ACO-U1 {189}.  CSU-31 {189}.  ad:  CS/Ae. umbellulata. 	

 
ACO-2 
ACO-B2 
Aco-B2a {1513}.  v:  CS. 	
Aco-B2b {1513}.  v:  PI 278437. 	
Aco-B2c {1513}.  v:  PI 182575. 	
Aco-B2d {1513}.  v:  PI 157589. 	
	

ACO-D1 {189}.  6DL {189}.  v:  CS.  
	
Further alleles at Aco-A1 and Aco-B1 are listed in {1127}; these have not been tested against those found 
in {1533}.	
 
ACO-A2 {189}.  5AL {189}.  v:  CS. 	
 
ACO-B2 {189}.  4BL {1513}.  v:  CS. 	
 
ACO-D2 {189}.  4DL {1513}.  v:  CS. 	
 
ACO-E2 {189}.  4EL {189}.  ad:  CS/E. elongata. 	
ACO-Mv2 {1341}.  [Aco-Mv2 {985}].  5Mv.  ad:  5Mv(5A),5Mv(5D). 	
ACO-R2 {189}.  5RL {189}.  ad:  CS/King II 5R;  Holdfast/ King II 5RL. 	
ACO-Ss2 {1140}. 4Ss {1140}.  ad:  CS/Ae. searsii. 	
 
2.2.22. NADH dehydrogenase	
Based on the correspondence of the electrophoretic patterns, isoelectric points (pIs) and chromosomal 
location, it was proposed that the NDH1 (NADH dehydrogenase) and DIA3 (diaphorase) represent the 
same locus {0356}. 
 
NDH-1 
NDH-A1.  [Ndh-B1 {513}].  4AL {513}.  v:  CS.  
Ndh-A1a {1533}.  [Ndh-B1a {936}].  v:  CS. 	
Ndh-A1b {1533}.  [Ndh-B1b {936}].  v:  Sutjeska. 	
Ndh-A1c {1533}.  [Ndh-B1c {936}].  v:  Fruskogorka. 	
Ndh-A1d {1037}.  [Ndh-A1b {1037}].  v:  Hope, Timgalen. 	
	

NDH-B1 {513}.  [Ndh-A1 {513}].  4BS {513}.  v:  CS.  
	

NDH-D1 {513}.  4DS {513}.  v:  CS.  
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NDH-E1 {362}.  4E {362}.  ad:  CS/E. elongata. 	
NDH-H1.  [Nadhd-1 {147}].  4H {147}.4HS {813}.  ad:  CS/Betzes. 	
NDH-Hch1 {813}. 4Hch {813}.  ad:  CS/H. chilense. 	
NDH-V1 {241}.  4V {241}.  ad: CS/D. villosum. 	
NDH-R1 {813}.  4RS {813}.4R {362}.  ad:  CS/Imperial, CS/King II {813, 362};  CS/Dakold {362}. 	
NDH-S11 {813}.  4Sl {813}.  ad:   CS/Ae. longissima. 	
NDH-U1 {362}.  A {362}.  ad: CS/Ae. umbellulata. 	
 
NDH-2 
Based on the correspondence of the electrophoretic patterns, isoelectric points (pIs) and chromosomal 
location, it was proposed that the NDH-2 (NADH dehydrogenase) and DIA2 (diaphorase) represent the 
same locus {0356}.	
 
NDH-A2 {813}.  7A {813}.  v:  Hope.  
	
NDH-D2 {813}.  7DS {813}.  v:  CS.  
	
NDH-R2 {813}.  7RS {813}.  ad:  CS/Imperial, CS/King II, Holdfast/King II (7R). 	
 
NDH-3 
NDH-A3 {813}.  3AL {813}.  v:  CS.  

 
NDH-B3 {813}.  3BL {813}.  v:  CS. 	
Ndh-B3a {813}.  v:  CS.  
Ndh-B3b {813}.  v:  Carmen. 	

 	
NDH-D3 {813}.  3DL {813}.  v:  CS. 	
 
A NDH locus, designated NADHD2, was mapped 27 cM from Est-D10 in an Ae. taushii F2 population 
derived from VIR-1954/VIR-1345 {10046}. This locus may be homologous to NDH-D3. 
	

NDH-H3 {813}.  3HL {813}.  ad:  CS/Betzes. 	
NDH-R3 {813}.  6RL {813}.  ad:  Holdfast/King II, CS/Imperial (6R), CS/King II (6R). 	
NDH-Sl3 {813}. 3SlL {813}.  ad:  CS/Ae. longissima; CS/Ae. sharonesis (3Sl). 	

 
Based on the correspondence of the electrophoretic patterns, isoelectric points (pIs) and chromosomal 
location, it was proposed that NDH-3 (NADH dehydrogenase), DIA1 (diaphorase) and MNR1 (menadione 
reductase) represent the same locus {0356}.	
 
NDH-4 
NDH-A4 {813}.  3AS {813}.  v:  CS. 
	
NDH-B4 {813}.  3BS {813}.  v:  CS.  
	

NDH-E4 {813}.  3ES {813}.  ad:  CS/E. elongata. 	
NDH-H4 {813}.  3HS {813}.  ad:  CS/Betzes. 	
NDH-R4 {813}.  3RS {813}.  ad:  CS/King II, CS/Imperial (3R). 	
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2.2.23 Dipeptidase 
DIP-1 
DIP-A1.  [Pept-A1 {454}].  6AL {700}, {454}.  v:  CS. 	
Dip-A1a {700}.  v:  CS. 	
Dip-A1b {700}.  v:  Cheyenne. 	

 
DIP-B1.  [Pept-B1 {1533}].  6BL {700, 454}.  v:  CS. 	
Dip-B1a {700}.  v:  CS. 	
Dip-B1b {700}.  v:  Cappelle-Desprez.  

	
DIP-D1 {700}.  6DL {700}.  v:  CS.  
	

DIP-H1.  [Pept-1 {147}, Dip 1 {145}].  6H {145}, {147}, {700}.  ad:  CS/Betzes. 	
DIP-J1 {700}.  6J {700}.  ad:  CS/Th. junceum. 	
DIP-V1 {700}.  6V {700}.  ad:  CS/D. villosum. 	
 
2.2.24. Malic enzyme	
A dimeric enzyme extractable from mature grains.	
MAL-A1 {809}.  3AL.  v:  CS.  
Mal-B1a {809}.  v:  CS. 	
Mal-B1b {809}.  v:  T. spelta IPSR line 1. 	
Mal-B1c {809}.  v:  Sears' Synthetic. 	
	

MAL-B1 {809}.  3BL.  v:  CS.  
	

MAL-D1 {809}.  3DL.  v:  CS.  
	

MAL-E1 {809}.  3E.  ad:  CS/E. elongata. 	
MAL-H1 {809}.  3H.  ad:  CS/Betzes. 	
MAL-R1 {809}.  3R.  ad:  CS/Imperial. 	
 
2.2.25. Adenylate kinase	
ADK-1 
ADK-A1 {91}.  [Adk-a {91}].  7AL {91}.  v:  CS. 

 	
ADK-B1 {91}.  [Adk-b {91}].  7BL {91}.  v:  CS.  
	

ADK-D1 {91}.  [Adk-d {91}].  7DL {91}.  v:  CS.  
	

ADK-E1 {91}.  7E {91}.7E {1435}.  ad:  CS/E. elongata. 	
ADK-H1 {91}.  7HS {1435}.7H {91}.  ad:  CS/Betzes. 	
ADK-Mv1 {985}. [Adk-Mv1 {985}].  7MvL.  su:  7Mv(7D). 	
ADK-R1 {91}.  7RL {91}.  ad:  CS/Imperial; Holdfast/King II. 	
ADK-U1 {91}.  E  {91}.  ad: CS/Ae. umbellulata. 	
ADK-Agi1 {91}. 7Agi {91}.  ad: CS/Th. intermedium. 	
ADK-H2.  6HL {1435}.  ad:  CS/Betzes. 	
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2.2.26. Glutamate-pyruvate transaminase	
GPT-1 
GPT-A1 {1435}.  1AS {1435}.  v:  CS.  
	

GPT-B1 {1435}.  1BS {1435}.  v:  CS.  
	

GPT-D1 {1435}.  1DS {1435}.  v:  CS.  
	

GPT-E1 {1435}.  1ES {1435}.  ad:  CS/E. elongata 1E. 	
GPT-H1 {1435}.  1H {1435}.  dv:  H. vulgare cv. Betzes. 	
 
2.2.26. Glutamate-pyruvate transaminase	
CAT-1 
 
CAT-B1 {1466}.  [Cat-A1 {1466}].  4BL {1466}.  v:  CS. 	
 
A catalase locus, designated CAT2, was mapped 6 cM proximal to ACO-D2 in an Ae. tauschii F2 
population derived from VIR-1954/VIR-1345 cross {10046}. This locus may be orthologous to CAT-B1 
{10046}.	
 
2.2.28. Beta-glucosidase 
b-GLS {282}.  2AmL {282}.  dv:  DV92. 	
b-Glsa {282}.  dv:  DV92.  
b-Glsb {282}.  Null allele.  dv:  G3116. 	
	

2.2.29. Starch branching enzyme I	
SBEI 
SBEI1 {9937}.  1DL {9937}.  v:  CS {9937}. 

 	
SBEI2 {9937}.  7BL {9937}.  v:  CS {9937}.  
	

2.2.30. Starch branching enzyme II	
SBEII. 	
Suppression of SBEIIb expression alone had no effect on amylose contents; however, suppression of both 
SBEIIa and SBEIIb expression resulted in wheat starch containing >70% amylose {10534}. Combined 
loss-of-function mutations in SbeIIa-A, SbeIIa-B, SbeIIb-A, and SbeIIb-B (PI 670160) increased amylose 
content by 66% and resistant starch by 753% relative to the control in tetraploid wheat cv. Kronos 
{11125}. Combination of these four mutations with mutations of SbeIIa-D in hexaploid wheat (PI 
670160) increased amylose content by 63% and resistant starch by 1,057% in field experiments relative to 
the control {11126}	
 
2.2.31. Benzoxinones	
The putative role of benzoxinones sets BX-1 to BX-5 is to catalyze the pathway Indole-3-glycerol 
phosphate to DIBOA. Primers designated from maize sequences were used to generate RT-PCR products 
utilised to screen a cDNA library from CS seedlings. Full-length cDNAs were heterologously expressed 
in yeast and the Bx gene products had enzymatic action. The BX genes located by Southern analysis of CS 
deletion stocks occurred as clustered groups in homoeologous groups 4 (BX-1, BX-2) and 5 (BX-3.1, .2, 
BX-4, BX-5) {10103}. 



	

25	 	 	 	 	 PROTEINS 	
	
	

2.2.32. Acetohydroxyacid synthase (EC 4.1.3.18) 
An orthologous series was mapped as the active target sites of imidazolinone herbicides. See section 1: 
Herbicide Response: Imidazolinone resistance.	
AHASL_1 
AHASL-A1 {10101}.  [Imi3 {10099}].  6AL {10101}.  v2:  CDC Teal IMI 15A Imi3 {10099}.  dv:  T. 
monococcum mutant EM2 (mutant of susceptible line TM23 {10102}.  
	

AHASL-B1 {10101}.  [Imi2 {10099}].  6BL {10101}.  v:  CDC Teal IMI 11A = PTA3953 {10099}.  
	

AHASL-D1 {10101}.  [Imi1 {10099}].  6DL {10101}.  v:  BW755 = Grandin*3/Fidel-Fs-4 {10099}.  
	

2.2.33. Phytoene synthase (EC 2.5.1.32)	
Phytoene synthase, which condenses two molecules of geranyl geranyl diphosphate to produce phytoene, 
is the first of the specific enzyme necessary for carotene biosysthesis in plants.	
Homology with the same gene in rice (Psy1) {10230}.	
Phytoene synthase is involved in the carotenoid biosynthetic pathway and influences yellow pigment 
content in grain (See Section 1: Flour colour and Grain quality parameters: Flour, semolina and pasta 
colour). Gene Psy-A1 was cloned and a functional marker developed from the sequence distinguishing 
Chinese common wheats with high and low pigment contents {10501}. Most hexaploid wheat cultivars 
have a 676-bp insertion in intron four that is absent in Australian cultivars Dundee, Raven, and Aroona 
with high yellow pigment. The Psy-B1b allele from tetraploid wheat Kofa is the result of a B-A 
intergenomic conversion event that probably occurred in Cappelli ph1c mutant 1 {10530}. An EMS 
mutation in the Psy-E1 gene is associated with whiter endosperm in lines carrying the Th. elongatum 7EL 
translocation.	
PSY-1 
PSY1-A1 {10230}.  7AL {10230}.  tv:  Kofa {10230}.  ma:  Xwmc809-7A – 5.8 cM – Yp7A {10501}. 	
Psy1-A1a.  tv:  Kofa {10230}.  ma:  Xwmc809-7A - 5.8 cM - Yp7A {10501}.  
Psy1-A1b.  v:  Chinese common wheats with low yellow pigment content {10501};  PH82-2 {10501};  
Shaan 9314 {10501};  Xinong 336 {10501}.  c:  GenBank EF600064 {10501}. 37-bp insertion in intron 
2 (231 bp fragment for marker Yp7A) {10501}. 676-bp insertion in intron 4 {10530}. 	
Psy1-A1c {10530}.  v:  M564 {10650}.  c:  GenBank EU650391 {10650};  No 37-bp insertion in intron 
2 and no 676-bp insertion in intron 4 {10530};  High yellow pigment cultivars: Aroona (PI 464647) 
{10530};  Dundee (PI 89424, PI 106125) {10530};  Raven (PI 303633, PI 330959) {10530}.	
Psy1-A1d {10651}.  tv:  Langdon {10651};  T. dicoccum DM28 {10652}.  c:  GenBank EU263018 
{10651};  FJ393515 {10652}. 	
Psy1-A1e {10651}.  v:  Sunco {10654}.  tv:  DR8 {10651}.  c:  EU649791 {10654};  EU263019 
{10651}. 	
Psy1-A1f {10652}.  dv:  T. urartu PI 428326 {10652}.  c:  FJ393516 {10652}. 	
Psy1-A1g {10652}.  dv:  T. urartu UR1 {10652}.   c:  FJ393517{10652}. 	
Psy1-A1h {10652}.  dv:  T. boeoticum BO1 {10652}; T. monococcum MO5 {10652}.  c:  FJ393518 
{10652};  FJ393519 {10652}. 	
Psy1-A1i {10652}.  dv:  T. monococcum MO1  {10652}.  c:  FJ393520 {10652}. 	
Psy1-A1j {10652}.  dv:  T. monococcum MO2 {10652}.  c:  FJ393521 {10652}. 	
Psy1-A1k {10652}.  v:  Spelt 167 {10652}.  tv:  T. dicoccoides DS3 {10652}; T. dicoccum DM37 
{10652}.  c:  FJ293527 {10652};  FJ293522 {10652};  FJ293523 {10652}. 	
Psy1-A1l {10652}.  tv:  Kofa {10530, 10230};  Strongfield {10653}; T. dicoccoides DS6 {10652}.  c:  
EU096090 {10530, 10230};  FJ393524 {10652}. 	
Psy1-A1m {10652}.  tv:  T. dicoccum DM26 {10652}.  c:  FJ393525 {10652}. 	
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Psy1-A1n {10652}.  v:  Spelt SP9{10652}.  c:  FJ393526 {10652}. 	
Psy1-A1o {10653}.  tv:  Commander {10653}.  c:  FJ234424 {10653}. 	
Psy1-A1p {10654}.  v:  Tasman {10654}.  c:  EU649792 {10654}. 	
Psy1-A1q {10654}.  v:  Cranbrook {10654}.  c:  EU649793 {10654}. 	
Psy1-A1r {10654}.  v:  Halberd {10654}.  c:  EU649794 {10654}. 	
Psy1-A1s {10654}.  v:  Schomburgk {10654}.  c:  EU649795 {10654}. 
Psy1-A1t {10920}.  v:  WAWHT2074 {10920}.  ma: Xwgm344-7A - 3.9 cM - Psy1-A1t - 9.9 cM - 
Ccfa2257a-7A {10920}.  c:  GenBank HM006895 {10920}. 	

 
PSY1-B1 {10230}.  7BL {10230}.  tv:  Kofa{10230}.  ma:  Xcfa2040-7B – 12 cM – PSY1-B1 – 5 cM – 
Xgwm146-7B {10230}. 	
Psy1-B1a {10650}.  GenBank EU096093 {10530}.  [{10530}].  v:  Chinese Spring {10654, 10650, 
10530};  Spelt SP9 {10652}.  tv:  T. dicoccoides DS4 {10652}.  c:  FJ393529 {10652};  FJ393528 
{10652};  EU650392 {10650};  EU096094 {10530};  EU649789 {10654}. 	
Psy1-B1b {10650}.  v:  Neixiang 188 {10650}.  c:  EU650393 {10650}. 	
Psy1-B1c {10650}.  v:  CA 9648 {10650}.  c:  EU650394 {10650}. 	
Psy1-B1d {10650}.  v:  Ning 98084 {10650}.  c:  EU650395 {10650}. 	
Psy1-B1e {10650}.  v:  M484 {10650}.  tv:  DR8 {10650}; T. dicoccum DM28 {10652}.  c:  
EU263021{10650};  FJ393541 {10652}. 	
Psy1-B1f {10651}.  tv:  Langdon {10651}.  c:  EU263020 {10651}. 	
Psy1-B1g {10651}.  tv:  DR1 {10651}; T. dicoccoides DS6 {10652}.  c:  EU650396 {10651};  FJ393530 
{10652}. 	
Psy1-B1h {10652}.  tv:  T. dicoccoides DS3  {10652}.  c:  FJ393531 {10652}. 	
Psy1-B1i {10652}.  tv:  T. dicoccoides DS8 {10652}.  c:  FJ393532 {10652}. 	
Psy1-B1j {10652}.  tv:  T. dicoccum DM26 {10652}.  c:  FJ393533 {10652}. 	
Psy1-B1k {10652}.  tv:  T. dicoccum DM33 {10652}.   c:  FJ393534 {10652}. 	
Psy1-B1l {10652}.  tv:  T. dicoccum DM37 {10652}. c:  FJ393535 {10652}. 	
Psy1-B1m {10652}.  v:  Spelt 167 {10652}.  tv:  T. dicoccum DM47 {10652}.  c:  FJ393540 {10652};  
FJ393539 {10652}. 	
Psy1-B1n {10530}.  Previously designated Psy1-B1b {10656}.  tv:  Kofa.  c:  EU096092 {10530};  
DQ642439 {10230}. 	
Psy1-B1o {10530}.  Previously designated Psy1-B1a {10656}.  tv:  UC1113 {10530}; W9262-260D3 
{10230}.  c:  EU096093 {10530};  DQ642440 {10230}. 	

 
PSY1-D1 {10652}.  7DL {10652}.  
Psy1-D1a {10652}.  v:  Chinese Spring {10652}.  c:  EU650397 {10652};  EU649790 {10654}. 	
Psy1-D1b {10652}.  dv:  Ae. tauschii Ae34 {10652}.  c:  FJ393542 {10652}. 	
Psy1-D1c {10652}.  dv:  Ae. tauschii Ae46 {10652}.  c:  FJ393543 {10652}. 	
Psy1-D1d {10652}.  dv:  Ae. tauschii Y99 {10652}.  c:  FJ393544 {10652}. 	
Psy1-D1e {10652}.  v:  Spelt SP9 {10652}.  c:  FJ393545 {10652}. 	
Psy1-D1f {10652}.  v:  Spelt 217 {10652}.  c:  FJ393546 {10652}. 	
Psy1-D1g {10652}.  v:  Zhonliang 88375 {10652}.  c:  FJ807498 {10652}. 	
Psy1-D1h {10652}.  dv:  Ae. tauschii Ae37 {10652}.  c:  FJ807499 {10652}. 	
Psy1-D1i {10652}.  dv:  Ae. tauschii Ae38 {10652}.   c:  FJ807500{10652}. 	
Psy1-D1j {10652}.  dv:  Ae. tauschii Ae42 {10652}.  c:  FJ807501 {10652}. 	
Psy1-D1k {10655}.  v:  Nongda 3291 {10655}.  c:  FJ807495 {10655}. 	
Psy1-D1l {10655}.  v:  E 86642 {10655}.  c:  FJ807496 {10655}. 	
Psy1-D1m {10655}.  v:  Ning 97-18 {10655}.  c:  FJ807497 {10655}.  
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PSY1-E1.  [Psy-E1].  
Psy1-E1a {10530}.  GenBank EU096095 {10530}.  [Psy-E1a {10530}].  v:  Agatha (7EL translocation) 
{10530}. 	
Psy1-E1b {10530}.  [Psy-E1b {10530}].  Similar to EU096095, but with P to L substitution at amino acid 
422 {10530}.  v:  EMS mutant Agatha 28-4 {10530};  Wheatear {10530}. 	
PSY1-S1 {10652}.  al:  Ae. speltoides Ae48 {10652}. 	
Psy1-S1a {10652}.  al:  Ae. speltoides Ae48 {10652}.  c:  FJ393536 {10652}. 	
Psy1-S1b {10652}.  al:  Ae. speltoides Ae49 {10652}.  c:  FJ393537 {10652}. 	
Psy1-S1c {10652}.  al:  Ae. speltoides Y162 {10652}.  c:  FJ393538 {10652}. 	

	
PSY-2 Homology with the same gene in rice (Psy2) {10230}.	

 
PSY2-A1 {10230}.  5A {10230}.  tv:  Kofa {10230}. 

 	
PSY2-B1 {10230}.  5B {10230}.  tv:  Kofa {10230}.  ma:  Xgwm191-5B – 17 cM – PSY-B2 {10230}. 	
 
2.2.34. Polyphenol oxidase	
High PPO activity in kernels and flour leads to a time-dependent discolouration of end products such as 
noodles, pasta and breads.	
Primers different from those in {10386} were developed in {10504}, but their ability to distinguish 
phenotypic groupings (alleles) was similar. A null allele of Ppo-D1 was identified for this locus using 
primer pair WP3-2 {10504}. 
PPO-1 
PPO-A1 {10386}. PPO-2A {10385}.  2AL {10385}.  ma:  Detected with STS markers PPO18 {10385} 
and PPO33 {10386}; Xgwm321-2A – 1.4 cM – PPO-A1 – 5.8 cM – Xgwm294-2 {10385}; Xcfa2058-2A – 
0.4 cM – PPO-A2 – 0.4 cM – Xiwa174-2A – 8.3 cM – Xiwa7593-2A – 0.6 cM  – PPO-A1 – 11.0 cM – 
Xwmc181-2 {10931}. 	
Ppo-A1a {10386}. PPO-2Aa {10385}.  v:  Nongda 139 {10386};  Zhongyou 9507 
{10504,10385,10386};  others{10504,10386}.  c:  EF070147{10386}. 	
Wheats with this allele tend to have lower PPO activity {10385, 10386}.	
Ppo-A1b {10386}. PPO-2Ab {10385}.  v:  Chinese Spring {10386};  CA 9632 {10385, 10386};  Nongda 
183 {10504};  others {10504, 10386}.  tv:  T. dicoccoides DS4 {10386}.  c:  EF070148 {10386}.  
Ppo-A1c {10657}.  dv:  T. urartu UR1 {10657}.  c:  EU371651 {10657}. 	
Ppo-A1d {10657}.  dv:  T. boeoticum BO1 {10657}.  c:  EU371652 {10657}. 	
Ppo-A1e {10657}.  tv:  DR8 {10657}.  dv:  T. monococcum MO1 {10657}.  c:  EU371653 {10657}. 	
Ppo-A1f {10657}.  v:  Penawawa {10931}.  tv:  T. dicoccoides DS3 {10657}.  c:  EU371654 {10657}. 	
Ppo-A1g {10657}.  tv:  Langdon {10657}.  c:  EU371655 {10657}. 	
Ppo-A1h {10931}.  v:  Louise {10931}.  c:  GenBank JN632506 {10931}.  

 
PPO-B1 {10658}.  v:  Chinese Spring {10658}. 	
Ppo-B1a {10658}.  v:  Chinese Spring {10658}.  c:  GQ303713 {10658}. 

 
PPO-D1 {10386}.  ma:  Detected with primers PPO16 and PPO29. Xwmc41-2D – 2.0 cM – PPO-D1 
{10386}; Xcfd62-2D  – 0.2 cM – PPO-D2 – 0.4 cM – Xcfd168-2D – 7.7 cM – Xgwm608-2A – 2.6 cM – 
PPO-D1 – 0.9 cM – Xbarc349-2D {10931}. 	
Ppo-D1a {10386}.  v:  Chinese Spring {10386};  Louise {10931};  Zhonghou 9507 {10504, 10386};  
others {10504, 10386}.  c:  EF070149 {10386}. 	
Wheats with this allele tend to have lower PPO activity {10386}.	
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Ppo-D1b {10386}.  EF070150 {10386}.  v:  CA 9632 {10386};  CA 9719 {10386};  Nongda 183 
{10504};  others {10504, 10386}.  c:  EF070150 {10386}. 	
Wheats with this allele tend to have higher PPO activity {10386}.	
Ppo-D1c {10657}.  dv: Ae. tauschii Ae38 {10657}.  c:  EU371656 {10657}. 	
Ppo-D1d {10657}.  dv:  Ae. tauschii Y59 {10657}.  c:  EU371657 {10657}. 	
Ppo-D1e {10504}.  [Ppo-D1null {10504}, Ppo-D1c {10656}].  v:  Gaiyuerui {10504};  Zm2851  
{10504};  XM2855 {10504};  9114 {10504}. 	
Wheats with this allele tend to have lower PPO activity {10504}. 

	
PPO-2	
PPO-A2 {10930}.  [PPO-A2 {10931}].  2AL {10930}.  ma:  Xcfa2058-2A – 0.4 cM – PPO-A2 – 0.4 cM 
– Xiwa174-2A – 8.3 cM – Xiwa7593-2A – 0.6 cM – PPO-A1 – 11.0 cM – Xwmc181-2 {10931}. 	
Ppo-A2a {10930}.  v:  Alpowa {10930}.  c:  GenBank HQ228148 {10930}. 	
Ppo-A2b {10930}.  v:  Panawawa {10931}.  c:  GenBank HQ228149 {10930}. 	
Ppo-A2c {10931}.  v:  Louise {10931}.  c:  JN632507 {10931}. 	

 
PPO-B2 {10930}.  [PPO-B2 {10930}].  2B {10930}.  ma:  Xiwa175/Xiwa4866-2B - 0.7 cM - PPO-B2 - 
2.3 cM - Xiwa7593-2B {10931}. 	
Ppo-B2a {10930}.  v:  Penawawa {10931}.  c:  GenBank HQ228150 {10930}. 	
Ppo-B2b {10930}.  v:  Alpowa {10930}.  c:  GenBank HQ228151 {10930}. 	
Ppo-B2c {10930}.  v:  Louise {1211}. c:  GenBank JN632508 {10930}.  

	
PPO-D2 {10930}.  [PPO-D2 {10930}].  2DL {10930}.  ma:  Xcfd62-2D – 0.2 cM – PPO-D2 – 0.4 cM – 
Xcfd168-2D – 7.7 cM – Xgwm608-2A – 2.6 cM – PPO-D1 – 0.9 cM – Xbarc349-2D {10931}. 	
Ppo-D2a {10930}.  v:  Louise {10931}.  c:  GenBank HQ228152 {10931}. 	
Ppo-D2b {10930}.  v:  Penawawa {10930}.  c:  HQ228153 {10930}. 	
Wheats with this allele tend to have lower PPO activity {10385, 10386}.	

	
2.2.35. Protein disulfide isomerase (EC 5.3.4.1)	
PDI-1 
PDI-A1 {10422}.  4AL {10422}.  v:  CS {10422}.  
	

PDI-B1 {10422}.  4DS {10422}.  v:  CS {10422}. 
 	

PDI-D1 {10422}.  4BS {10422}.  v:  CS {10422}. 	
The genes for PDI and their promoters were sequenced in {10423}. A related sequence on 1BS was 
shown to be a partial, non-expressed copy in {10424}, but not detected in {10409}. PCR-RFLP markers 
for [TaPDI-4A] and [TaPDI-4B] were designated [Xvut(PDI)-4A] and [Xvut(PDI)-4B] in {10409}. These 
were also closely associated with Germin (oxalate oxidase {10441}) genes {10409}.	
 
2.2.36. Isoamylase 1 
	
ISO-1 {10295}.  [ISA-1 {10295}].  dv:  Ae. tauschii {10295}.  
	

2.2.37. Polygalacturonase-inhibiting proteins	
PGIPs are leucine-rich repeat (LRR) proteins involved in plant defence. 
PGIP-1 
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PGIP-A1 {10608}.  Tapgip3, AM180658 {10608}.  dv:  T. monococcum PI 538722 {10608}. 	
Not expressed in T. urartu PI 428315 (AM884191) {10608} or in polyploid wheat because of inactivation 
by an inserted copia transposon in the fourth LRR {10608}. 
	

PGIP-B1 {10608}.  [Tapgip1 {10610}].  7BS {10608, 10610}.  ma:  XS13M50-7B - 5 cM - PGIP-B1 - 
11.7 cM - Xmgb105s-7B {10608}. 	
Pgip-B1a {10608}.  Tapgip1a {10608}.  tv:  Messapia {10608}. 	
Pgip-B1b {10608}.  Tapgip1b, AM884195 {10608}.  tv:  T. turgidum ssp. dicoccoides MG4343 
{10608}. 	
This non-expressed allele produces a large amplicon in southern blots using the Pgip sequence as probe, 
due to an insertion of a Vacuna mutator element {10608}. 

	
PGIP-D1 {10608}.  [Tapgip2 {10610}].  7DS {10610}.  tv:  Langdon 7D(7A) {10610};  Langdon 
7D(7B) {10610}. 	

 
Pgip1 {10390}.  7BS {10390}.  v:  CS ditelo 7BL {10390}.  v2:  Chinese Spring Pgip2 {10390}.  tv:  
Langdon {10390}. 	
	

Pgip2 {10390}.  7DS {10390}.  v:  CS ditelo 7DL {10390}.  v2:  Chinese Spring Pgip1 {10390}.  
	

2.2.38. Flavone 3-hydroxylase (EC 1.14.11.9)	
F3H-1 
F3H-A1 {10823}.  2AL {10823}.  v:  CS {10823}.  ma:  Xgwm1067-2A – 2.1 cM – F3H-A1 – 11.4 cM – 
Xgwm1070-2ª {10823}.  
ALLELIC VARIATION 
	

F3H-B1 {10823}.  2BL {10823}.  v:  CS {10823}.  ma:  F3H-B1/Xgwm1067-2B – 11.4 cM – 
Xgwm1070-2B {10823}. 
ALLELIC VARIATION 
	

F3H-D1 {10823}.  2DL {10823}.  v:  CS {10823}.  ma:  Xgwm877-2D  – 1.8 cM – F3H-
D1/Xgwm1264-2D – 22.7 cM – Xgwm301-2D {10823}. 	
ALLELIC VARIATION 

 
F3H-2 
F3H-B2 {10823}.  2BL {10823}.  v:  CS {10823}.  ma:  Xgwm1070-2B – 30.1 cM – F3H-B2 {10823};  
Located in the terminal region near Xgwm1027-2B {10823}. 
ALLELIC VARIATION 	
 
2.2.39. Zeta-carotene desaturase	
ZDS-1 
ZDS-A1 {10905}.  2A {10905}.  tv:  Langdon {10905}. 	
 
ZDS-B1 {10905}.  2B {10905}.  tv:  Langdon {10905}.  
	

ZDS-D1 {10906}.  2DL {10906}.  v:  CS {10906}. 	
Zds-D1a {10906}.  [TaZDS-D1a {10906}].  v:  CA9632 {10906};  Many Chinese wheats and 80 
CIMMYT lines {10906}. 
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Zds-D1b {10906}.  [TaZDS-D1b {10906}].  v:  Ning 99415-8 {10906};  Zhengzhou 9023 {10906};  
Zhongyou 9507 {10906};  Zhoumai 13 {10906}. 
Cv. Zhongyou 9507 has lower yellow flour pigment content, preferred for Chinese steamed bread and dry 
Chinese noodles. A QTL in the Zds-D1a region explained 18.4% of the variation in yellow pigment 
content in Zhongyou 9507/CA 9632 {10906}. 

	
2.2.40. Carotenoid beta-hydroxylase (non-heme di-iron type)	
HYD are non-heme di-iron b-hydroxilases that act primarily on b-carotene.	
HYD-1 
HYD-A1 {10913}.  2AL {10913}.  tv:  Kronos {10913}.  v:  UC1041 {10913}. 

 	
HYD-B1 {10913}.  2BL {10913}.  tv:  Kronos {10913}.  v:  UC1041 {10913}. 

 	
HYD-D1 {10913}.  2DL {10913}.  tv:  Kronos {10913}.  v:  UC1041 {10913}. 

 
HYD-2	
HYD-A2 {10913}.  5AL {10913}.  tv:  Kronos {10913}.  v:  UC1041 {10913}. 
	

HYD-B2 {10913}.  4BL {10913}.  tv:  Kronos {10913}.  v:  UC1041 {10913}. 
	

HYD-D2 {10913}.  4DL {10913}.  tv:  Kronos {10913}.  v:  UC1041 {10913}. 	
 
2.2.41. Lycopene-zeta-cyclase 
Catalyzes the conversion of lycopene to zeta-carotene, a step in the lutein pathway that leads to yellow 
flour colour.  
e-LCY-A1 [{10654}].  E-LCY3A {10654}.  3A {10654}. 
eLCY-A1a {11713}.  v:  Chinese Spring (11713{; WAWHT2074 {11713}.  GenBank EU649785. 
eLCY-A1b {11713}. v:  Ajana {11713}.  GenBank JX288762. 
Alleles a and b were distinguished by a CAPS marker based on a SNP at position 2,028 bp. This 
difference was associated with differences in b flour colour in some Australian accessions {11713}. 
 
e-LCY-B1 [{10654}].  E-LCY3B {10654}.  3B {10654}.  GenBank EU649786. 
 
e-LCY-D1 [{10654}].  E-LCY3A {10654}.  3D {10654}.  GenBank EU649787. 
 
2.2.42 Dehydration-responsive element (DREB) proteins; Dehydration response factors (DRF) 
DREB genes with an ER EBP/AP2 binding domain, nearby Ser/Thr-rich region and N-terminal nuclear 
localization signal are a large family of transcription factors induced by abiotic stress. 
DREB-A1 [{11718}].  3AL {11718}].   
 
DREB-B1 [{11718}].  3BL {11718}].  ma:  Xmwg818-3B – 27.3 cM – DREB-B1 – 11.2 cM – Xfbb11-3B 
{11718}. 
Dreb-B1a [{11718}].  v:  Opata 85 [{11718}]. 
Dreb-B1b [{11718}].  v:  Synthetic W7984 [{11718}]. 
 
DREB-D1 [{11718}].  3DL {11718}.   
 
2.3. Endosperm storage proteins	
2.3.1. Glutenins	
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These are heterogeneous mixtures of proteins comprising subunits linked by disulfide bonds. 'A' are high-
molecular-weight (HMW) and 'B', 'C' and 'D' are low-molecular-weight (LMW) subunits.	
Using proteomic analysis of 2D gels of seed storage proteins in 39 ditelocentric lines of cv. CS, 105 
protein spots were resolved {03129}. Locations of structural genes controlling 26 spots were identified in 
10 chromosomal arms (4 on 1BL, 5 on 1BS, 4 on 1DL, 4 on 1DS, 2 on 6AS, 3 on 6BS, 1 on 6DL, 1 on 
6DS, 1 on 3BS and 1 on 3BL). Multiple regulators of the same protein located on various chromosome 
arms were observed. Two novel subunits, named 1Bz and 1Dz, were found to have very similar structures 
to HMW glutenin subunit 12 (encoded by Glu-D1-2a - see the relevant list below) and were located to 
chromosome arms 1BL and 1DL, respectively.	
PCR amplification of genomic DNA was used to isolate three LMW glutenin genes in cultivar Chinese 
Spring, named LMWG-MB1, LMWG-MB2 and LMWG-MB3 {01101}. The deduced amino-acid 
sequences showed a high similarity between these ORFs and with those of other LMW glutenin genes. 
The authors state that the study provided direct evidence that insertions and/or deletions provide a 
mechanistic explanation for the allelic variation, and hence the resultant evolution, of prolamin genes, and 
comment on relationships with gamma-secalins and beta-hordein families. Single-base substitutions at 
identical sites generate premature stop codons in both LMWG-MB2 and LMWG-MB3, indicating that 
these clones are pseudogenes. 
	
86.3.1.1. GLU-1	
The GLU-1 loci, all of which are compound, encode HMW glutenin subunits.	
Each GLU-1 locus in hexaploid wheat contains two genes, the products of which were described as 'x-
type' and 'y-type' based on differences in molecular weight and isoelectric point {1118}.	
Other evidence has shown that these gene products differ in electrophoretic fingerprint pattern {1124} 
and cysteine content {1028}, and the genes themselves differ in nucleotide sequence {1470, 1433, 373}.	
Although early evidence suggested up to 6 genes in total at each locus {1471}, {373], it appears likely 
that only a single copy of each gene is present at the 1AL, 1BL, and 1DL loci {495}.	
No 'y-type' protein from the GLU-A1 locus has been demonstrated in hexaploid wheat {1118}, although 
they are found in diploid wheats {1535}, {798}, and sequencing experiments have shown the presence of 
two stop codons in the transcribed portion of the gene {10088}. Definitive evidence that subunit 21* 
{602}, which has a mobility close to that of subunit 21, is a 'x-type' protein rather than a 'y-type' protein 
has not been obtained. The gene coding for 'x-type' proteins within GLU-A1 is also often silent {1118}, 
{420}.	
The symbols for the genes within the GLU-1 loci coding for 'x-type' and 'y-type' proteins will be GLU-1-1 
and GLU-1-2, respectively, rather than GLU-1x and GLU-1y {1470}. The genes are closely linked but 
recombination has been observed between GLU-B1-1 and GLU-B1-2 with a frequency of 3 in 3,450 
{1117}. The gene order, relative to the centromere, has not been ascertained.	
The subunit nomenclature used is that devised in {1116}; however, an alternative system based upon 
molecular weight was proposed in {1068}. A system of naming the GLU-A1-1, GLU-A1-2, GLU-B1-1 
and GLU-B1-2 alleles in T. turgidum var. dicoccoides is given in {796}. 	
In {00116}, a comparison between spelt wheats (T. spelta) and bread wheat was carried out for the 
glutenins using a nomenclature system described in {00117}.	
The GLU-1 loci may be recognised by the DNA probe pTag1290 {1471} and probes pWHE3 (Ax2*), 
γWHE4 (Ay), γWHE5 (Bx7), γWHE6 (By9), pWHE2 (Dx5) and pWHE1 (Dy10) {03144}. Individual 
GLU-1-1 loci on 1A, 1B and 1D and the GLU-1-2 loci may be recognised by specific primers {263}.	
In {00105}, the evolution of the high molecular weight glutenin loci of the A, B, D and G genomes of 
wheat was explored; 30 partial allele sequences were compared, designated by Greek letters (alpha, beta, 
gamma, etc.) (5 of which were cited as Schlumbaum, pers. comm.; the remaining 25 were deposited as 
GenBank, accession nos. X98583-X98592, X98711-X98715 and Y12401-Y12410). These partial alleles 
derive from all six GLU-1-1 and GLU-1-2 loci in current-day samples taken from seven species of wheat, 
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as well as from DNA extracted from charred grain of two samples from archaeological excavations, dated 
3000 and 5000 years old, respectively.	
Following the first listing which considers the GLU-1 set for hexaploid wheat as a single locus, there is a 
provisional listing based on x- and y- type glutenins. These are not referenced. 	
	
A nomenclature system for prolamin banding patterns of triticale was proposed in {03139}. Extensive 
allelic variation in triticale at GLU-A1, GLU-B1, GLU-R1 and GLI-R2 loci was reported in {03121}. 
 
GLU-A1 {1125}, {780}.  [Glt-A1 {420}, Glu 1A {1415}, Glt-A2 {420}].  1AL {1125}, {781}. 1A {780}.  
s:  CS*/Hope 1A {1125}.  v:  CS {781}, {780};  various {420}. 	
Primers were designated that enabled Ax2* to be distinguished from Ax1 or Ax-null {10641}.	
Glu-A1a {1116}.  1 {1116}.  v:  Hope. 	
Glu-A1b {1116}.  2* {1116}.  v:  Bezostaya 1. 	
Glu-A1c {1116}.  Null allele {1116}.  v:  CS. 	
Glu-A1d {1535}.  v:  V74, Spain {1115}. 	
Glu-A1e {1535}.  v:  132c, Poland {1115}. 	
Glu-A1f {1535}.  v:  112-29, Sudan {1115}. 	
Glu-A1g {1535}.  v:  Landrace 1600. 	
Glu-A1h {1527}.  [GLU-A1-I {1527}].  tv:  PI 94683, USSR, T. dicoccum. 	
Glu-A1i {1527}.  [GLU-A1-II {1527}].  tv:  CI 12213, India, T. dicoccum; Lambro {1523}. 	
Glu-A1j {1527}.  [GLU-A1-III {1527}].  1' {125}.  tv:  PI 352359, Germany, T. dicoccum. 	
Glu-A1k {478}.  26 {478}.  v:  BT-2288 {478}. 	
Glu-A1l {847}.  tv:  Chinook, Canada. 	
Glu-A1m {1069}.  tv:  Nugget Biotype 1, Canada, T. durum. 	
Glu-A1n {1526}.  [Glu-A1m {959}, Glu A1-IV {1526}].  1' {125}.  tv:  Corado, Portugal {1526}. 	
Glu-A1o {1526}, {125}.  [Glu A1-V {1526}, {125}, Glu-A1n {959}].  2** {125}.  tv:  Aric 581/1 {125};  
PI 61189 {1525};  USSR. 	
Glu-A1p {1146}.  3* {1146}.  v:  David 1. 	
Glu-A1q {125}.  [Glu A1VI {125}].  2*** {125}.  tv:  Melianopus 1528. 	
Glu-A1r {1232}.  39+40 {1232}.  i:  T. thaoudar IPSR 1020006/6*Sicco. 	
Glu-A1s {1231}.  41+42 {1231}.  i:  T. thaoudar G3152/6*Sicco. 	
Glu-A1t {602}.  21* {602}.  v:  W29323, W3879, W31169. 	
Glu-A1u {02106}.  2*B {02106}.  v:  Bankuti 1201. 	
The allele designated Glu-A1u and Glu-A1-1u in the appropriate list below encodes a high molecular 
weight glutenin subunit (denominated 2*B) that is identical to subunit 2* apart from one amino acid 
difference involving the exchange of serine for cysteine (which itself is due to a C to G point mutation at 
the 1181 bp point of the coding region of 2*). The authors of {02106} suggest that the additional cysteine 
residue facilitates the formation of further disulphide bonds (cf. the 1Dx5 subunit) which might lead to an 
improvement in gluten quality characters. 
Glu-A1v [{03137}].  [Glu-A1-VII {03137}]. VII {03137}.  v:  Emmer accession PI 308879 {03137}. 
Glu-A1w {10327}.  2.1* {10327}  v:  KU-1094, KU-1026, KU-1086, Grado, KU-1139 {10327}. 	
Glu-A1x {10327}.  2' {10327}.  v:  TRI14165/91 {10327}.  
The alleles formerly designated t to x in {959} were renamed x to ab because allele t in {847} and alleles 
u, v and w in {1069} had precedence. 
Glu-A1y {10535}.  [2'' {10535}].  v:  211.12014 {10535}.  
Glu-A1z {10805}.  [Glu-A1ma {10805}].  dv:  PI 191146, T. monococcum ssp. monococcum {10805}.  
Glu-A1aa {10805}.  [Glu-A1mb {10805}].  dv:  PI 190946, T. monococcum L. ssp. monococcum 
{10805}. 	
Glu-A1ab {10805}.  [Glu-A1mc {10805}].  dv:  PI 191098, T. monococcum ssp. monococcum {10805}. 	
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Glu-A1ac {10806}.  [Glu-Au1-I {10806}].  dv:  PI 428319 {10806}. 	
Glu-A1ad {10806}.  [Glu-Au1-II {10806}].  dv:  PI 428232 {10806}. 	
Glu-A1ae {10806}.  [Glu-Au1-III {10806}].  dv:  PI 428240 {10806}. 	
Glu-A1af {10806}.  [Glu-Au1-IV {10806}].  dv:  PI 428335 {10806}. 	
Glu-A1ag {10806}.  [Glu-Au1-V {10806}].  dv:  PI 538741 {10806}. 	
Glu-A1ah {10806}.  [Glu-Au1-VI {10806}].  dv:  PI 428230 {10806}. 	
Glu-A1ai {10806}.  [Glu-Au1-VII {10806}].  dv:  PI 428253 {10806}. 	
Glu-A1aj {10806}.  [Glu-Au1-VIII {10806}].  dv:  PI 427328 {10806}. 	
Glu-A1ak {10806}.  [Glu-Au1-IX {10806}].  dv:  PI 428327 {10806}. 	
Glu-A1al {10806}.  [Glu-Au1-X {10806}].  dv:  PI 428256 {10806}. 	
Glu-A1am {10806}.  [Glu-Au1-XI {10806}].  dv:  PI 428224 {10806}. 	
Glu-A1an {10806}.  [Glu-Au1-XII {10806}].  dv:  PI 428228 {10806}. 	
Glu-A1ao {10806}.  [Glu-Au1-XIII {10806}].  dv:  PI 538724 {10806}. 	
Glu-A1ap {10806}.  [Glu-Au1-XIV {10806}].  dv:  TRI 6734 {10806}. 	
Glu-A1aq {10806}.  [Glu-Au1-XV {10806}].  dv:  TRI 11494 {10806}. 	
Glu-A1ar {10806}.  [Glu-Au1-XVI {10806}].  dv:  TRI 11495 {10806}. 	
Glu-A1as {10806}.  [Glu-Au1-XVII {10806}].  dv:  PI 428217 {10806}. 	
Glu-A1at {10806}.  [Glu-Au3-XVIII {10806}].  dv:  PI 428225 {10806}. 	
Glu-A1au {10806}.  [Glu-Au3-XIX {10806}].  dv:  PI 538733 {10806}. 	
Glu-A1av {10806}.  [Glu-Au3-XX {10806}].  dv:  PI 428196 {10806}. 	
Glu-A1aw {10806}.  [Glu-Au3-XXI {10806}].  dv:  PI 538724 {10806}. 	
Glu-A1ax {10806}.  [Glu-Au3-XXII {10806}].  dv:  PI 428191 {10806}. 	
Glu-A1ay {10806}.  [Glu-Au3-XXIII {10806}]. dv:  TRI 6734 {10806}. 	
Glu-A1az {10806}.  [Glu-Au3-XXIV {10806}].  dv:  TRI 11496 {10806}.  
Glu-A1ba {11106}.  [Glu-A1g {11106}].  1.1 {11106}.  v:  Barbela 28 {11106}.  
The sequence encoding subunit 1Ax1.1 shows high nucleotide identity with other GLU-A1 alleles, with 
the main difference being an insertion of 36 amino acids in the central repetitive region. It is the largest 
and most acidic subunit currently known at this locus and has been implicated in high dough extensibility 
in some cv. Barbela wheat lines, although this contrasts with other data showing a similar effect to that of 
subunit 1Ax1 {11107}. 
Glu-A1bb [{11540}].  tv:  T. turgidum ssp. turgidum BGE019307 {11540}.  
The importance of the HMW glutenin subunits for bread-making quality was first noted from 
observations in wheat cultivars of related pedigree on the effects of the presence of subunit 1 encoded by 
Glu-A1a {0197}, effects that have repeatedly been confirmed since (for example {0198, 0199, 01100}).	
There is a possibility that GLU-A1 alleles i, j {1527} and k {478} correspond to alleles d, e, f or g {1535} 
that were published shortly earlier. Glu-A1m [{1526}] was changed to n, because the m allele in {1069} 
has precedence. Allele n [{1526}] was changed to o. An earlier reference to an allele designated Glu-A1d 
{1411} was withdrawn {1114}. There appears to be a minor band associated with subunit 2 encoded by 
Glu-A1b {1516}; this may be the same as a band named A5 in {420}.	
Six combinations involving 5 HMW subunits [1A (u-z)] are listed in {420}, from a study of 109 
genotypes including representatives of botanical varieties. Numerous alleles in T. turgidum var. 
dicoccoides populations, 12 at GLU-A1-1 and 3 at GLU-A1-2, were described in {798}. In a further study 
using different germplasm of this species {205}, 14 alleles at GLU-A1 were observed, including 12 not 
previously found; the 15 alleles included up to 15 alleles at GLU-A1-1 (with up to 10 not previously 
observed), and 5 alleles at GLU-A1-2 (with 4 not previously observed) (numbers take the null allele into 
account). The uncertainty in numbers is due to the very similar electrophoretic mobilities of some of the 
subunits compared with others observed either in this study or previously.	
In a study including emmer accessions (T. dicoccum) {00115}, new subunits named 1+ and 2- were found 
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in accessions MG4378/1 and MG5380/1, respectively, and provisionally assigned to GLU-A1. Until 
confirmed, they are not included in the GLU-A1 list.	

 
GLU-B1.  [Glt-B1 {420}, Glu 1B {1415}, Glt-B3 {420}, Glt-B2 {420}].  1BL {1125}, {107}, {780}.  v:  
CS. 	
Glu-B1a {1116}.  7 {1116}.  v:  Flinor. 	
Glu-B1b {1116}.  7+8 {1116}.  v:  CS.  
Subunit 8 of Glu-B1b (7+8) is more acidic in isoelectric focusing than subunit 8 of Glu-B1d (6+8) {555}. 
Variation in the mobility of subunits designated 7 was observed {1118}, according with later observations 
{714}, {1069}. The subunit encoded by Glu-B1v {1069} has the same mobility as subunit 7 of Glu-B1c 
(7+9); it could be the same subunit as 7' encoded by Glu-B1ai [{714}]. Variation in the staining intensity 
of subunit 7 in different lines was observed {1069}; a duplication of the gene encoding subunit 7 
probably occurred in cultivar 'Red River 68', as evidenced by increased intensity of the subunit in SDS-
PAGE and by approximately doubled intensity of restriction fragments carrying the gene in Southern 
blotting {9989}.	
Glu-B1c {1116}.  7+9 {1116}.  v:  Bezostaya 1. 	
Glu-B1d {1116}.  6+8 {1116}.  v:  Hope.  tv:  Kronos	{11497}.	
Simultaneous and individual truncation mutations were found in Glu-B1x and Glu-B1y subunits in Kronos 
mutant lines {11497}. Germplasm was accessioned as PI 692251 (T4-0865, Bx6 single mutant), PI 
692253 (T4-2197, By8 single mutant) and PI 692252 (T4-1280, Bx6 + By8 combined mutant).	
Glu-B1e {1116}.  20 {1116}.20x+20y {03133}.  v:  Federation. 	
Glu-B1f {1116}.  13+16 {1116}.  v:  Lancota (rare).  
Primers were designed to distinguish subunit By8 from By8*, for distinguishing subunit By9-containing 
alleles from non-By9 alleles, and for diagnosing the presence of Glu-B1f.	
Glu-B1g {1116}.  13+19 {1116}.  v:  NS 335 (rare). 	
Glu-B1h {1116}.  14+15 {1116}.  v:  Sappo (rare). 	
Glu-B1i {1116}.  17+18 {1116}.  v:  Gabo.  
Although alleles Glu-B1i encoding subunits 17+18, and Glu-B1bc encoding subunit 6+17, apparently 
share a common subunit (Ax17 and By17, respectively) it is not clear that this is in fact true. 	
Glu-B1j {1116}.  21 {1116}.21x+21y {3116}.  v:  Dunav (rare);  Foison {03116}. 	
Glu-B1k {1116}.  22 {1116}.  v:  Serbian (rare). 	
Glu-B1l {778}.  23+24 {778}.  v:  Spica D. 	
Glu-B1m {1527}.  [GLU-B1-I {1527}].  tv:  PI 94640, Iran, T. dicoccum. 	
Glu-B1n {1527}.  [GLU-B1-II {1527}].  tv:  PI 355505, Germany, T. dicoccum. 	
Glu-B1o {1527}.  [GLU-B1-III {1527}].  tv:  PI 352354, Ethiopia, T. dicoccum. 	
Glu-B1p {1527}.  [GLU-B1-IV {1527}].  23+18 {125}.  tv:  Dritto {1523};  Ethiopia, PI 94655, T. 
dicoccum{1527}.  
Subunit 23 of Glu-B1p (23+18) and Glu-B1ad (23+22) {125} may not be the same subunit as that 
numbered 23 of Glu-B1l (23+24) {778}.	
Glu-B1q {1527}.  [GLU-B1-V {1527}].  tv:  PI 94633, Morocco, T. dicoccum. 	
Glu-B1r {1527}.  [GLU-B1-VI {1527}].  19 {125}.  tv:  PI 946669, Bulgaria, T. dicoccum {1527};  
Lambro {1523}. 	
Glu-B1s {478}.  7+11 {478}.  v:  BT-2288.  
Subunit 11 of Glu-B1s (7+11) was so numbered in {478} because its mobility is the same as one of the 
subunits encoded by a GLU-D1 allele (2+11) described in {755}.	
Glu-B1t {847}.  v:  Supreza, Canada. 	
Glu-B1u {1069}.  7*+8 {1146}.  v:  Owens {1069};  Fiorello {1146}. 	
Glu-B1v {1069}.  v:  Mondor. 	
Glu-B1w {1069}.  6*+8* {1146}.  v:  Dawbull {1069};  Sieve {1146}. 
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Possible low gene expression at Glu-B1 was noted for Glu-B1w, where subunits 6*+8* stain very faintly 
{1146}. 	
Glu-B1x {1526}.  [Glu-B1-VII {1526}, Glu-B1t {959}].  tv:  Canoco de Grao Escuro, Portugal, T. 
turgidum. 	
Glu-B1y {1526}.  [Glu-B1-VIII {1526}, Glu-B1u {959}].  tv:  Tremez Mollez, Portugal, T. durum. 	
Glu-B1z {1524}.  [Glu-B1-IX {1524}, Glu-B1v {959}].  7+15 {125}.  tv:  Roccia, Italy, T. durum 
{1523},{125}.  
Glu-B1z carried by Roccia was numbered (7+15) and named Glu-B1-XII in {125}; however, the earlier 
name, Glu-B1-IX {1523}, has precedence; also, {1523} states that the Glu-B1-IX subunit of faster 
mobility is slightly slower than subunit 15.  
Glu-B1aa {1524}.  [Glu-B1w {959}, Glu-B1-X {1524}].  tv:  Quaduro, Italy, T. durum. 	
Glu-B1ab {1523}.  [Glu-B1x {959}, Glu-B1-XI {1523}].  tv:  Athena, Italy, T. durum. 	
Glu-B1ac {125}.  [Glu B1XIII {125}].  6+16 {125}.  tv:  Espa l8914, T. durum. 	
Glu-B1ad {125}.  [Glu B1XIV {125}].  23+22 {125}.  tv:  Greece 20, T. durum. 	
Glu-B1ae {1146}.  18* {1146}.  v:  David. 	
Glu-B1af {1146}.  26+27 {1146}.  v:  Cologna 1.  
One of the Glu-B1af subunits was numbered 26 in {1146}; 26 was previously used to number the subunit 
encoded by Glu-A1k {478}.  	
Glu-B1ag {1146}.  28+29 {1146}.  v:  Forlani.  
Subunit 28 of Glu-B1ag (28+29) {1146} is referred to as subunit 19* in {1068}.	
Glu-B1ah {782}.  Null allele {782}.  v:  Olympic mutant. 	
Glu-B1ai {714}.  7' {714}.  v:  Adonis. 	
Glu-B1aj {759}.  8 {759}.  v:  AUS 14444, Afghanistan. 	
Glu-B1ak {899}.  7*+8* {899}.  v:  Norstar. 	
Glu-B1al {899}.  7OE+7OE+8* {899}.  v:  Benkuti 1201; Glenlea {899};  Klein Universal II {10196}; 
Tezanos Pintos Precoz {10196}; Tobari 66 {10196}. 	
Other genotypes are listed in {10196}. 	
Many of the cultivars carrying the over-expressed subunit 7 encoded by Glu-B1al show %UPP values that 
transcend the normal range observed for cultivars that lack this subunit {10089}, which presumably is 
associated in some way with its unusually high amount in the grain. The underlying cause of the increased 
amount may be due to an increased transcriptional rate compared to other alleles, for which a known 
difference in promoter sequence compared to other alleles expressing normal levels of this subunit 
{10090} may be responsible.	
However, there is evidence that over-expression is due to duplication of subunit 7 {10196}. Regarding to 
subunit 8*, evidence was presented to indicate that in Glenlea, one of the standard cultivars for the allele, 
this subunit is the same as subunit 8 {10808}.	
Glu-B1am {1229}.  18 {1229}.  v:  Royo. 	
Glu-B1an {1229}.  6 {1229}.  v:  BG-2013. 	
Glu-B1ao {1229}.  7+16 {1229}.  v:  BG-3545. 	
Glu-B1ap {1229}.  30+31 {1229}.  v:  Marinar. 	
Glu-B1aq {1229}.  32+33 {1229}.  v:  BG-1943. 	
Glu-B1ar {1229}.  34+35 {1229}.  v:  Jeja Almendros. 	
Glu-B1as {1229}.  13 {1229}.  v:  PI 348435. 	
Glu-B1at {1229}.  13+18 {1229}.  v:  PI 348449. 	
Glu-B1au {1032}.  37 {1032}.  v:  Shedraya Polesja. 	
Glu-B1av {03116}.  [Glu-B1r {3116}].  7-18 {03116}.  v:  Triticor hexaploid triticale {03116}. 	
Glu-B1aw {03116}.  [Glu-B1s {03116}].  6.8-20y {03116}.  v:  Carnac hexaploid triticale {03116}. 	
Glu-B1ax {03137}.  [Glu-B1-XV {03137}].  XV {03137}.  tv:  PI-190922, BG-012302 emmer {03137}. 	
Glu-B1ay {03137}.  [Glu-B1-XVI {03137}].  XVI {03137}.  tv:  PI 277681 emmer {03137}. 	
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Glu-B1az {03137}.  [Glu-B1-XVII {03137}].  XVII {03137}.  tv:  PI 348620 emmer {03137}. 	
Glu-B1ba {03122}.  [Glu-B1-XVIII {03122}].  13*+16 {03122}.  v:  PI 348767 spelt {03122}. 	
Glu-B1bb {03122}.  [Glu-B1-XLX {03122}].  6+18' {03122}.  v:  PI 348631 spelt {03122}. 	
Glu-B1bc {03138}.  6+17 {03138}.  v:  ICDW 20975 {03138}. 	
Glu-B1bd {03140}.  20+8 {03140}.  v:  Abadja {03140}. 	
Glu-B1be {10186}.  tv:  T. dicoccoides Israel-A {10186}. 	
Glu-B1bf {10186}.  tv:  T. dicoccoides PI 481521 {10186}. 	
Glu-B1bg {10186}.  tv:  T. dicoccoides PI 478742 {10186}. 	
Glu-B1bh {10327}.  13+22 {10327}.  v:  Grado {10327};  KU-1026 {10327};  KU-1086 {10327};  KU-
1094 {10327};  KU-1139 {10327}. 	
Glu-B1bi {10327}.  13+22.1 {10327}.  v:  KU-1135 {10327}. 	
Glu-B1bj {10327}.  14*+15* {10327}.  v:  TRI11553/92 {10327}. 	
Glu-B1bk {10327}.  [Glu-B1be  {10327}].  6.1+22.1 {10327}.  v:  Hercule {10327};  Rouguin {10327};  
Schwabenkorn {10327};  SP3 {10327};  Steiners Roter Tiroler {10327}. 	
Glu-B1bl {10327}.  [Glu-B1bf {10327}].  6.1  {10327}.  v:  KU-3418 {10327};  KU-3446 {10327};  
TRI4613/75 {10327}.  
Glu-B1bm {10327}.  [Glu-B1bg {10327}].  13*+19* {10327}.  v:  KU-3410 {10327};  Renval {10327};  
Rechenbergs Fruher Dinkel {10327};  Schlegel {10327};  SP1 {10327};  TRI9885/74 {10327};  Zeiners 
WeiSer  {10327}. 	
Glu-B1bn {10425}.  7+19 {10425}.  v:  Triticales: Lasko, Dagno, Tewo, Vision, Dato {10425}. 	
Glu-B1bo {10425}.  7+26 {10425}.  v:  Triticales: Presto, Modus {10425}. 	
The number 26 was also used to designate a subunit encoded by Glu-A1k and Glu-A1-1k.	
Glu-B1bp {10643}.  7**+8 {10643}.  v:  XM1368-2 {10643};  XM1404-2 {10643}. 	
Glu-B1bq {10643}.  7+8** {10643}. 	
Glu-B1br {10807}.  7.1+7.2+8* {10807}.  v:  H45 {10807}. 	
Glu-B1bs {10807}.  7.3+7OE+8* {10807}.  v:  VQ0437 {10807}. 	
Glu-B1bt {10809}.  17'+18' {10809}.  tv:  TGR-214 {10809}. 	
Glu-B1bu {10809}.  17'+18* {10809}.  tv:  TGR-2246 {10809}. 	
Glu-B1bv {10809}.  13**+8* {10809}.  tv:  TGR-003 {10809}. 	
Glu-B1bw {10809}.  8' {10809}.  tv:  TGR-244 {10809}. 	
Glu-B1bx {10810}.  7+17 {10810}.  v:  CWI-59797, T. aestivum var. ferrugineum {10810}. 	
Glu-B1by {10808}.  7b*+8 {10808}.  v:  Eshimashinriki {10808}. 	
Glu-B1bz {10808}.  7OE {10808}.  v:  Attila {10808};  Darius {10808};  Cappelle-Desprez {10808};  
Festin {10808};  Petrel {10808}. 	
Glu-B1ca {10808}.  6+8b* {10808}.  v:  Appolo {10808};  Brimstone {10808};  Clement {10808};  
Nidera Baguette 10 {10808};  Ruso {10808};  Pepital {10808};  Thesee {10808}. 	
Glu-B1cb {10808}.  7OE+8 {10808}.  v:  ACA 303 {10808};  Courtot {10808};  Demai 3 {10808};  
Shinchunaga {10808}. 	
Glu-B1cc {10808}.  7OE+8a* {10808}.  v:  Klein Jabal 1 {10808};  Pioneer {10808};  ProINTA {10808};  
Redemon {10808}. 	
Glu-B1cd {10808}.  7OE+8b* {10808}.  v:  ACA 601 {10808}. 	
Glu-B1ce {10808}.  7+8a* {10808}.  v:  Jing 411 {10808};  Tasman {10808}. 	
In a study including emmer wheats (T. dicoccon) {00115}, new subunits named 7+ (in accessions 
MG5400/5 and MG30835/1), 8- (in accessions MG5400/5, MG30835/1, MG5333/1 and MG5507) and 
13- (in accession MG5282/2) were found and provisionally assigned to Glu-B1. Until confirmed, they are 
not included in the Glu-B1 list. 
Glu-B1cf {11490}.  20*+33* {11490}.  tv:  T. turgidum ssp. durum Mexican landrace accession 22 
(CWI52215) {11490}. 
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Glu-B1cg {11490}. 13+16* {11490}.  tv:  T. turgidum ssp. durum Mexican landrace accession 19 
(CWI52200) {11490}. 
Glu-B1ch {11490}.  7+22 {11490}.  v:  T. aestivum ssp. aestivum cv. Wilbur (CW13735) {11490}. 
Glu-B1ci {11490}.  7+22* {11490}.  tv:  T. turgidum ssp. durum Iranian landrace accession 51 
(CWI57280) {11490 
Glu-B1cj {11490}.  13*+15* {11490}.  tv:  T. turgidum ssp. durum Iranian landrace accession 46 
(CWI56913) {11490}. 
Glu-B1ck {11491}.  15 {11491}.  v:  T. aestivum ssp. compactum PI 157920 {11491}. 
Glu-B1cl {11491}.  14+8 {11491}.  v:  T. aestivum ssp. macha PI 272554, PI 278660, PI 290507 
{11491}. 
Glu-B1cm {11491}.  6+8* {11491}.  v:  T. aestivum ssp. macha PI 428177 {11491}. 
Glu-B1cn {11491}.  17 {11491}.  v:  T. aestivum ssp. sphaerococcum CItr 4531, PI 272581, PI 282452 
{11491}. 
Glu-B1co {11493}.  20+22* {11493}.  tv:  T. turgidum ssp. durum Moroccan landraces MGB-2963, 
MGB-3152 {11493}. 
Glu-B1cp {11493}.  20* {11493}.  tv:  T. turgidum ssp. durum North American cv. MGB-66023 
{11493}. 
Glu-B1cq [{11492}].  7+8* {11492}.  tv:  T. turgidum ssp. turgidum BGE048494 {11492}. 
Glu-B1cr [{11492}].  8*.1+20y {11492}.  tv:  T. turgidum ssp. durum BGE045649 {11492}, 
BGE047535 {11492}. 
Glu-B1cs [{11492}].  20x {11492}.  tv:  T. turgidum ssp. durum BGE045673 {11492}. 
Glu-B1ct [{11540}].  6+(8) {11540}.  tv:  T. turgidum ssp. durum Langdon {11540}. 

 
GLU-D1 {1125,1100}.  [Glt-D2 {420}, Glu 1D {1415}, Glt-D1 {420}].  1DL 
{150},{1125},{107},{780},{1100}.  v:  CS.  
Five combinations involving 6 HMW subunits [1D (p-t)] are listed in {420}. Eleven additional GLU-D1 
alleles in T. tauschii were described {755}. Seven transfers of Glu-D1a and 10 of Glu-D1d (5+10) from 
chromosome 1D to chromosome 1A in triticale were described {846}. The subunit 2.2* encoded by Glu-
D1al and Glu-D1-1m in the appropriate list below has an unusually high Mr. Comparison of its N-
terminal sequence and amino acid composition with those of subunit 2 (encoded by Glu-D1-1a) indicated 
that its greater Mr could be due to the presence of a larger central repetitive domain, although further 
evidence suggested that this does not affect the conformational properties of the subunit {02107}. The 
alleles originally designated Glu-D1w (encoding 'subunits' 2 (or 2t denoting its origin in the Ae. tauschii 
genome) +T1+T2), Glu-D1af (encoding 3 (or 3t)+T1+T2) and Glu-D1ag (encoding 1.5 (or1.5t)+T1+T2) 
share the component T1 that was originally classified as a HMW glutenin. However, it has since been 
shown {02108} that this protein is soluble in aqueous ethanol, casting doubt upon this classification. 
More recently, it was shown {02109}, from one- and two-dimensional gel electrophoresis based upon 
SDS-PAGE and A-PAGE, and from N-terminal sequencing, that this protein is an omega-gliadin of 
unusually low electrophoretic mobility in SDS-PAGE, encoded by a locus located on the short arm of 
chromosome 1D, though distant (13.18 cM) from the principle gliadin-encoding locus on 1D, Gli-D1, and 
40.20 cM from the high molecular weight encoding locus, Glu-D1. The authors named the locus Gli-DT1 
(see Gliadins). Reference to T1 was consequently removed from the GLU-D1 list. As a consequence of 
this finding, allele Glu-D1w was reused for a distinct allele, and Glu-D1af was omitted and will be reused 
for a future allele, since the combinations of subunits that these alleles originally represented are no 
longer unique. In {03124}, null alleles were observed for both GLU-D1-1 and GLU-D1-2, which, 
naturally, are not necessarily the same as those previously reported for this locus, meaning that composite 
alleles involving them in this study and corresponding to combinations apparently already listed in the 
Catalogue, may, in fact, represent novel alleles. It was also found that certain subunits of apparently 
identical relative mobility in SDS-PAGE showed different surface hydrophobocities in RP-HPLC; and 
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the reverse situation was also observed (the same hydrophobicity, but different electrophoretic 
mobilities). It was shown {03126} that the relatively small size of a y-type HMW glutenin subunit, 
named 12.4t (encoded by Glu-D1-1t {03124} - see below) and carried by accession CPI 110750 of Ae. 
tauschii, is due to the deletion of blocks of repetitive motifs, amounting to approximately 200 amino 
acids, probably caused by unequal crossing-over	
Glu-D1a {1116}.  2+12 {1116}.  v:  CS.  

Primers were designated that enabled Dx2 to be distinguished from Dx5 and Dy10 from Dy12 
{10641}.	

Glu-D1b {1116}.  3+12 {1116}.  v:  Hobbit. 	
Glu-D1c {1116}.  4+12 {1116}.  v:  Champlein. 	
Glu-D1d {1116}.  5+10 {1116}.  v:  Hope. 	
Glu-D1e {1116}.  2+10 {1116}.  v:  Flinor (rare). 	
Glu-D1f {1116}.  2.2+12 {1116}.  v:  Danchi (rare). 	
Glu-D1f is present at high frequencies in wheats of southern Japan. Its presence may be associated with 
white salted noodle (Udon) quality {10573}.	
Glu-D1g {478}.  5+9 {478}.  v:  BT-2288.  
Subunit 9 of Glu-D1g (5+9) was so numbered in {478} because its mobility is the same as one of the 
subunits encoded by Glu-B1c (7+9).	
Glu-D1h {1145}.  5+12 {1145}.  v:  Fiorello, Italy. 	
Cultivar Fiorello is given as a standard for Glu-D1h encoding subunits 5+12 and for Glu-D1w encoding 
subunits 5*+10. An attempt to resolve this apparent conflict will be made in a future update.	
Glu-D1i {107}.  Null {107}.  v:  Nap Hal, Nepal. 	
Glu-D1j {1146}.  2+12*{1146}.  v:  Tudest. 	
Glu-D1k {421}.  2 {421}.  s:  CS/Timstein 1D. 
Glu-D1k {421} appears to have arisen as the result of a deficiency of subunit 12 from Glu-D1a (2+12); 
subunits 2 and 12 are referred to as D1 and D5 in {421}. 	
Glu-D1l {759}.  12 {759}.  v:  AUS 10037, Afghanistan. 	
Glu-D1m {759}.  10 {759}.  v:  AUS 13673, Afghanistan. 	
Glu-D1n {759}.  2.1+10 {759}.  v:  AUS 14653, Afghanistan. 	
Glu-D1o {755}.  2.1+13 {755}.  v:  AUS 14519, T. macha.  
One of the Glu-D1o subunits was numbered 13 in {755}; 13 was previously used to number a subunit 
encoded by Glu-B1f (13+16) and Glu-B1g (13+19) {1116}.	
Glu-D1p {1233}.  36 {1233}.  i: Iranian landrace accession 3048/5* Sicco. 	
Glu-D1q {124}.  2+11 {124}.  v:  Flinor. 	
Glu-D1r {1229}.  2.3+12 {1229}.  v:  PI 348465. 	
Glu-D1s {1032}.  38 {1032}.  v:  Leningradka. 	
Glu-D1t {668}.  43+44 {668}.  dv:  Ae. tauschii accession TA2450/2*. 	
Glu-D1u {836}.  2+10' {836}.  v:  Coker 68-15. 	
Glu-D1v {755}.  2.1+10.1 {755}.  dv: Ae. tauschii. 	
Glu-D1w {03124}.  5*+10 {03124}.  v:  Fiorello {03124}. 	
Note that the cultivar Fiorello is given as a standard for Glu-D1h encoding subunits 5+12 and for Glu-
D1w encoding subunits 5*+10. An attempt to resolve this apparent conflict will be made in a future 
update.	
Glu-D1x {755}.  2+T2 {755}.2t+12.2t {03124}.  dv:  Ae. tauschii. 	
Glu-D1y {755}.  3t+12.2t {03124}. 3+T2 {755}.  dv:  Ae. tauschii. 	
Glu-D1z {755}.  3+10 {755}.  dv:  Ae. tauschii. 	
Glu-D1aa {755}.  3+10.3 {755}.  dv:  Ae. tauschii. 	
Glu-D1ab {755}.  4.1+10 {755}.  dv:  Ae. tauschii. 	
Glu-D1ac {755}.  4+10 {755}.  dv:  Ae. tauschii. 	
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Glu-D1ad {755}.  5.1+10.2 {755}.  dv:  Ae. tauschii. 	
Glu-D1ae {1578}.  2.1t+12.2t {03124}. 2.1+T2 {1578}.  dv:  Ae. tauschii. 	
Glu-D1af.  Currently undesignated for reasons given in the preamble to this section.	
Glu-D1ag {1578}.  1.5+T2 {1578}. 1.5t+12.2t {03124}.  dv:  Ae. tauschii. 	
Glu-D1ah {1578}.  1.5+10 {1578}.  dv:  Ae. tauschii. 	
Glu-D1ai {1578}.  2.1+10.5 {1578}.  dv:  Ae. tauschii. 	
Glu-D1aj {1578}.  1.5+12 {1578}.  dv: Ae.  tauschii. 	
Glu-D1ak {1578}.  3+10.5 {1578}.  dv:  Ae. tauschii. 	
Glu-D1al {02107}.  2.2* {02107}.  v:  MG315. 	
Glu-D1am {03122}.  [Glu-D1-I {03122}].  2+12' {03122}.  v:  PI 348495 spelt {03122}. 	
Glu-D1an {03122}.  [Glu-D1-II {03122}].  2+12* {03122}.  v:  PI 348672 spelt {03122}. 	
Glu-D1ao {03122}.  [Glu-D1-III {03122}].  2.4+12 {03122}.  v:  PI 348473 spelt {03122}. 	
Glu-D1ap {03122}.  [Glu-D1-IV {03122}].  2.5+12 {03122}.  v:  PI 348572 spelt {03122}. 	
Glu-D1aq {03124}.  1.5t+10.1t {03124}.  dv:  Ae. tauschii. 	
Glu-D1ar {03124}.  2t+10.1t {03124}.  dv:  Ae. tauschii. 	
Glu-D1as {03124}.  1.5t+10.2t {03124}.  dv:  Ae. tauschii. 	
Glu-D1at {03124}.  3t+10.1t {03124}.  dv:  Ae. tauschii. 	
Glu-D1au {03124}.  2.1t+10.2t {03124}.  dv:  Ae. tauschii. 	
Glu-D1av {03124}.  2t+12.3t {03124}.  dv:  Ae. tauschii. 	
Glu-D1aw {03124}. 1t+10t {03124}.  dv:  Ae. tauschii. 	
Glu-D1ax {03124}.  1t+12t {03124}.  dv:  Ae. tauschii. 	
Glu-D1ay {03124}.  1t+10.1t {03124}.  dv:  Ae. tauschii. 	
Glu-D1az {03124}.  4t+12.2t {03124}.  dv:  Ae. tauschii. 	
Glu-D1ba {03124}.  1t+12.3t {03124}.  dv:  Ae. tauschii. 	
Glu-D1bb {03124}.  1.5t+11t {03124}.  dv:  Ae. tauschii. 	
Glu-D1bc {03124}.  1.5t+10.3t {03124}.  dv:  Ae. tauschii. 	
Glu-D1bd {03124}.  1t+11t {03124}.  dv:  Ae. tauschii. 	
Glu-D1be {03124}.  2.1t+12.4t {3124}.  dv:  Ae. tauschii. 	
Glu-D1bf {03124}. 2t+12.1t {03124}.  dv:  Ae. tauschii {03124}. 	
Glu-D1bg {03124}.  3t+10.2t {03124}.  dv:  Ae. tauschii. 	
Glu-D1bh {03124}.  4t+10.1t {03124}.  dv:  Ae. tauschii. 	
Glu-D1bi {03124}.  4t+10.2t {03124}.  dv:  Ae. tauschii. 	
Glu-D1bj {03124}.  5t+11t {03124}.  dv:  Ae. tauschii. 	
Glu-D1bk {03124}.  5t+10.1t {03124}.  dv:  Ae. tauschii. 	
Glu-D1bl {03124}.  5t+12.2t {03124}.  dv:  Ae. tauschii. 	
Glu-D1bm {03124}.  5*t+null {03124}.  dv:  Ae. tauschii. 	
Glu-D1bn {03124}. 5*t+12 {3124}.  dv: Ae. tauschii. 	
Glu-D1bo {10091}.  5'+12 {10091}.  v:  W958 {10091}. 	
This putative new allele encodes two subunits that have very similar electrophoretic mobilities compared 
to subunits 5+12 encoded by Glu-D1h, but analysis using the specific PCR primers for Dx5 described in 
{10092} and {10093} shows that the x-type subunit of Glu-D1bo, provisionally denominated 5' {10091}, 
does not appear to be the same protein as subunit 5 {10091}. Definitive evidence awaits sequencing 
information (See note to allele Glu-D1-1s). 
Glu-D1bp {10327}.  2.1'+12 {10327}.  v:  KU-1034 {10327}. 	
Glu-D1bq {10304}.  [Glu-D1bp(t) {10304}].  2.6+12 {10304}.  v:  Baidongmai {10304};  Hongdongmai 
{10304};  Hongkedongmai {10304};  Jinbaojin {10304}. 
The complete sequence of this subunit was determined {10319}. 
Glu-D1br {10426}.  5*t+10.1t {10426}.  tv:  Ae. tauschii TD81 {10426}. 	
Subunit 10.1t possesses a mobility slightly lower than subunit 10 in SDS-PAGE and its deduced amino 
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acid sequence is similar to subunit 12 (8 amino acid differences) {10426}; the authors used the complete 
coding sequence to make phylogenetic comparisons with 19 other subunits including both x-type and y-
type subunits and concluded that a Glu-1 gene duplication event occurred about 16.83 million years ago.  
Glu-D1bs {10642}.  1.6t+12.3t {10642}.  dv:  Ae. tauschii TD16 {10642}. 	
Glu-D1bt {10568}.  2.1t+12t {10568}.  v:  Syn 396{10568}. 
Glu-D1bu {10810}.  2'+12 {10810}.  v:  CWI-64806, T. aestivum var. aestivum {10810}. 	
Glu-D1bv {10810}.  2''+10 {10810}.  v:  CWI-65297, T. aestivum var. erythroleucon {10810}. 	
Glu-D1bw {10810}.  2''+12 {10810}.  v:  CWI-60509, T. aestivum var. graecum {10810}. 	
	

GLU-Agi1 {374}.  1Agi {374}.  ad:  Vilmorin 27/Th. intermedium.  
 
GLU-E1 {781}.  1ES {781}.  ad:  CS/E. elongata. 	
HMW glutenin y-type subunit Ee1.5 encoded by this locus was sequenced {10439} and compared with 
other y-type subunits, particularly subunit 1Dy10. It has major deletions in its middle region and is one of 
the smallest known HMW glutenin subunits. It has an additional Cys residue in the middle of the 
repetitive domain but lacks one Cys residue commonly found towards the end of this domain. These 
changes may influence inter- or intra-molecular disulphide bond formation.	
Four {10660, 10661} and 11 {10662} alleles were observed in Agropyron elongatum (Ee genome, 2n = 
10X = 70) and named Aex1 to Aex5 (producing x-type subunits) and Aey1 to Aey10 (producing y-type 
subunits). Aex4, Aey7 and Aey9 were very similar to three alleles in the diploid progenitor Lophopyrum 
elongatum {10439, 10663}. The C-terminal regions of three of the y-type subunits (products of Aey8, 
Aey9 and Aey10) were more similar to x-type subunits than to other y-type subunits {10662}. The subunit 
from Aex4 contained an additional cysteine residue, which may be associated with good processing 
quality in wheat introgression lines {10662}. Allele Aey-4 was a chimeric gene formed by recombination 
of two other genes {10662}. 
Chinese T. aestivum cultivar Xiaoyanmai carries a subunit with electrophoretic mobility in 10% SDS-
PAGE well beyond that of subunits so far observed in T. aestivum. It may derive from Agropyron 
elongatum, which was used in the breeding program that led to the variety {1538}. It has not been given a 
subunit number or allelic designation, because its genetic control has not been elucidated.	
Glu-E1a {781}.  ad:  CS/L. elongatum W0622 {781}. 	
Glu-E1b {10644}.  ad:  Langdon/L. elongatum DGE-1 {10644}.  al:  L. elongatum PI 531719 {10644}. 	
 
GLU-H1 {781}.  [Hor 3 {1337}].  1HL {1337}.1H {781}.  ad:  CS/Betzes {781}.  al:  Various barley 
cultivars {1337}. 	
 
GLU-Hch1.  1Hch {1123}.  ad:  CS/H. chilense. 	
38 accessions (natural populations) of Hordeum chilense carrying the following 10 subunits were used as 
the maternal parents of 121 lines of primary tritordeum, and evaluations for associations with bread-
making quality initiated {03114}. Subunits 1Hch, 2Hch and 3Hch were previously referred to as Hcha, Hchb 
and Hchc {03112}.	
Glu-Hch1a {03114}.  1Hch {03114}.  al:  H. chilense accession H1 {03114}. 	
Glu-Hch1b {03114}.  2Hch {03114}.  al:  H. chilense accession H11 {03114}. 	
Glu-Hch1c {03114}.  3Hch {03114}.  al:  H. chilense accession H7 {03114}. 	
Glu-Hch1d {03114}.  4Hch {03114}.  al:  H. chilense  accesion H16{03114}. 	
Glu-Hch1e {03114}.  5Hch {03114}.  al:  H. chilense  accession H47 {03114}. 	
Glu-Hch1f {03114}.  6Hch {03114}.  al:  H. chilense  accession H220 {03114}. 	
Glu-Hch1g {03114}.  7Hch {03114}.  al:  H. chilense accession H293 {03114}. 	
Glu-Hch1h {03114}.  8Hch {03114}.  al:  H. chilense accession H297 {03114}. 	
Glu-Hch1i {03114}.  9Hch {03114}.  al:  H. chilense accession H252 {03114}. 	
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Glu-Hch1j {03114}.  10Hch {0 3114}.  al:  H. chilense accession H210 {03114}. 	
 
GLU-Ht1 {1037}.  1HtL {1037}.  ad:  CS/E. trachycaulum. 	
 
GLU-R1 {781, 1356}.  [Sec 3 {1336}].  1RL {1340,1356}.1R {781, 1336}.  ad:  CS/Imperial; Holdfast/ 
King II {1340}.  tr:  CS Imperial 1DS.1RL {1356}. 	
Glu-R1a {03116}.  1r-4r {03116}.  v:  Indiana hexaploid triticale {03116}. 	
Glu-R1b {03116}.  2r-6.5r {03116}.  v:  Graal hexaploid triticale {03116}. 	
Glu-R1c {03116}.  6r-13r {03116}.  v:  Almao hexaploid triticale {03116}. 	
Glu-R1d {03116}.  2r-9r {03116}.  v:  Olympus hexaploid triticale {03116}. 	
Glu-R1e {03116}.  6.5r {03116}.  v:  Clercal hexaploid triticale {03116}. 	
Glu-R1f {03115}.  0.8r-6r {03115}.  v:  Carmara hexaploid triticale {03115}. 	
Glu-R1g {03115}.  5.8r {03115}.  v:  Arrayan hexaploid triticale {03115}. 	
From study of chromosome substitutions in bread wheat {03117}, it was found that a chromosome 1R 
carrying HMW secalin subunit 6.5r (Glu-R1e), originally derived from the 'Petkus' rye population, was 
associated with bread making quality (i) intermediate between chromosome 1A carrying the null allele 
Glu-A1c and chromosome 1A carrying HMW glutenin subunit 2* encoded by Glu-A1b; (ii) equivalent to 
a chromosome carrying HMW glutenin subunit 7 encoded by Glu-B1a; and (iii) inferior to chromosomes 
1D with distinct alleles. 
There is a difficulty in the assignment of subunit 6r in the GLU-R1-1 and GLU-R1-2 lists, since it appears 
as an x-type subunit in allele Glu-R1c and as a y-type subunit in allele Glu-R1f. It is currently 
provisionally assigned to the GLU-R1-1 list since, based upon its relative electrophoretic mobility, it is 
considered more likely to be an x-type subunit. Some of the remaining designations should also be 
considered as provisional since they too are not free of ambiguity.	
Five new x-type subunits (plus the null allele) and four y-type subunits were reported in {10094}. They 
vary principally through duplications and deletions of the tri-, hexa- and nona-peptide motifs found in the 
central repetitive region of the subunits. Orthologous genes were found to be more closely related than 
paralogous genes, supporting the hypothesis that gene duplication occurred before Triticeae speciation 
{10095, 10094}.	
GLU-Rm1 {1339}.  1RmL {1340, 1339}.  ad:  CS/S. montanum {1340, 1339}. 	
GLU-Sl1 {1228}.  1SlL {1228}.  ma:  In Ae. longissima 2 /Ae. longissima 10, GLU-Sl1, GLU-Sl3, one 
glucose phosphate isomerase locus, and three gliadin loci were mapped relative to one and other {1228} 
as follows: GLU-Sl1 – 15.9 cM – GPI-Sl1 – 38 cM – GLI-Sl4 – 7.1 cM – GLU-Sl3 – 0.9 cM – GLI-Sl1 – 
5.6 cM – GLI-Sl5. GLU-Sl1 is located in 1SlL and the other loci are in 1SlS. 	
GLU-Ta1 {10449}.  al:  Taenitherum crinitum PI 204577 {10449}. 	
	

GLU-A1-1.  
Glu-A1-1a.  Null.  v:  CS. 	
Glu-A1-1b.  1.  v:  Hope. 	
Glu-A1-1c.  2*.  v:  Bezostaya 1. 	
A PCR marker specific for the Glu-A1-1c (Ax2*) allele was developed in {0147}.	
Glu-A1-1d.  v:  V74, Spain. 	
Glu-A1-1e.  v:  132c, Poland. 	
Glu-A1-1f.  v:  112-29, Sudan. 	
Glu-A1-1g.  v:  Landrace 1600. 	
Glu-A1-1h.  tv:  PI 94683, USSR, T. dicoccum. 	
Glu-A1-1i.  tv:  CI 12213, India, T. dicoccum. 	
Glu-A1-1j.  1'.  tv:  PI 352359, Germany, T. dicoccum; Lambro. 	
Glu-A1-1k.  26.  v:  BT-2288 
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Glu-A1-1l.  tv:  Chinook, Canada. 	
Glu-A1-1m.  tv:  Nugget Biotype 1, Canada. 	
Glu-A1-1n.  1".  tv:  Corado, Portugal. 	
Glu-A1-1o.  2**.  tv:  PI 61189, USSR, Aric 581/1. 	
Glu-A1-1p.  3*.  v:  David 1. 	
Glu-A1-1q.  2***.  tv:  Melianopus 1528. 	
Glu-A1-1r.  39.  i:  T. thaoudar IPSR 1020006/6* Sicco. 	
Glu-A1-1s.  41.  i:  T. thaoudar G3152/6*Sicco. 	
Glu-A1-1t {602}.  21* {602}.  v:  W29323, W 3879, W 31169. 	
Glu-A1-1t is a provisional designation; definitive evidence that subunit 21*, which has a mobility similar 
to that of subunit 21, is a 'x-type' and not a 'y-type' protein has not been obtained.	
Glu-A1-1u {02106}.  2*B {02106}.  v:  Bankuti 1201.	
Glu-A1-1v {10327}.  2.1* {10327}.  v:  Grado {10327};  KU-1026 {10327};  KU-1086 {10327};  KU-
1094 {10327};  KU-1139 {10327}. 	
Glu-A1-1w {10327}.  2' {10327}.  v:  TRI14165/91 {10327}. 	
Glu-A1-1x {10535}.  2'' {10535}.  v:  211.12014 {10535}.	
Glu-A1-1y [{11540}].  tv:  T. turgidum ssp. turgidum BGE019307 {11540}.	
Glu-A1-1z {11106}.  [Glu-A1g {11106}].  1.1 {11106}.  v:  Barbela 28 {11106}.	
The sequence encoding subunit 1Ax1.1 shows high nucleotide identity with other GLU-A1 alleles, with 
the main difference being an insertion of 36 amino acids in the central repetitive region. It is the largest 
and most acidic subunit currently known at this locus and has been implicated in high dough extensibility 
in some cv. Barbela wheat lines, although this contrasts with other data showing a similar effect to that of 
subunit 1Ax1 {11107}.	
	
GLU-A1-2. 	
Glu-A1-2a.  Null.  v:  CS. 	
Glu-A1-2b.  40.  i:  T. thaoudar IPSR1020006/6* Sicco. 	
Glu-A1-2c.  42.  i:  T. thaoudar G3152/6*Sicco. 	
	
GLU-B1-1. 	
Glu-B1-1a.  7.  v:  CS. 	
A PCR marker (2373 bp) for the Glu-B1-1a (Bx7) allele was developed in {0145}.	
Glu-B1-1b.  7,7*.  v:  Flinor, Bezostaya 1, Owens, Norstar. 
Glu-B1-1c.  7'.  v:  Adonis. 	
Glu-B1-1d.  6.  v:  Hope. 	
Glu-B1-1e.  20.  v:  Federation. 	
Glu-B1-1f.  13.  v:  Lancota. 	
Glu-B1-1g.  14.  v:  Sappo. 	
Glu-B1-1h.  17.  v:  Gabo. 	
Glu-B1-1i.  21.21x {03116}.  v:  Dunav;  Foison {03116}. 	
Glu-B1-1j.  23.  v:  Spica D. 	
Glu-B1-1k.  tv:  PI 94640, Iran, T. dicoccum. 	
Glu-B1-1l.  tv:  PI 355505, Germany, T. diccocum. 	
Glu-B1-1m.  tv:  PI 352354, Ethiopia,  T. dicoccum. 	
Glu-B1-1n.  tv:  PI 94633, Morocco, T. dicoccum. 	
Glu-B1-1o.  v:  Supreza, Canada. 	
Glu-B1-1p.  v:  Mondor. 	
Glu-B1-1q.  tv:  Canoco de Grao Escuro, Portugal. 	
Glu-B1-1r.  tv:  Tremez Mollez, Portugal. 	
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Glu-B1-1s.  tv:  Quaduro, Italy. 	
Glu-B1-1t.  tv:  Athena, Italy. 	
Glu-B1-1u.  26.  v:  Cologna 1. 	
Glu-B1-1v.  28.  v:  Forlani. 	
Glu-B1-1w.  Null.  v:  Olympic mutant. 	
Glu-B1-1x.  30.  v:  Marinar. 	
Glu-B1-1y.  32.  v:  BG-1943. 	
Glu-B1-1z.  34.  v:  Jeja Almendros. 	
Glu-B1-1aa.  37.  v:  Shedraya Polesja. 	
Glu-B1-1ab.  6*.  v:  Dawbill. 	
Glu-B1-1ac {03116}.  6.8 {03116}.  v:  Carnac hexaploid triticale {03116}. 	
Glu-B1-1ad {03122}.  13* {03122}.  v:  PI 348767 spelt {03122}.  
Glu-B1-1ae {10327}.  14* {10327}.  v:  TRI11553/92 {10327}. 	
Glu-B1-1af {10327}.  6.1 {10327}.  v:  Hercule {10327};  KU-3418 {10327};  KU-3446 {10327};  
Rouguin {10327};  Schwabenkorn {10327};  SP3 {10327};  Steiners Roter Tiroler {10327};  
TRI4613/75 {10327}. 	
Glu-B1-1ag {10643}.  7** {10643}.  v:  XM1368-2 {10643}. 	
Glu-B1-1ah {899}.  7OE {899}.  v:  Benkuti 1201 {10196, 10197};  Glenlea {899};  Klein Universal II 
{10196};  Tezanos Pintos Precoz {10196};  Tobari {10196}. 	
Glu-B1-1ai {10807}.  7.1 {10807}.  v:  H45 {10807}. 	
Glu-B1-1aj 10807}.  7.2 {10807}.  v:  H45{10807}. 	
Glu-B1-1ak {10807}.  7.3 {10807}.  v:  VQ0437 {10807}. 	
Glu-B1-1al {10809}.  17' {10809}.  tv:  TGR-214 {10809};  TGR-2246 {10809}. 	
Glu-B1-1am {10809}.  13** {10809}.  tv:  TGR-003 {10809}. 	
Glu-B1-1an {10808}.  7b* {10808}.  v:  Eshimashinriki {10808}. 	
Glu-B1-1ao {11490}.  20* {11490}.  tv:  T. turgidum ssp. durum Mexican landrace accession 22 
(CWI52215) {11490}.	
	
GLU-B1-2. 	
Glu-B1-2a.  8.  v:  CS. 	
Glu-B1-2b.  9.  v:  Bezostaya 1. 	
Glu-B1-2c.  16.  v:  Lancota. 	
Glu-B1-2d.  19.  v:  NS 335. 	
Glu-B1-2e.  15.  v:  Sappo. 	
Glu-B1-2f.  18.  v:  Gabo. 	
Glu-B1-2g.  22.  v:  Serbian. 	
Glu-B1-2h.  24.  v:  Spica D 	
Glu-B1-2i.  tv:  PI 355505, Germany, T. dicoccum. 	
Glu-B1-2j.  tv:  PI 352354, Ethiopia, T. dicoccum. 	
Glu-B1-2k.  tv:  PI 94633, Morocco, T. dicoccum. 	
Glu-B1-2l.  11.  v:  BT-2288. 	
Glu-B1-2m.  v:  Supreza, Canada. 	
Glu-B1-2n.  v:  Mondor. 	
Glu-B1-2o.  8*.  v:  Dawbull. 	
Glu-B1-2p.  tv:  Canoco de Grao Escuro, Portugal. 	
Glu-B1-2q.  tv:  Tremez Mollez, Portugal, T. durum. 	
Glu1-2r.  tv:  Quaduro, Italy, T. durum. 	
Glu-B1-2s.  18*.  v:  David. 	
Glu-B1-2t.  27.  v:  Cologna 1. 	
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Glu-B1-2u.  29.  v:  Forlani. 	
Glu-B1-2v.  Null.  v:  Olympic mutant. 	
Glu-B1-2w.  31.  v:  Marinar. 	
Glu-B1-2x.  33.  v:  BG-1943.	
Glu-B1-2y.  35.  v:  Jeja Almendros. 	
Glu-B1-2z {03116}.  20y {03116}.  v:  Carnac hexaploid triticale {03116}. 	
Glu-B1-2aa {03122}.  18' {03122}.  v:  PI 348631 spelt {03122}. 	
Glu-B1-2ab {03116}.  21y {03116}.  v:  Foison {03116}.	
Glu-B1-2ac {10327}.  22* {10327}.  v:  Grado {10327};  KU-1026 {10327};  KU-1086 {10327};  KU-
1094 {10327};  KU-1139 {10327}. 	
Glu-B1-2ad {10327}.  22.1 {10327}.  v:  Hercule {10327};  KU-1135 {10327};  Rouguin {10327};  
Schwabenkorn {10327};  SP3 {10327};  Steiners Roter Tiroler {10327}. 	
Glu-B1-2ae {10327}.  15* {10327}.  v:  TRI11553/92 {10327}. 	
Glu-B1-2af {10327}.  19* {10327}.  v:  KU-3410 {10327};  Rechenbergs Fruher Dinkel {10327};  
Renval {10327};  SP1{10327};  TRI9885/74{10327};  Zeiners Weiser Schlegel {10327}. 	
Glu-B1-2ag {10643}.  [8** {10643}].  v:  XM1404-2 {10643}. 	
Glu-B1-2ah.  Currently undesignated.	
Glu-B1-2ai {10809}.  8' {10809}.  tv:  TGR-244 {10809}. 	
Glu-B1-2aj {10808}.  8a* {10808}.  v:  Jing 411{10808};  Pioneer {10808};  Tasman {10808}. 	
Glu-B1-2ak {10808}.  8b* {10808}.  v:  ACA 601 {10808};  Nidera Baguette 10 {10808	
Glu-B1-2al {11490}.  33* {11490}.  tv:  T. turgidum ssp. durum Iranian landrace accession 51 
(CWI57280) {11490}.	
Glu-B1-2am {11490}.  22* {11490}.  tv:  T. turgidum ssp. durum Iranian landrace accession 51 
(CWI57280) {11490}.	
Glu-B1-2an [{11492}].  8*.1 {11492}.  tv:  T. turgidum ssp. durum BGE045649 {11492}, BGE047535 
{11492}.	
Glu-B1-2ao [{11540}].  (8) {11540}.  tv:  T. turgidum ssp. durum Langdon {11540}. 
	
Eight alleles at GLU-B1-1 and 10 alleles at GLU-B1-2 in T. turgidum var. dicoccoides populations were 
described in {798}. In a further study using different germplasm of this species {205}, 19 alleles at GLU-
B1 were observed, including 15 not previously observed; the 19 alleles included 11 alleles at GLU-B1-1 
and 14 alleles (including the null allele) at GLU-B1-2, although, as the authors pointed out, it was not 
conclusively clear how many of these alleles were distinct from each other, or from others previously 
observed.	
	
GLU-D1-1	
Glu-D1-1a.  2.  v:  CS. 	
Glu-D1-1b.  3.  v:  Hobbit. 	
Glu-D1-1c.  4.  v:  Champlein. 	
Glu-D1-1d.  5.  v:  Hope. 	
PCR markers specific for the Glu-D1-1d (Dx5) allele were developed in {0145} and {0147}.	
Glu-D1-1e.  2.2.  v:  Danchi. 	
Glu-D1-1f.  Null.  v:  Nap Hal, Nepal. 
Glu-D1-1g.  2.1.  v:  AUS 14653, Afghanistan. 	
Glu-D1-1h.  2.3.  v:  PI 348465. 	
Glu-D1-1i.  38.  v:  Leningradka. 	
Glu-D1-1j {668}.  43 {668}.  i:  Ae. tauschii accession TA2450/2*. 	
Glu-D1-1k {755}.  4.1 {755}.  dv:  Ae. tauschii. 	
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Glu-D1-1l {1578}.  1.5 {1578}. Dtx1.5 {10306}.  dv:  Ae. tauschii accession SQ-214 {10306}. 	
A restriction enzyme-based method named the 'restricted deletion method' was used to characterize the 
ORF of this subunit {10306} (as in the case of subunit Dty10 encoded by Glu-D1-2u {10306}. Allele-
specific PCR markers were developed based upon SNPs located at the non-repetitive N-terminal 
{10320}.	
Glu-D1-1m {02107}.  2.2* {02107}.  v:  MG315. 	
Glu-D1-1n {03122}.  2.4  {03122}.  v:  PI 348473 spelt {03122}. 	
Glu-D1-1o {03122}.  2.5  {03122}.  v:  PI 3484572 spelt {03122}. 	
Glu-D1-1p {03124}.  1t {03124}.  dv:  Ae. tauschii {03124}. 	
Glu-D1-1q {03124}.  5*t {03124}.  dv:  Ae. tauschii {03124}. 	
Glu-D1-1r {755}.  5.1 {755}.  dv:  Ae. tauschii. 	
This allele was designated Glu-D1-1j in the 1998 Catalogue edition.	
Glu-D1-1s {10091}.  5' {10091}.  v:  W958 {10091}. 	
This putative allele encodes a subunit, provisionally denominated 5' {10091}, that has a very similar 
electrophoretic mobility compared to subunit 5 encoded by Glu-D1-1d, but analysis using the specific 
PCR primers for Dx5 described in {10092} and {10093} shows that it does not appear to be the same 
protein as subunit 5 {10091}. Definitive evidence awaits sequencing information (See note to allele Glu-
D1bo).	
Glu-D1-1t {10304}.  2.6 {10304}.  v:  Baidongmai {10305};  Jinbaojin {10305};  Hongdongmai 
{10305};  Hongkedongmai {10305}. 	
Glu-D1-1u {10327}.  2.1' {10327}.  v:  KU-1034{10327}. Glu-D1-1v {10642}.  [1.6t {10642}].  dv:  Ae. 
tauschii TD16 {10642}.	
 
GLU-D1-2 
Glu-D1-2a.  12.  v:  CS. 	
A PCR marker (612 bp) for the Glu-D1-2a (Dy12) allele was developed in {0145}. 
Glu-D1-2b.  10.  v:  Hope. 	
PCR markers (576 bp and 2176 bp) for the Glu-D1-2b (Dy10) allele were developed in {0145} and 
{0147}, respectively. 
Glu-D1-2c.  9.  v:  BT-2288.  
Glu-D1-2d.  Null.  v:  Nap Hal, Nepal. 
Glu-D1-2e.  12*.  v:  Tudest.  
Glu-D1-2f.  13.  v:  AUS 14519, T. macha.  
Glu-D1-2g.  36.  i:  Iranian landrace 3048/5* Sicco.  
Glu-D1-2h.  11.  v:  Flinor.  
Glu-D1-2i {668}.  44 {668}.  i:  Ae. tauschii TA2450/2*.  
Glu-D1-2j {836}.  10' {836}.  v:  Coker 68-15.  
Glu-D1-2k {755}.  T1 {755}.  dv:  Ae. tauschii.  
Glu-D1-2l {755}.  T2 {755}.  dv:  Ae. tauschii.  
Glu-D1-2m {755}.  10.1 {755}.  dv:  Ae. tauschii.  
Glu-D1-2n {755}.  10.2 {755}.  dv:  Ae. tauschii.  
Glu-D1-2o {755}.  10.3 {755}.  dv:  Ae. tauschii.  
Glu-D1-2p {1578}.  10.5 {1578}.  dv:  Ae. tauschii. Glu-D1-2q {03122}.  12' {03122}.  v:  PI-348495 
spelt wheat accession {03122}.  
Glu-D1-2r {03124}.  12.1t {03124}.  dv:  Ae. tauschii.  
Glu-D1-2s {03124}.  12.3t {03124}.  dv:  Ae. tauschii.  
Glu-D1-2t {03124}.  12.4t {03124}.  dv:  Ae. tauschii.  
Glu-D1-2u {10306}.  Dty10 {10306}.  v:  Ae. tauschii accession SQ-214 {10306}. 	
A restriction enzyme-based method named the 'restricted deletion method' was used to characterize the 
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ORF of this subunit {10306} (as in the case of subunit 1.5 (or Dtx1.5 {10306}) encoded by Glu-D1-1l 
{10306}. This subunit was first recognized as being different from subunit 1- encoded by Glu-D1-2b in 
hexaploid wheat in {10307}.Six combinations involving 5 HMW subunits [1A (u-z)] are listed in {420}, 
from a study of 109 genotypes including representatives of botanical varieties. Alleles in T. turgidum var. 
dicoccoides populations, 12 at GLU-A1-1 and 3 at GLU-A1-2, were described in {798}. In a further study 
using different germplasm of this species {205}, 14 alleles at GLU-A1 were observed, including 12 not 
previously found; the 15 alleles included up to 15 alleles at GLU-A1-1 (with up to 10 not previously 
observed), and 5 alleles at GLU-A1-2 (with 4 not previously observed) (numbers take the null allele into 
account). The uncertainty in numbers is due to the very similar electrophoretic mobilities of some of the 
subunits compared with others observed either in this study or previously.	
In a study including emmers (T. dicoccum) {00115}, new subunits named 1+ and 2- were found in 
accessions MG4378/1 and MG5380/1, respectively, and provisionally assigned to GLU-A1. Until 
confirmed, they are not included in the GLU-A1 list. 
	
Glu-R1-1. 	
Glu-R1-1a {03116}.  1r {03116}.  v:  Indiana hexaploid triticale {03116}. 	
Glu-R1-1b {03116}.  2r {03116}.  v:  Graal hexaploid triticale {03116}. 	
Glu-R1-1c {03116}.  6r {03116}.  v:  Alamo hexaploid triticale {03116}. 	
Glu-R1-1d {03115}.  0.8r {03115}.  v:  Carmara hexaploid triticale {03115}. 	
Glu-R1-1e {03115}.  5.8r {03115}.  v:  Arrayan hexaploid triticale {03115}.	
 
Glu-R1-2.  1R, 1RL. 	
Glu-R1-2a {03116}.  4r {03116}.  v:  Indiana hexaploid triticale {03116}. 	
Glu-R1-2b {03116}.  6.5r {03116}.  v:  Graal hexaploid triticale {03116}. 	
Glu-R1-2c {03116}.  13r {03116}.  v:  Alamo hexaploid triticale {03116}. 	
Glu-R1-2d {03116}. 9r {03116}.  v:  Olympus hexaploid triticale {03116}. 	
There was difficulty in assigning subunit 6r in the GLU-R1-1 and GLU-R1-2 lists, since it appeared as an 
x-type subunit in allele Glu-R1c and as a y-type subunit in allele Glu-R1f. It is currently provisionally 
assigned to the GLU-R1-1 list since, based upon its relative electrophoretic mobility, it is considered more 
likely to be an x-type subunit. Some of the remaining designations should also be considered as 
provisional since they too are not free of ambiguity.	
	
GLU-V1-1. 	
Alleles and subunits at GLU-V1-1 and GLU-V1-2: The following is analogous to the GLU-1-1 and GLU-
1-2 lists given earlier to identify x-type and y-type subunits in wheat. It was assumed that where an allele 
at GLU-V1 produces only a single subunit, it is an x-type subunit and so encoded by GLU-V1-1 rather 
than by GLU-V1-2; the electrophoretic mobilities of the subunits are all greater, though some only 
marginally so, than subunit 7 encoded by Glu-B1-1a (an x-type subunit), and extend beyond the mobility 
of subunit 12 encoded by Glu-D1-2a (a y-type subunit) {1651}; therefore, it is quite possible that any one 
of the subunits designated as encoded by GLU-V1-1 is, in fact, encoded by GLU-V1-2. The designation 
given here is intended to be the most practically useful until the identities of the genes encoding the 
alleles are directly established.	
Glu-V1-1a {1651}.  71 {1651}.  al:  D. villosum. 	
Glu-V1-1b {1651}.  72 {1651}.  al:  D. villosum. 	
Glu-V1-1c {1651}.  73 {1651}.  al:  D. villosum. 	
Glu-V1-1d {1651}.  74 {1651}.  al:  D. villosum. 	
Glu-V1-1e {1651}.  75 {1651}.  al:  D. villosum. 	
Glu-V1-1f {1651}.  76 {1651}.  al:  D. villosum. 	
Glu-V1-1g {1651}.  77 {1651}.  al:  D. villosum. 
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Glu-V1-1h {1651}.  78 {1651}.  al:  D. villosum. 	
Glu-V1-1i {1651}.  79 {1651}.  al:  D. villosum. 	
Glu-V1-1j {1651}.  80 {1651}.  al:  D. villosum. 	
Glu-V1-1k {1651}.  Null {1651}.  al:  D. villosum. 	
Glu-V1-1l {1651}.  81 {1651}.  al:  D. villosum. 	
Glu-V1-1m {1651}.  83 {1651}.  al:  D. villosum. 	
Glu-V1-1n {1651}.  85 {1651}.  al:  D. villosum.	
	
GLU-V1-2 	
Glu-V1-2a {1651}.  Null {1651}.  al:  D. villosum. 	
Glu-V1-2b {1651}.  82 {1651}.  al:  D. villosum. 	
Glu-V1-2c {1651}.  84 {1651}.  al:  D. villosum. 	
Glu-V1-2d {1651}.  86 {1651}.  al:  D. villosum.	

 
GLU-2	
	
Glu-B2 {277}, {819}.  [XGlu-B2 {277}].  1BS.  s:  CS*/Cheyenne 1B {277}.  stv: Langdon*/T. turgidum 
var. dicoccoides 1B {277}. 	
Glu-B2a {00114}.  12 {00114}.  tv:  Mexicali. 	
Glu-B2b {00114}.  Null {00114}.  tv:  Langdon. 	
GLI-B3 was designated GLU-B2 {589} until the name of the locus was changed in {1119}.	
Glu-B2c {10215}.  12* {10215}.  tv:  Alcala la Real {10215}. 
Glu-B2d {11493}.  12.1 {11493}.  tv:  T. turgidum ssp. durum Moroccan landrace MGB-3125 {11493}. 
 
GLU-3	
The GLU-3 loci are defined as the cluster of LMW glutenin genes previously considered a component of 
the compound GLI-1 loci.	
More than 30 LMW glutenin complete genes, partial genes or pseudogenes have been sequenced from 
Triticum species (reviewed in {0245}).	
In T. aestivum, only GLU-B3 was shown to recombine with the gliadin genes (1.7 +/- 0.8) {1355, 1358}. 
However, in T. durum, recombination was observed for both GLU-A3 and GLU-B3 with their respective 
GLI-1 loci: the map distance between GLU-A3 and GLI-A1 has been estimated as 1.3 +/- 0.4 cM {1242}, 
and that between GLU-B3 and GLI-B1 as 2.0 +/- 0.8 in {1144} and as 2.0 +/- 0.4 in {1242}. It appears 
that GLU-B3 is proximal to GLI-B1, and there is some evidence that GLU-A3 is proximal to GLI-A1 
{1242}.	
Whereas hitherto it was widely thought that all LMW glutenin subunits were encoded by genes located on 
the chromosomes of homoeologous group 1, it has been demonstrated that, although the majority of the 
subunits are indeed controlled by genes on this group, some of the C subunits must be controlled by loci 
elsewhere in the genome {482}.	
A novel type of polymeric protein (Mr approx. 71,000) was reported in the Australian advanced breeding 
line DD118 {03125}. It participates in the polymeric structure of glutenin (possibly as a chain 
terminator), and has an Mr of approximately 71,000, could be considered as a D-subunit of LMW 
glutenin. However, N-terminal sequencing suggests it to be a Gli-B1 type omega-gliadin that has acquired 
a cysteine residue through mutation.	
In an electrophoretic survey of 51 primary tritordeums {03113}, 20 distinct whole banding patterns (a-t), 
each consisting of between one and three bands, were observed for D-zone prolamins exhibiting glutenin-
like solubility characteristics.	
In 85 Japanese common wheat cultivars and 61 elite F6 breeding lines, 3 alleles were observed at each of 
GLU-A3 and GLU-B3, and 2 alleles at GLU-D3 were named according to their parental origins in three 
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doubled haploid mapping populations {03135}.	
C-type LMW glutenin subunits in CS were assigned to chromosome groups 1 and 6, and shown to have 
sequences very similar to those of alpha- and gamma-gliadins {03134}. The authors suggest that they 
may be encoded by novel genes at loci tightly linked or present within the GLI-1 and GLI-2 loci, unlike 
other LMW glutenin subunits encoded by the GLU-3 loci.		
The HMW and LMW glutenin subunits carried by chromosome 1Am of T. monococcum accession G1777 
were characterised electrophoretically and evaluated for quality characteristics using recombinant 
chromosome substitution lines with chromosome 1A of CS {03142}. The HMW subunits from G1777 are 
promising for bread-making quality, whereas its LMW subunits are promising for biscuit-making quality.	
The bread wheat cv. Salmone was shown to carry two DNA fragments designated as SF720 and SF750 
located on the chromosome 1B satellite and associated with the presence of two LMW glutenin subunits 
{03143}. However, the authors suggest that they occur at a locus other than GLU-B3 due to their 
relatively high frequency of recombination with GLI-B3.	
A naming system in which Roman numerals are assigned to whole banding patterns for the LMW 
glutenin subunit is given in {03131} as an alternative to the LMW-1/-2 system described in {03136}. A 
further system naming whole banding patterns from LMW-1 to LMW-23 in emmer wheat is described in 
{03137}. In {00111}, in a study of common and durum wheats from Portugal, the authors used the 
nomenclature system described in {00113} for the LMW subunits in common wheat, and that described 
in {00114} for the LMW subunits in durum wheat. The latter system was updated according to {02110} 
but has been changed herein to new alleles with the earlier durum designation {00114} given as 
synonyms. In {03116}, it was suggested that Glu-B3d (common wheat standard genetic stock) is 
equivalent to Glu-B3r (durum wheat standard genetic stock), and that (referring to article {03127}) 
LMWsubunits observed in some Portugese triticales could be of the durum type.	
A novel storage protein gene with chimeric structure was isolated from the old Hungarian cultivar 
Bankuti 1201, containing gamma-gliadin sequences in the 5' region, LMW-glutenin sequences in the 3' 
region and a frameshift mutation leading to a completely new polypeptide in the C-terminal region. A 
further seven recombinant prolamin genes were subsequently isolated. The eight genes, designated Ch1 to 
Ch8, seem to derive from four gamma-gliadin and three LMW-glutenin sequences and are probably the 
result of crossing over between the GLI-1 and GLU-3 loci. However, the precise recombinational 
mechanism that gave rise to them has yet to be elucidated {10307}. Characterization of near isogenic 
lines for the different GLU-3 alleles provides a useful quantification of their contribution to bread making 
quality {11129}. 
Glu-A3 {1358}.  1AS {1358}. v:  CS. 	
The first 7 alleles were distinguished using 5 allele-specific primer sets {10185}. Further mainly 
Australian genotypes with alleles a to f are listed in {10185}.	
In 112 common wheat cultivars from Argentina, 11 microsatellite alleles plus a null allele were found at 
the GLU-A3 locus {03123}. 
Glu-A3a {481}.  v:  CS. 	
Glu-A3b {481}.  v:  Gabo. 	
Glu-A3c {481}.  v:  Cheyenne. 	
Glu-A3d {481}.  v:  Cappelle Desprez, Orca; Suneca{10185}. 	
Glu-A3e {481}.  v:  Halberd {10185}; Hope, Insignia. 	
Glu-A3f {481}.  v:  Rescue. 	
Glu-A3g {00113}.  v:  Glenlea {10185}. 	
Glu-A3h {00114, 03116}.  [Glu-A3d' {03116}].  Null {00114}.  v:  Magistral hexaploid triticale 
{03116}. 	
Glu-A3i {02110}.  8*+11 {02110}.  tv:  Mourisco Fino. 	
Glu-A3j {00114}.  [Glu-A3a {00114}].  6 {00114}.  tv:  Mexicali.  
Glu-A3k {00114}.  [Glu-A3b {00114}].  5 {00114}.  tv:  Langdon.  
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Glu-A3l {00114}.  [{00114}].  6+10 {00114}.  tv:  Cocorit.  
Glu-A3m {00114}.  [Glu-A3d {00114}].  6+11 {00114}.  tv:  Alaga.  
Glu-A3n {00114}.  [Glu-A3e {00114}].  11 {00114}.  tv:  Blatfort.  
Glu-A3o {00114}.  [Glu-A3f {00114}].  6+11+20{114}.  tv:  Clarofino.  
Glu-A3p {00114}.  [Glu-A3h {00114}].  Null {00114}.  tv:  Jiloca.  
Glu-A3q {10215}.  [Glu-A3i {10215}].  5+20 {10215}.  tv:  Fanfarron {10215}.  
Glu-A3r {03116}.  [Glu-A3d' {03116}].  v:  Magistral hexaploid triticale {03116}.  
Glu-A3s {00114}.  [Glu-A3g {00114}].  6+10+20 {00114}.  tv:  Claro de Balazote {00114}. 	
Glu-A3t {10805}.  [Glu-A3ma {10805}].  dv:  PI 190947, T. monococcum ssp. monococcum {10805}. 	
Glu-A3u {10805}.  [Glu-A3mb {10805}].  dv:  PI 190946, T. monococcum ssp. monococcum {10805}. 	
Glu-A3v {10805}.  [Glu-A3mc {10805}].  dv:  BGE-020466, T. monococcum ssp. monococcum {10805}. 	
Glu-A3w {10805}.  [Glu-A3md {10805}].  dv:  PI 191097, T. monococcum ssp. monococcum {10805}. 	
Glu-A3x {10805}.  [Glu-A3me {10805}].  dv:  BGE-013624, T. monococcum ssp. Monococcum {10805}. 
Glu-A3y {10805}.  [Glu-A3mf {10805}].  dv:  PI 191094, T. monococcum ssp. monococcum {10805}. 
Glu-A3z {10806}.  [Glu-Au3-I {10806}].  dv:  PI 428139, T. urartu {10806}. 	
Glu-A3aa {10806}.  [Glu-Au3-II {10806}].  dv:  PI 428327, T. urartu {10806}. 
Glu-A3ab {10806}.  [Glu-Au3-III {10806}].  dv:  PI 428340, T. urartu {10806}. 
Glu-A3ac {10806}.  [Glu-Au3-IV {10806}].  dv:  PI 428322, T. urartu {10806}. 
Glu-A3ad {10806}.  [Glu-Au3-V {10806}].  dv:  PI 428188, T. urartu {10806}. 	
Glu-A3ae {10806}.  [Glu-Au3-VI {10806}].  dv:  PI 428203, T. urartu {10806}. 	
Glu-A3af {10806}.  [Glu-Au3-VII {10806}].  dv:  PI 428255, T. urartu {10806}. 
Glu-A3ag {10806}.  [Glu-Au3-VIII {10806}].  dv:  PI 428328, T. urartu {10806}.  
Glu-A3ah {10806}.  [Glu-Au3-IX {10806}].  dv:  PI 428256, T. urartu {10806}. 	
Glu-A3ai {10806}.  [Glu-Au3-X {10806}].  dv:  PI 428217, T. urartu {10806}.  
Glu-A3aj {10806}.  [Glu-Au3-XI {10806}].  dv:  PI 428335, T. urartu {10806}.  
Glu-A3ak {10806}.  [Glu-Au3-XII {10806}].  dv:  PI 428186, T. urartu {10806}. 	
Glu-A3al {10806}.  [Glu-Au3-XIII {10806}].  dv:  PI 428183, T. urartu{10806}. 	
Glu-A3am {10806}.  [Glu-Au3-XIV {10806}].  dv:  TRI 11563, T. urartu {10806}. 	
Glu-A3an {10806}.  [Glu-Au3-XV {10806}].  dv:  PI 427328, T. urartu {10806}. 	
Glu-A3ao {10806}.  [Glu-Au3-XVI {10806}].  dv:  PI 428253, T. urartu {10806}. 	
Glu-A3ap {10806}.  [Glu-Au3-XVII {10806}].  dv:  PI 538735, T. urartu {10806}. 	
Glu-A3aq {10806}.  [Glu-Au3-XVIII {10806}].  dv:  PI 428225, T. urartu {10806}. 
Glu-A3ar {10806}.  [Glu-Au3-XIX {10806}].  dv:  PI 538733, T. urartu {10806}. 
Glu-A3as {10806}.  [Glu-Au3-XX {10806}].  dv:  PI 428196, T. urartu {10806}. 	
Glu-A3at {10806}.  [Glu-Au3-XXI {10806}].  dv:  PI 538724, T. urartu {10806}. 	
Glu-A3au {10806}.  [Glu-Au3-XXII {10806}].  dv:  PI 428191, T. urartu {10806}. 	
Glu-A3av {10806}. [Glu-Au3-XXIII {10806}].  dv:  TRI 6734, T. urartu {10806}. 	
Glu-A3aw {10806}.  [Glu-Au3-XXIV {10806}].  dv:  TRI 11496, T. urartu {10806}. 	
Glu-A3ax {10116}.  6.1 {10116}.  tv:  Buck Cristal {10116}. 	
The designation of this protein (subunit 6.1) as encoded by GLU-A3, previously deduced from its 
electrophoretic mobility {10116}, was confirmed through mapping studies {11492}. According to 
{11492}, this subunit is equivalent to that designated 7* in {11539}.	
Glu-A3ay {11490}.  6+20 {11492}.  tv:  T. turgidum ssp. durum landraces BGE047515 and BGE047516 
{11492}; Mexican durum landrace accession 10 (CWI52016) {11490}.	
Glu-A3az {11490}.  6+10+11* {11490}.  tv:  T. turgidum ssp. durum Mexican landrace accession 3 
(CWI51941) {11490}.	
Glu-A3ba {11490}.  5+11 {11492}.  tv:  T. turgidum ssp. turgidum landrace BGE047535 {11492}; 
Iranian landrace accession 77 (CWI73342) {11490}.	
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Glu-A3bb {11493}.  20 {11492}.  tv:  T. turgidum ssp. dicoccon landrace   BGE047498 {11492}; T. 
turgidum ssp. turgidum landrace BGE047531 {11492}; T. turgidum ssp. durum Moroccan landrace 
MGB-16563 {11493}.	
Glu-A3bc {11493}.  5** {11493}.  tv:  T. turgidum ssp. durum Moroccan cv. MGB-20 {11493}.	
Glu-A3bd [{11492}].  5+22 {11492}.  tv:  T. turgidum ssp. turgidum BGE047532 {11492}.	
Glu-A3be [{11492}].  5* {11492}.  tv:  T. turgidum ssp. turgidum BGE048495 {11492}.	
Glu-A3bf [{11492}].  5*+20 {11492}.  tv:  T. turgidum ssp. turgidum BGE048498 {11492}.	
Glu-A3bg [{11539}].  5*+11+20 {11539}.  tv:  T. turgidum ssp. turgidum BGE018646 {11539}.	
Glu-A3bh [{11539}].  10 {11539}.  tv:  T. turgidum ssp. durum BGE013622 {11539}.	
Glu-A3bi [{11539}].  5*+11+22 {11539}.  tv:  T. turgidum ssp. turgidum BGE013089 {11539}. 	
Glu-A3bj [{11540}].  5* {11540}.  tv:  T. turgidum ssp. durum Fanfarron {11540}.	
Glu-A3bk [{11540}].  8* {11540}.  tv:  T. turgidum ssp. durum BGE019300 {11540}.	
Glu-A3bl [{11540}].  5+8* {11540}.  tv:  T. turgidum ssp. durum BGE013718 {11540}.	
	
GLU-B3 {1358}.  1BS {1358}.  v:  CS.	
Three different approaches were employed to identify putative SNPs used to design gene-specific primers 
for LMW-GS genes, and six functional STS markers, three for GLU-B3 and three for GLU-D3 {10664}. 
These markers distiguished cultivars with different haplotypes at the GLU-B3 and GLU-D3 loci, but there 
was no clear correlation between the alleles of cultivars defined by protein electrophoretic mobility and 
the separation patterns of the DNA markers, since all three GLU-3 loci were multiple copies and each 
protein electrophoretic mobility allele was controlled by 3-6 coding genes {10665}.	
Glu-B3a.  v:  CS. 	
Glu-B3b {481}.  v:  Gabo, Timstein, Hope. 	
Glu-B3c {481}.  v:  Insignia, Halberd. 	
Glu-B3d {481}.  v:  Orca. 	
Glu-B3e {481}.  v:  Cheyenne. 	
Glu-B3f {481}.  v:  Radja. 	
Glu-B3g {481}.  v:  Kharkov, Bungulla. 	
Glu-B3h {481}.  v:  Thatcher, Rescue. 	
Glu-B3i {481}.  v:  Norin-61. 	
Glu-B3j {???}.  .  v:  Kavkaz. 	
Null allele carried by the 1BL.1RS translocation. This allelic designation was originally incorrectly used 
in the catalogue to name an allele from T. turgidum ssp. durum that was subsequently redesignated as 
Glu-B3ce, since the Kavkaz allele had precedence.	
Glu-B3k {476, 02110}.  8+9+13+16+19 {02110}.  tv:  ALP-153, Dural, Durati, Edmore; Faisca. 	
Glu-B3l {476}.  tv:  Gionp-1954. 	
Glu-B3m {03120}.  [Glu-B3b' {03120}].  v:  Soissons {03120}. 	
Glu-B3n {03120}.  [Glu-B3c' {03120}].  v:  Courtot {03120}. 	
Glu-B3o {03116}.  [Glu-B3i' {03116}].  v:  Olympus hexaploid triticale {03116}.  
Glu-B3p {03116}.  [Glu-B3k {03116}].  v:  Alamo hexaploid triticale {03116}.  
Glu-B3q {03115}.  [Glu-B3h' {03115}].  v:  Torote hexaploid triticale {03115} 
Glu-B3r {00114}.  [Glu-B3a {00114}].  2+4+15+19 {00114}.  tv:  Mexicali. 
 Glu-B3s {00114}.  [Glu-B3b {00114}].  8+9+13+16 {00114}.  tv:  Langdon. 	
Glu-B3t {00114}.  [Glu-B3c {00114}].  2+4+14+15+19 {00114}.  tv:  Jiloca. 	
Glu-B3u {00114}.  [Glu-B3d {00114}].  2+4+15+17+19 {00114}.  tv:  Mundial. 	
Glu-B3v {00114}.  [Glu-B3e {00114}].  2+4+15+16+18 {00114}.  tv:  Granja Badajoz. Glu-B3w 
{00114}.  [Glu-B3f {00114}].  2+4+15+17 {00114}.  tv:  Ardente. 	
Glu-B3x {00114}.  [Glu-B3g {00114}].  2+4+15+16 {00114}.  tv:  Claro de Balazote. Glu-B3y {00114}.  
[Glu-B3h {00114}].  1+3+14+18 {00114}.  tv:  Alaga. 	



	

51	 	 	 	 	 PROTEINS 	
	
Glu-B3z {10116}.  6.1 {10116}.  tv:  Buck Cristal {10116}.	
Glu-B3aa {10215}.  [Glu-B3l {10215}].  1+3+13*+16 {10215}.  tv:  Blancal de Nules {10215}. 	
Glu-B3ab {10804}.  v:  Hope {10804}; Nanbukomugi {10804}. 	
Glu-B3ac {10804}.  v:  ACA 801 {10804}; Klein Proteo {10804}; Thesee {10804}. 	
Glu-B3ad {10804}.  v:  AC Vista {10804}; Heilo {10804};  Opata 85 {10804};  Ruso {10804}. 	
Glu-B3ae {11490}.  1+3+16 {11490}.  tv:  T. turgidum ssp. durum accession 56 (CWI57386) {11490}.	
Glu-B3af {11490}.  1+3+17 {11490}.  tv:  T. turgidum ssp. durum accession 74 (CWI71827) {11490}.	
Glu-B3ag {11490}.  2+4+16 {11490}.  tv:  T. turgidum ssp. durum accession 46 (CWI56913) {11490}.	
Glu-B3ah {11490}.  8+9+16 {11490}.  tv:  T. turgidum ssp. durum accession 65 (CWI57719) {11490}.	
Glu-B3ai {11490}.  2+4+14+18 {11490}.  tv:  T. turgidum ssp. durum accession 62 (CWI57615) 
{11490}.	
Glu-B3aj {11490}.  19 {11490}.  tv:  T. turgidum ssp. durum accession 77 (CWI73342) {11490}.	
Glu-B3ak {11490}.  2+4+6*+15+19 {11490}.  tv:  T. turgidum ssp. durum accession 69 (CWI71627) 
{11490}.	
Glu-B3al {11490}.  2+4+7*+15+16 {11490}.  tv:  T. turgidum ssp. durum accession 61 (CWI57614) 
{11490}.	
Glu-B3am {11490}.  1+3+6*+13’+17 {11490}.  tv:  T. turgidum ssp. durum accession 72 (CWI71759) 
{11490}.	
Glu-B3an {11490}.  8+9+13’+17 {11490}.  tv:  T. turgidum ssp. durum accession 58 (CWI57522) 
{11490}.	
Glu-B3ao {11490}.  1+3+8’+17 {11490}.  tv:  T. turgidum ssp. durum accession 50 (CWI57256) 
{11490}.	
Glu-B3ap {11490}.  2+4+6*+9’+14+19 {11490}.  tv:  T. turgidum ssp. durum accession 78 (CWI73350) 
{11490}.	
Glu-B3aq {11493}.  2+4+8+15+19 {11492}.  tv:  T. turgidum ssp. durum landraces BGE045634 
{11492}; MGB-2963 {11493}.	
Glu-B3ar {11493}.  1+3+7+15+18 {11493}.  tv:  T. turgidum ssp. durum landrace MGB-16563 
{11493}.	
Glu-B3as {11493}.  1+3+8+13+16+19 {11493}.  tv:  T. turgidum ssp. durum landrace MGB-3152 
{11493}.	
Glu-B3at {11493}.  2+4+17 {11493}.  tv:  T. turgidum ssp. durum landrace MGB-3125 {11493}.	
Glu-B3au {11493}.  2+4+7+15+19 {11493}.  tv:  T. turgidum ssp. durum landrace MGB-5963 {11493}.	
Glu-B3av {11493}.  9+13+16 {11493}.  tv:  T. turgidum ssp. durum landrace MGB-3101 {11493}.	
Glu-B3aw [{11492}].  1+3+8+13+15+18 {11492}.  tv:  T. turgidum ssp. turgidum BGE047502 {11492}. 	
Glu-B3ax [{11492}].  1+3+13*+19 {11492}.  tv:  T. turgidum ssp. turgidum BGE047504, BGE047506 
{11492}.	
Glu-B3ay [{11492}].  1+3+14+15 {11492}.  tv:  T. turgidum ssp. turgidum BGE047521 {11492}.	
Glu-B3az [{11492}].  1+16 {11492}.  tv:  T. turgidum ssp. dicoccon BGE045645, BGE047503 {11492}.	
Glu-B3ba [{11492}].  2+4+7+13*+15+19 {11492}.  tv:  T. turgidum ssp. durum BGE045651 {11492}.	
Glu-B3bb [{11492}].  2+4+15 {11492}.  tv:  T. turgidum ssp. durum BGE047516 {11492}.	
Glu-B3bc [{11492}].  2+4+15+17+21 {11492}.  tv:  T. turgidum ssp. turgidum BGE048494 {11492}.	
Glu-B3bd [{11492}].  4+(7**)+13+15+19 {11492}.  tv:  T. turgidum ssp. dicoccon BGE045628 
{11492}. 	
The designation of subunit 7** as encoded by Glu-A3 was deduced from its electrophoretic mobility and 
awaits confirmation through mapping studies {11492}; the subunit was therefore referenced by {11492}.  	
Glu-B3be [{11492}].  4+(7**)+13+15+21 {11492}.  tv:  T. turgidum ssp. turgidum BGE047511 
{11492}.	
The designation of subunit 7** as encoded by GLU-A3 was deduced from its electrophoretic mobility and 
awaits confirmation through mapping studies {11492}; the subunit was therefore referenced by {11492}.	



	

52	 	 	 	 	 PROTEINS 	
	
Glu-B3bf [{11492}].  4+(7**)+15+19 {11492}.  tv:  T. turgidum ssp. dicoccon BGE045629, 
BGE045676, BGE047499, BGE048499 {11492}.	
The designation of subunit 7** as encoded by GLU-A3 was deduced from its electrophoretic mobility and 
awaits confirmation by mapping studies {11492}; the subunit was therefore referenced by {11492}.	
Glu-B3bg [{11492}].  4+7***+13+16 {11492}.  tv:  T. turgidum ssp. turgidum BGE047531 {11492}.	
Glu-B3bh [{11492}].  4+7***+15+19 {11492}.  tv:  T. turgidum ssp. durum BGE045657 {11492}.	
Glu-B3bi [{11492}].  7+9+14+16 {11492}.  tv:  T. turgidum ssp. durum BGE047533 {11492}.	
Glu-B3bj [{11492}].  7+13*+15+18 {11492}.  tv:  T. turgidum ssp. turgidum BGE047512 {11492}. 
Glu-B3bk [{11492}].  7***+8a*+14+17 {11492}.  tv:  T. turgidum ssp. durum BGE047507 {11492} 
Glu-B3bl [{11492}].  7***+8a*+14*+15+19 {11492}.  tv:  T. turgidum ssp. turgidum durum wheat 
landrace BGE048495 {11492}. 
Glu-B3bm [{11492}].  7***+8a*+14*+16+21 {11492}.  tv:  T. turgidum ssp. turgidum BGE047535 
{11492}. 
Glu-B3bn [{11492}].  8+9+14+18 {11492}.  tv:  T. turgidum ssp. durum BGE045667 {11492}. 
Glu-B3bo [{11492}].  8+13+18 {11492}.  tv:  T. turgidum ssp. dicoccon BGE048901 {11492}. 
Glu-B3bp [{11492}].  8+13*+16 {11492}.  tv:  T. turgidum ssp. turgidum BGE047510 {11492}. 
Glu-B3bq [{11492}].  8a*+13*+15+19 {11492}.  tv:  T. turgidum ssp. turgidum BGE047519 {11492}. 
Glu-B3br [{11492}].  8a*+13*+16 {11492}.  tv:  T. turgidum ssp. dicoccon BGE047498 {11492}. 
Glu-B3bs [{1149}].  (13**)+14+18 {11492}.  tv:  T. turgidum ssp. turgidum BGE045632, BGE047532, 
BGE048498 {11492}. 
The designation of subunit 13** as encoded by GLU-B3 was deduced from its electrophoretic mobility 
and awaits confirmation by mapping studies {11492}; the subunit was therefore referenced by {11492}. 
Glu-B3bt [{11492}].  (13**)+14+19 {11492}.  tv:  T. turgidum ssp. turgidum BGE047513, BGE048496 
{11492}. 
The designation of subunit 13** as encoded by GLU-B3 was deduced from its electrophoretic mobility 
and awaits confirmation through mapping studies {11492}; the subunit was therefore referenced by 
{11492}. 
Glu-B3bu [11539].  7***+8a*+14*+16+19 {11539}.  tv:  T. turgidum ssp. turgidum BGE013100 
{11539}. 
Glu-B3bv [{11539}].  13+15+19 {11539}.  tv:  T. turgidum ssp. turgidum BGE020942 {11539}. 
Glu-B3bw [{11539}].  13+17+19 {11539}.  tv:  T. turgidum ssp. durum BGE013622 {11539}. 
Glu-B3bx [{11539}].  1+3+7*+15+19 {11539}.  tv:  T. turgidum ssp. durum BGE013590 {11539}. 
According to {11492}, this subunit (subunit 7*) is equivalent to 6.1 in {10116}. 
Glu-B3by [{11539}].  1**+2+4+15+17+19 {11539}.  tv:  T. turgidum ssp. durum BGE08366 {11539}. 
Glu-B3bz [{11539}].  1*+2+4+15+16 {11539}.  tv:  T. turgidum ssp. turgidum BGE12537 {11539}. 
Glu-B3ca [{11540}].  1+3+13+19 {11540}.  tv:  T. turgidum ssp. durum BGE018639 {11540}. 
Glu-B3cb [{11540}].  13*+18 {11540}.  tv:  T. turgidum ssp. durum BGE018657 {11540}. 
Glu-B3cc [{11540}].  13+14+18 {11540}.  tv:  T. turgidum ssp. durum BGE013724 {11540}. 
Glu-B3cd [{11540}].  2+4+13+15+17 {11540}.  tv:  T. turgidum ssp. durum BGE030927 {11540}. 
Glu-B3ce {476}, {02110}.  4+6*+15+19 {02110}.  tv:  Duramba-B, Duramba-D, Langdon; Mourisco 
Fino.  
 
GLU-D3 {707}, {1358}.  1DS {707}, {1358}.  v:  CS. 	
Glu-D3a {481}.  v:  CS. 	
Glu-D3b {481}.  v:  Gabo. 	
Glu-D3c {481}.  v:  Insignia, Cappelle Desprez. 	
Glu-D3d {481}.  v:  Jufy-1 {10813}; Norin-61A. 	
Glu-D3e {481}.  v:  Orca, Thatcher. 
Glu-D3f {10548}.  v:  Cheyenne {10548}. 	
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Glu-D3g {10558}.  v:  Hira-1 {10558}. 	
Glu-D3h {10558}.  v:  India 115 {10558}. 	
Glu-D3i {10558}.  v:  Bolac {10558}. 	
Glu-D3j {10558}.  v:  Hira-2 {10558}. 	
Glu-D3k {10558}.  v:  Lincoln {10558}. 	
Glu-D3l {10804}.  v:  Heilo {10804}; Jing411 {10804}; Pepital {10804}; Thesee {10804}. 	
Glu-D3m {10804}.  v:  Darius {10804}. 	
Glu-D3n {10804}.  v:  Fengmai 27 {10804}.	
	
GLU-E3 {480}.  1ES {480}.  su:  CS/E. elongata. 	
	
GLU-Sl3 {1228}, {480}.  1Sl {480}. 1S1S {1228}.  su:  CS/Ae. longissima {1228}, {480}.  ma:  In Ae. 
longissima 2 /Ae. longissima 10 glucose phosphate isomerase locus, and three gliadin loci were mapped 
relative to one another in {1228} as follows: GLU-Sl1 – 15.9 cM – GPI-Sl1 – 38 cM – GLI-Sl4 – 7.1 cM – 
GLU-Sl3 – 0.9 cM – GLI-Sl1 – 5.6 cM – GLI-Sl5. GLU-Sl1 is located in 1SlL and the other loci are in 
1S1S. 	
Glu-U3 {480}.  1U {480}.  su:  CS/Ae. umbellulata. 	
A series of papers {00106, 00107, 00108 and 00109} describe considerable variation in primitive wheats 
not present in bread wheat (A genome species T. boeoticum, T. urartu, T. thaoudar, T. aegilopoides, T. 
monococcum, and D-genome species T. tauschii) for the low molecular weight subunits, sufficient to use 
them as a source for potentially changing flour properties in bread wheat.	
In {00110}, variants for LMW glutenin subunits were reported from study of 24 accessions of einkorn 
wheat (T. monococcum ssp. monococcum). Nine of these showed two electrophoretic bands for LMW 
subunits, arbitrarily designated 'a' and 'b', that appeared to be associated with good bread-making quality. 
The isolation of a new low-molecular-weight glutenin subunit gene, located on chromosome 1D, was 
reported in {0350}.	
 
GLU-4	
The following loci, GLU-D4 and GLU-D5, encoding low molecular weight subunits of glutenin (30-32 
kDa) were described in {02111}; the proteins encoded by them were first observed earlier {02114, 
02115}, and the former was later tentatively assigned the symbol GLU-4 {02116}, before its 
chromosomal location was established and the locus definitively named as GLU-D4 in {02111}. While 
this locus is located on chromosome 1D (in accordance with the position on the group 1 chromosomes of 
the remaining glutenin encoding loci found to date), the locus GLU-D5 is located on chromosome 7D. In 
SDS-PAGE, the proteins from both loci are detected only in the presence of 4-vinylpyridine added to the 
sample extract. Their amino acid compositions do not match those of the major prolamin groups; 
nonetheless, they classify as glutenins based upon solubility, immunological behaviour and N-terminal 
amino acid sequence (the latter suggesting an evolutionary link with the major (B and C) low molecular 
weight glutenin subunits).	
	
Glu-D4 {02111}.  1D {02111}.  su:  CS/Langdon 1D(1A); CS/Langdon 1D(1B) {02111}. Glu-D4a 
{02111}.  v:  J 24. 	
Glu-D4b {02111}.  v:  PBW 154. 	
Glu-D4c {02111}.  Null allele. v:  NI 4. 	
	

GLU-5	
	
GLU-D5 {02111}.  7D {02111}.  su:  CS/Langdon 7D(7A); CS/Langdon 7D(7B) {02111}. 	
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A collection of 173 Ae. tauschii accessions were analysed for low molecular weight glutenin subunits by 
SDS-PAGE {02112}; 33 different patterns for B-subunits and 43 for C-subunits were identified, some of 
which were of identical electrophoretic mobility to those observed in common wheat. Also observed were 
subunits with the same mobilities as the D-subunits and as the subunits encoded by the GLU-D4 and 
GLU-D5 loci. This variation represents a source of novel germplasm of potential value for breeding 
programmes aimed at improving the D-genome of common wheat in the context of bread-making quality.	
Glu-D5a {02111}.  v:  PBW 154. 	
Glu-D5b {02111}.  Null allele.  v:  K 68. 	
 
2.3.2. Gliadins	
These are heterogeneous mixtures of alcohol-soluble polypeptides without quaternary structure. The GLI-
1 loci are compound and are now considered to comprise the omega-gliadin and gamma gliadin {982}, 
{1415} multigene families {494}, which in some circumstances may be divided into GLI-1-1 and GLI-1-
2, respectively. The LMW glutenin multigene families, which are closely linked to the GLI-1 loci {588}, 
are listed separately as the GLU-3 set {1358}; information on map distance and gene order in relation to 
GLU-3 and the centromere is given in the preamble for the GLU-3 loci. There is evidence that a few of 
the omega-gliadin genes are separated from the main omega-gliadin gene cluster {993}. 	
A catalogue of common wheat gliadin genes and alleles is provided in {11437}.	
Variation at the GLI-1 loci was described earlier {634}, {996}, {1126} and applied in mapping 
experiments {1243}, {1125}, {196}, {422}, {1120}. A rational system of naming the alleles was 
produced by Dr. E.V. Metakovsky {988}. This nomenclature is reproduced below. A considerable 
number of alleles were added to the original list given in {988} and referenced here accordingly. A few 
alleles have been deleted, because, following much detailed comparison, there is now doubt that they can 
be reliably distinguished from existing alleles {9981}. The allelic letter in these cases has not been 
reused. To facilitate practical use of the list, the aim was to give at least three standard cultivars from a 
range of countries for each allele {9981}. This was achieved for majority of entries and is a change from 
the original list compiled from {988}, where up to two standards were given. While the three or more 
standards described almost always include the original standards, some were replaced for various reasons, 
such as international awareness of the cultivar, availability of seed, or the ease with which an allele can be 
identified in a particular genetic background {9981}. In the original list, where two cultivars were given 
as prototypes for an allele, the first named was from the USSR and the second from elsewhere; this is no 
longer the case, although care was taken to include a Russian cultivar where possible, to maintain a wide 
base of germplasm in which the alleles are available, as well as to acknowledge the research groups in the 
country where much of the pioneering work was carried out.	
For discussion of null alleles at the GLI-1 and GLI-2 loci, see {9984}.	
Recombination was observed within the gliadin multigene family at XGli-A1 {277}. These closely linked 
genes may correspond to GLI-A1 and GLI-A5, but they were temporarily designated XGLI-A1.1 and 
XGLI-A1.2 until orthology with GLI-A1 and/or GLI-A5 is established.	
Note: The catalogue entries reproduced here only refer to alleles in T. aestivum; there is, however, 
enormous variation in gliadins in the close relatives of wheat; see, for example, {989} for studies in T. 
monococcum (more than 80 gliadin electrophoretic patterns observed in 109 accessions), {990} for 
studies in T. boeoticum (more than 50 electrophoretic patterns in 60 accessions), and {1076} studies in T. 
durum (19 electrophoretic patterns, referring only to variation in the omego-gliadins, in 243 accessions).	
In {00110}, variants for omega-gliadins were reported from study of 24 accessions of einkorn wheat (T. 
monococcum ssp. monococcum). In {00111}, in a study of common wheat and durum from Portugal, the 
authors used the nomenclature system described in {00112} for the omega-gliadins. In {00116}, a 
comparison between spelt and common wheat was carried out for the gliadins using a nomenclature 
system described in {00118}. 	
The GLI-1 loci may be recognised by probes pcP387 {372} and pTag1436 {065}, and by specific 
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microsatellite primers {252}. Furthermore, it was shown that probe pTag1436 differentiates gliadin 
alleles rather well; using this probe, families of gliadin alleles and some of their relationships were 
described {9988}.	
Twenty eight gamma-gliadin gene sequences from GenBank were grouped into nine subgroups in 
{10063}. Primers were developed against some of the subgroups and the chromosomal locations of the 
gamma-gliadin genes were determined {10063}.	
Based upon morphological observation and RFLP analysis, it was proposed that the cultivar 'Chinese 
Spring' is a strain of the landrace 'Chengdu-guangtou' from the Chengdu Plain, Sichuan Province; this 
proposal is supported by the observation that CS and the landrace share the same alleles at all nine GLI-1, 
GLI-2 and GLU-1 loci {see 01102}. 	
PCR primers GAG5 and GAG6 were applied to 35 cultivars of closely related spelt and hexaploid wheat, 
and to eight cultivars of durum, to yield products originating from two gamma-gliadin genes mapped to 
chromosomes 1B (termed GAG56B) and 1D (termed GAG56D) {01103}. Two alleles for GAG56D 
(differing in a 9 bp deletion/duplication and single nucleotide polymorphism) were found, one a new 
allele and the other previously published {01104}. Meanwhile two alleles found for GAG56B among the 
durum wheats correlated with the presence of gluten quality markers, gamma-gliadins 42 or 45.	
1B and 1D sulphur-poor omega-gliadins in cultivar Butte 86 were characterised by RP-HPLC, SDS-
PAGE, two-dimensional PAGE, amino acid composition determination and sequencing, matrix assisted 
laser desorption ionisation-time of flight mass spectrometry and circular dichroism spectroscopy to reveal 
the detailed nature of the peptides belonging to the two groups, and showing that the complexity of 
mixtures of the peptides of the 1B group was greater than that of the 1D group {01105}. Although 
circular dichroism spectra were similar for the two groups of peptides, and suggested a mainly flexible 
random structure, there was evidence for a significant amount of left-handed polyproline II helical 
conformation in the case of the 1D components. The authors placed some of the results in the context of 
the possible ancestor of the B-genome and relationships with the barley C-hordeins and rye omega-
secalins.	
Eleven new gliadin alleles were found in a collection of 52 Spanish landraces of common wheat {03141}.	
A new family of low-molecular-weight gliadin genes located on groups 4 and 7 were reported in 
{10117}. They appear to influence rheological properties and seem to be closely related to the 17kDa 
epsilon hordein, important in beer foam stability.	
A novel storage protein gene with chimeric structure was isolated from the old Hungarian cultivar 
Bankuti 1201, containing gamma-gliadin sequences in the 5' region, LMW-glutenin sequences in the 3' 
region and a frameshift mutation leading to a completely new polypeptide in the C-terminal region. A 
further seven recombinant prolamin genes were subsequently isolated. The eight genes, designated Ch1 to 
Ch8, seem to derive from four gamma-gliadin and three LMW-glutenin sequences and are probably the 
result of crossing over between the loci GLI-1 and GLU-3. However, the precise recombinational 
mechanism that gave rise to them has yet to be elucidated {10307}.	
Transcriptome analysis showed the presence of proteins called avenin-like a and b. The former contained 
a duplicated sequence of about 120 residues and corresponded to the LMW-gliadins. The latter was not 
previously characterized but may form part of the glutenin fraction and hence influence quality. These 
avenin-like proteins showed higher expression levels in three Aegilops species (Ae. caudata, Ae. 
cylindrica and Ae. tauschii) than in common wheat {10321}. 	
Four new classes of low molecular weight proteins related to gliadins, though not sufficiently similar to 
be classified as such, were reported in {02113}. One of the classes has no close association to previously 
described wheat endosperm proteins.	
GLI-1	
GLI-A1 {1125, 1334}.  [Gld 1A {1415}].  1AS {150}, {634}, {1607}, {1334}.  s:  CS*/Cheyenne {634}.  
v:  CS {150}, {1607}, {1334}. 	
Gli-A1a {988}.  v:  Castan {991};  CS {988};  Mara {9986};  Mentana {9986};  Millewa {00119}. 	
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Gli-A1b {988}.  v:  Bezostaya 1, Mercia {988};  Tracy {991}. 	
Gli-A1c {988}.  v:  Ukrainka {998};  Gazul {9985};  Sava {994};  Hopps {00119}. 	
Gli-A1d {988}.  v:  Dankowska {988};  Cabezorro {9985}. 	
Gli-A1e {988}.  v:  Falchetto {988};  Open {991};  Touzelle {991}.  
Gli-A1f {988}.  v:  Mironovskaya 808, Maris Freeman {988};  Arminda {991}. 	
Note:  
An allele Gli-A1f* is mentioned in {03130}.	
Gli-A1g {988}.  v:  Gabo {988};  Adalid {9985}. 	
Gli-A1h {988}.  v:  Sadovo I {988};  Predela {9981};  Krajinka {9981}. 	
Gli-A1i {988}.  v:  Saratovskaya 36 {988}. 	
Gli-A1j {988}.  v:  Lutescens 62 {988}. 	
Gli-A1k {988}.  v:  Courtot {991};  Skala (heterogeneous) {988};  Soissons {991};  Spada {9986}.  	
Gli-A1l {988}.  v:  Lesostepka 75 {988};  David {9986};  Salmone {9986};  Mura {9981}.	
Gli-A1m {988}.  v:  Marquis {988};  Dneprovskaya 521 {988};  Carat {991};  Liocorno {9986}. 	
Gli-A1n {988}.  v:  Intensivnaya {988}. 	
Gli-A1o {988}.  v:  Odesskaya 16 (heterogeneous) {988};  Oderzo {9986};  Cappelle-Desprez {991};  
Capitole {991}. 	
Gli-A1p {988}.  v:  Pyrotrix 28 {988};  Zagore {9981}. 	
Gli-A1q {988}.  v:  Akmolinka 1 {988}. 	
Gli-A1r {988}.  v:  Ranniaya 73 {988};  Barbilla {9985}. 	
Gli-A1s. 	
Although reported {9986}, this allele is omitted because it requires further confirmation {9981}.	
Gli-A1t {9985}.  v:  Jeja del Pais {9985};  Milturum 553 {9981};  Strela {9981}. 	
Gli-A1u {9985}.  v:  Candeal Alcala {9985}. 	
Gli-A1v {9981}.  v:  Japhet {9981};  Rouge de Bordeaux {9981}. 	
Gli-A1w {9984, 9987}.  Null allele.  v:  Saratovskaya 29 (mutant) {9987};  E. Mottin {9981}. 	
Gli-A1x {10805}.  [Gli-A1ma {10805}].  dv:  PI 191146, T. monococcum ssp. monococcum {10805}. 	
Gli-A1y {10805}.  [Gli-A1mb {10805}].  dv:  PI 190947 T. monococcum ssp. monococcum {10805}. 	
Gli-A1z {10805}.  [Gli-A1mc {10805}].  dv:  PI 190946, T. monococcum ssp. monococcum {10805}. 	
Gli-A1aa {10805}.  [Gli-A1md {10805}].  dv:  PI 191097, T. monococcum ssp. monococcum {10805}. 	
Gli-A1ab {10805}.  [Gli-A1me {10805}].  dv:  BGE-020466, T. monococcum ssp. monococcum {10805}. 	
Gli-A1ac {10805}.  [Gli-A1mf {10805}].  dv:  BGE-013626, T. monococcum ssp. monococcum {10805}. 	
Gli-A1ad {10805}.  [Gli-A1mg {10805}].  dv:  BGE-013628, T. monococcum ssp. monococcum {10805}. 	
Gli-A1ae {10811}.  [Gli-Au1-I {10811}].  dv:  PI-428333, T. urartu {10811}. 	
Gli-A1af {10811}.  [Gli-Au1-II {10811}].  dv:  PI-428319, T. urartu {10811}. 
Gli-A1ag {10811}.  [Gli-Au1-III {10811}].  dv:  PI-428335, T. urartu {10811}. 	
Gli-A1ah {10811}.  [Gli-Au1-IV {10811}].  dv:  PI-428323, T. urartu {10811}. 	
Gli-A1ai {10811}.  [Gli-Au1-V {10811}].  dv:  PI-428231, T. urartu {10811}. 	
Gli-A1aj {10811}.  [Gli-Au1-VI {10811}].  dv:  PI-428194, T. urartu {10811}. 	
Gli-A1ak {10811}.  [Gli-Au1-VII {10811}].  dv:  PI-428256, T. urartu {10811}. 	
Gli-A1al {10811}.  [Gli-Au1-VIII {10811}].  dv:  PI-428234, T. urartu {10811}. 	
Gli-A1am {10811}.  [Gli-Au1-IX {10811}].  dv:  PI-428320, T. urartu {10811}. 	
Gli-A1an {10811}.  [Gli-Au1-X {10811}].  dv:  PI-428255, T. urartu {10811}. 	
Gli-A1ao {10811}.  [Gli-Au1-XI {10811}].  dv:  PI-428241, T. urartu {10811}. 	
Gli-A1ap {10811}.  [Gli-Au1-XII {10811}].  dv:  PI-428235, T. urartu {10811}. 	
Gli-A1aq {10811}.  [Gli-Au1-XIII {10811}].  dv:  PI-428183, T. urartu {10811}. 	
Gli-A1ar {10811}.  [Gli-Au1-XIV {10811}].  dv:  PI-428317, T. urartu {10811}. 	
Gli-A1as {10811}.  [Gli-Au1-XV {10811}].  dv:  PI-427328, T. urartu {10811}. 	
Gli-A1at {10811}.  [Gli-Au1-XVI {10811}].  dv:  PI-428327, T. urartu {10811}. 	
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Gli-A1au {10811}.  [Gli-Au1-XVII {10811}].  dv:  PI-428253, T. urartu {10811}. 	
Gli-A1av {10811}.  [Gli-Au1-XVIII {10811}].  dv:  PI-428224, T. urartu {10811}. 	
Gli-A1aw {10811}.  [Gli-Au1-XIX {10811}].  dv:  PI-538727, T. urartu {10811}. 	
Gli-A1ax {10811}.  [Gli-Au1-XX {10811}].  dv:  PI-428211, T. urartu {10811}. 	
Gli-A1ay {10811}.  [Gli-Au1-XXI {10811}].  dv:  PI-538724, T. urartu {10811}. 	
Gli-A1az {10811}.  [Gli-Au1-XXII {10811}].  dv:  PI-428191, T. urartu {10811}. 	
Gli-A1ba {10811}.  [Gli-Au1-XXIII {10811}].  dv:  TRI-6735, T. urartu {10811}. 	
Gli-A1bb {10811}.  [Gli-Au1-XXIV {10811}].  dv:  TRI-11494, T. urartu {10811}. 	
Gli-A1bc {10811}.  [Gli-Au1-XXV {10811}].   dv:  TRI-6734, T. urartu {10811}. 
Gli-A1bd {10811}.  [Gli-Au1-XXVI {10811}].  dv:  TRI-11496, T. urartu {10811}. 	
 
GLI-B1 {1125, 1607}.  [Gld 1B {1415, 1243}, Gld-B4 {420}, Gld-B2 {420}, Gld-B6 {420}, Gld-B5 
{420}, Gld-B3 {420}, Gld-B1 {420}].  1BS {150, 634}.1B {1607}.  s:  CS*/Cheyenne {634}.  v:  CS 
{150}, {1607}.  
Gli-B1a {988}.  v:  CS {988}. 
Gli-B1b {988}.  v:  Bezostaya 1 {988};  Carat {991};  Marquis {988};  Liocorno {9986};  Soissons 
{991}. 
Gli-B1c {988}.  v:  Siete Cerros 66 {988};  Prinqual {991};  Loreto {9986}.  
Gli-B1d {988}.  v:  Dneprovskaya 521 {988};  Chopin {991};  Petrel {991};  Tiberio {9986};  Yecora 
{9985};  Neepawa {995};  Suneca {00119}.  
Gli-B1e {988}.  v:  Apexal {991};  Fournil {991};  Lutescens 62 {988};  Oderzo {9986}.  
Gli-B1f {988}.  v:  Capitole {991};  Cappelle-Desprez {991};  Dankowska {988};  Maris Freeman 
{988};  Mercia {998}. 	
Gli-B1g {988}.  v:  Champtal {991};  Galahad {988};  Mara {9986};  Sadovo 1 {988};  Tracy {991}. 	
Gli-B1h {988}.  v:  Cabezorro {9985};  Krasnodonka {988};  Pepital {991};  Rudi {991}; Tincurrin 
{00119}. 	
Gli-B1i {988}.  v:  Ghurka {988};  Insignia {988}. 	
Gli-B1j {988}.  v:  Cluj 650 {988}. 	
Gli-B1k {988}.  v:  Crverkapa {994};  De Carolis {9986};  Kremena {988};  Mentana {9986}. 	
Gli-B1l {988}.  v:  Avrova {9981};  Clement {991};  Damier {991};  Fiocco {9986};  Kavkaz {9981}. 	
Gli-B1l encodes secalins ssociated with the 1BL.1RS translocation.	
Gli-B1m {988}.  v:  Costantino {9986};  Et.d'Choisy {991};  Pyrotrix 28 {988}. 	
Gli-B1n {988}.  v:  Intensivnaya {988}. 	
Gli-B1o {988}.  v:  Aragon 03 {9985};  Levent {988};  Pippo  {9986};  San Rafael {9985}. 	
Gli-B1p {988}.  v:  Inia 66 {9985};  New Pusa 834 {988}. 	
Gli-B1q {9986}.  v:  Gallo {9986};  Goelent {991};  Goya {991}. 	
Gli-B1r {995}.  v:  Chinook {995};  Gazul {9985};  Sevillano {9985}. 	
Gli-B1s {9986}.  v:  Salmone {9986};  Resistente {9986};  E. Mottin {9981}. 	
Gli-B1t {9985}.  v:  Jeja del Pais {9985}. 	
Gli-B1u {9985}.  v:  Negrillo {9985}. 	
Gli-B1v {9985}.  v:  Montjuich {9985}. 	
Gli-B1w {9981}.  v:  Ardica{9981};  Barbilla (MCB-1017) {9981}.	
Gli-B1x {9984, 9987, 991}.  Null allele.  v:  Touzelle {991};  Florence Aurora {9985}. 	
Twelve microsatellite alleles plus a null allele were found at the GLI-B1 locus tightly linked to GLU-B3 
in 112 bread wheat cultivars from Argentina{03123}.	
	
GLI-D1 {121}, {1125}.  [Gld-D1 {420}, Gld-D3 {420}, Gld 1D {1415}, Gld-D2 {420}].  1DS {150}, 
{121}, {634,} {1607}, {1334}.  s:  CS*/Cheyenne {634}.  v:  CS {150}, {121}, {1607}, {1334}. 	
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Gli-D1a {988}.  v:  CS {988};  Marquis {988};  Mentana {9986};  Prinqual {991};  Saratovskaya 36 
{988}. 	
Gli-D1b {988}.  v:  Bezostaya 1 {988};  Cappelle-Desprez {991};  Etoile d'Choisy {991};  Galahad 
{988}. 
Gli-D1c {988}.  v:  Skorospelka Uluchshennaya (biotype) {988, 9982}. 
Gli-D1d {988}.  v:  De Carolis {9986};  Solo {988}. 	
Gli-D1e {988}.  v:  Gerek 79 {988}. 	
Gli-D1f {988}.  v:  Carlos {991};  Gabo {988};  Maris Freeman {988};  Orso {9986}. 	
Gli-D1g {988}.  v:  Fournil {991};  Ghurka {988};  Mironovskaya 808 {988};  Open  {991}. 	
Gli-D1h {988}.  v:  Sadovo I {988};  Zlatostrui {9981}. 	
Gli-D1i {988}.  v:  Insignia {988};  Napayo (biotype) {995};  San Rafael {9985};  Tselinogradka {988}. 	
Gli-D1j {988}.  v:  Aubain;  Chinook {995};  Inia 66 {9985};  Petrel {991};  Promin {988}. 	
Gli-D1k {988}.  v:  Cargimarec {991};  Kremena {988};  Mara {9986};  Pippo {9986}. 
Gli-D1l {988}.  v:  Artaban {991};  Corin {991};  Longbow {988}. 	
Gli-D1m {991}.  v:  Heurtebise {991}.	
Gli-D1n {981}.  v:  Blanquillo de Toledo (MCB-0950) {9981}. 	
Gli-D1o {9984, 9987, 991}.  Null allele.  v:  Darius {991};  Touzelle {991};  Saratovskaya 29 (mutant) 
{9987}. 	
	
GLI-Agi1.  1Agi {168}.  ad:  Vilmorin 27/Th. intermedium. 	
	
GLI-E1 {781}.  1ES {781}.  ad:  CS/E. elongata. GLI-Ht1 {1037}.  1Htp {1037}.  ad:  CS/E. 
trachycaulum. 	
 
GLI-R1 {1334}.  [SecR1 {1356}, Sec1 {1336}].  1RS {1340}, {781}, {1336,} {1334}.  ad:  
CS/Imperial{1340}, {781}, {1336}, {1334};  Holdfast/King II{1340, 1334}.  tr:  CS 1DS. Imperial 1RL 
{1356}. 	
Sec-12 and Sec13 are given as allelic alternatives in 1BL.1RS translocation lines by {03132}. 
GLI-Rm1 {1340}.  1RmS {1340}.  ad:  CS/S. montanum. 	
	
GLI-Sl1 {573}.  1Sl {573}.  ad:  CS/Ae. longissima. 	
	
GLI-U1 {1335}.  1U {150}, {1335}.  ad:  CS/Ae. umbellulata. GLI-V1 {111}, {1026}.  1V {111}, 
{1026}.   ad: CS/D. Villosum {1026}; Creso/D. villosum {111}.  
	
In barley, the B and C hordeins are controlled by the HOR2 and HOR1 loci, respectively, which are 
linked {1341} on chromosome 1HS {1063, 1153}. The map distances and homology of the proteins 
indicate that HOR1, the locus closest to the centromere, is equivalent to the omega-gliadins (GLI-1-1) in 
GLI-1 {1338}.	
Three alleles at each of the GLI-1-1 (omega gliadin) loci were noted {1358}. The complexity of the GLI-
1 compound loci is further emphasized by a report of individual genes being separable by recombination, 
where G1d-1A (a block of gamma and omega genes) is separable by 0.3% from Gld4-1A (omega gliadins) 
which is in turn, separable by 1.5% from Gld3-1A (omega gliadins) {1103}.	
Variation was described elsewhere {634}, {996}, {1126} and applied in mapping experiments {107}, 
{196}, {422}, {1120}, {1125}, {1243}. Sixteen combinations of GLI-B1 and 4 combinations of GLI-D1 
subunits are listed in {420}. Multiple alleles described in {996}, number 15 at GLI-A1, 18 at GLI-B1, and 
8 at GLI-D1.	
The Gli-1 alleles present in 57 Yugoslav wheat varieties were reported in {994}.	
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Gli-DT1 {02109}.  1DS {02109}.  v:  L/18913 (synthetic).  dv:  Ae. tauschii AUS18913. 	
A locus designated GLI-DT1 controlling an omega-gliadin of Ae. tauschii was mapped on the short arm 
of chromosome 1D between loci GLI-D1 (strictly GLI-Dt1) and GLU-D1 (strictly GLU-Dt1), 13.18 cM 
proximal to the former and 40.20 cM from the latter {02109}. The only omega-gliadin to date identified 
as being encoded by this locus, namely T1, is of unusually low electrophoretic mobility in SDS-PAGE 
gels and was formally thought to be a high molecular weight glutenin encoded by the GLU-Dt1 locus of 
Ae. tauschii (see note following the GLU-D1 list in section 'Glutenins'). The authors speculate that, due to 
their similar relative map positions, the loci GLI-A4, GLI-D4, GLI-R3, GLI-Sl4 and this locus, GLI-DT1, 
form a series of 'Gli-4' orthologous loci. However, this should be interpreted in the light of the above 
discussion on GLI-A3 and GLI-A4.	
Gli-DT1a {02109}.  T1.  v:  L/18913 (synthetic).  dv:  Ae. tauschii AUS18913. 	
A 1,200 bp Dra I RFLP was identified as a gene-specific probe for the T1 omega-gliadin {10645}.	
 
GLI-2 
Prior to publication {988} allelic variation was demonstrated at all the wheat GLI-2 loci, including 13 
alleles at GLI-A2, 11 at GLI-B2, and 10 at GLI-D2, in a study of 39 cultivars {996}. 
GLI-A2 {1125, 1334}.  [Gld 6A {1415}].  6A {1334}. 6AS {1122}.  v:  CS.  
Gli-A2a {988}.  v:  Cabezorro {9985};  CS {988};  Insignia {988};  Rieti DIV {9986}. Gli-A2b {988}.  
v:  Aradi {9985};  Bezostaya 1 {988};  Rivoli {991};  Tiberio {9986}. Gli-A2c {988}.  v:  Eagle 
{00119};  Escualo {9985};  Loreto {9986};  Prinqual {991};  Siete Cerros 66 {988}. Gli-A2d {988}.  v:  
Dneprovskaya 521 {988};  Kenyon (biobype) {995};  Mocho Sobarriba {9985}.  
Gli-A2e {988}.  v:  Cobra {991};  Mentana {9986};  Resistente {9986};  Sadovo 1 {988};  Sevillano 
{9985}.  
Gli-A2f {988}.  v:  Adalid {9985};  Gala {991};  Maris Freeman {988};  Sistar {9986}. Gli-A2g {988}.  
v:  Cappelle-Desprez {991};  Ducat {988};  Mahissa 1 {9985};  Mara {9986}. 
Gli-A2h {988}.  v:  Apollo {991};  Basalt {9981};  Hereward {988};  Montjuich  {9985};  N. Strampelli 
{9986}.  
Gli-A2i {988}.  v:  Krasnodonka {988};  Lesostepka 75  {988}.  
Gli-A2j {988}.  v:  Avalon {9981};  Camp Remy  {991};  E. Mottin {9981};  Recital {991}.  
Gli-A2k {988}.  v:  Akmolinka 1 {988};  Estica {991};  Pyrotrix 28 {988};  Renan {991};  Zena {9986}. 
Gli-A2l {988}.  v:  Chamorro {9985};  Champlein {991};  Longbow {988}.  
Gli-A2m {988}.  v:  Marquis {988};  Rex {991};  Suneca {00119}.  
Gli-A2n {988}.  v:  Mironovskaya 808 {988}.  
Gli-A2o {988}.  v:  Calatrava {9985};  Castan {991};  Glenwari {9981};  Lontra {9986};  Touzelle 
{991}.  
Gli-A2p {988}.  v:  Cajeme 71 {9985};  Capitole  {991};  Clement{991};  Pliska {988};  S. Lorenzo 
{9986};  Yecora 70 {9985}.  
Gli-A2q {988}.  v:  Candeal Alcala {9985};  Montcada {9985};  Saratovskaya 39 {988}. 
Gli-A2r {988}.  v:  Genia l {991};  Open{991};  Riband {988}. 
Gli-A2s {988}.  v:  Saratovskaya 36 {998}.  
Gli-A2t {988}.  v:  Courtot  {991};  Prostor{9981};  Rinconada {9985};  Soissons {991}.  
Gli-A2u {988}.  v:  Aragon 03 {9985};  Kirgizskaya Yubileinaya {988};  Saunders  {995};  Titien 
{991}. 
Gli-A2v {988}.  v:  Kzyl-Bas {988}. 
Gli-A2w {988}.  v:  Bezenchukskaya 98 (biotype) {988}. 
Gli-A2x {988}.  v:  Solo {988}. 
Gli-A2y {9981}.  v:  Gentil Rosso 202 {9981};  PI 191245 {9981}.  
Gli-A2z {9986}.  v:  Gallo {9986};  Giuliana {9986}.  
Gli-A2aa {9985}.  v:  Navarro 122 {9985}.  
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Gli-A2ab {9985}.  v:  Navarro 150 {9985}.  
Gli-A2ac {9981}.  v:  Blanquillo de Barcarrota (MCB-0893) {9981}. 
Gli-A2ad {9981}.  v:  Hembrilla Soria (MCB-1298) {9981}.  
Gli-A2ae {9981}.  v:  Candeal de S.Lorenzo Parrilla (MCB-0932) {9981}.  
Gli-A2af {9981}.  v:  Barbilla de Leon (MCB-1292) {9981}.  
Gli-A2ag {9981}.  v:  Gluclub {9981}; Tincurrin {9981}.  
Gli-A2ah {9981}.  v:  Candeal de Nava del Rey (MCB-0892) {9981}.  
Gli-A2ai {9981}.  v:  Blanquillo (MCB-0908) {9981}.  
Gli-A2aj {9984, 9987}.  Null allele.   v:  Saratovskaya 29 (mutant){9987}. 
Gli-A2ak {10805}.  [Gli-A2ma {10805}].  dv:  BGE-013630, T. monococcum ssp. monococcum {10805}.  
Gli-A2al {10805}.  [Gli-A2mb {10805}].  dv:  PI 094740, T. monococcum ssp. monococcum {10805}. 	
Gli-A2am {10805}.  [Gli-A2mc {10805}].  dv:  PI 190942, T. monococcum ssp. monococcum {10805}. 	
Gli-A2an {10805}.  [Gli-A2md {10805}].  dv:  PI 190947, T. monococcum ssp. monococcum  {10805}. 	
Gli-A2ao {10805}.  [Gli-A2me {10805}].  dv:  PI 190946, T. monococcum ssp. monococcum {10805}. 	
Gli-A2ap {10805}.  [Gli-A2mf {10805}].  dv:  BGE-013626, T. monococcum ssp. monococcum {10805}. 	
Gli-A2aq {10805}.  [Gli-A2mg {10805}].  dv:  PI 191095, T. monococcum ssp. monococcum {10805}. 	
Gli-A2ar {10805}.  [Gli-A2mh {10805}].  dv:  BGE-001937, T. monococcum ssp. monococcum {10805}. 	
Gli-A2as {10805}.  [Gli-A2mi {10805}].  dv:  PI 191096, T. monococcum ssp. monococcum {10805}. 	
Gli-A2at {10805}.  [Gli-A2mj {10805}].  dv:  BGE-020466, T. monococcum ssp. monococcum {10805}. 	
Gli-A2au {10805}.  [Gli-A2mk {10805}].  dv:  BGE-001937, T. monococcum ssp. monococcum {10805}. 	
Gli-A2av {10805}.  [Gli-A2ml {10805}].  dv:  BGE-029108, T. monococcum ssp. monococcum {10805}. 	
Gli-A2aw {10805}.  [Gli-A2mm {10805}].  dv:  BGE-013627, T. monococcum ssp. monococcum 
{10805}. 	
Gli-A2ax {10805}.  [Gli-A2mn {10805}].  dv:  BGE-001937, T. monococcum ssp. monococcum {10805}. 
Gli-A2ay {10811}.  [Gli-Au2-I {10811}].  dv:  PI-428333, T. urartu {10811}. 	
Gli-A2az {10811}.  [Gli-Au2-II {10811}].  dv:  PI-428320, T. urartu {10811}. 	
Gli-A2ba {10811}.  [Gli-Au2-II {10811}].  dv:  PI-428230, T. urartu {10811}. 	
Gli-A2bb {10811}.  [Gli-Au2-IV {10811}].  dv:  PI-428319, T. urartu {10811}. 	
Gli-A2bc {10811}.  [Gli-Au2-V {10811}].  dv:  PI-428239, T. urartu {10811}. 	
Gli-A2bd {10811}.  [Gli-Au2-VI {10811}].  dv:  PI-428336, T. urartu {10811}. 	
Gli-A2be {10811}.  [Gli-Au2-VII {10811}].  dv:  PI-428235, T. urartu {10811}. 	
Gli-A2bf {10811}.  [Gli-Au2-VIII {10811}].  dv:  PI-428234, T. urartu {10811}. 	
Gli-A2bg {10811}.  [Gli-Au2-IX {10811}].  dv:  PI-428183, T. urartu {10811}. 	
Gli-A2bh {10811}.  [Gli-Au2-X {10811}].  dv:  PI-428256, T. urartu {10811}. 	
Gli-A2bi {10811}.  [Gli-Au2-XI {10811}].  dv:  PI-428255, T. urartu {10811}. 	
Gli-A2bj {10811}.  [Gli-Au2-XII {10811}].  dv:  PI-428224, T. urartu {10811}. 	
Gli-A2bk {10811}.  [Gli-Au2-XIII {10811}].  dv:  PI-428208, T. urartu {10811}. 	
Gli-A2bl {10811}.  [Gli-Au2-XIV {10811}].  dv:  PI-428202, T. urartu {10811}. ]	
Gli-A2bm {10811}.  [Gli-Au2-XV {10811}].  dv:  PI-428217, T. urartu {10811}. 	
Gli-A2bn {10811}.  [Gli-Au2-XVI {10811}].  dv:  PI-427328, T. urartu {10811}. 	
Gli-A2bo {10811}.  [Gli-Au2-XVII {10811}].  dv:  PI-428317, T. urartu {10811}. 	
Gli-A2bp {10811}.  [Gli-Au2-XVIII {10811}].  dv:  PI-428253, T. urartu {10811}. 	
Gli-A2bq {10811}.  [Gli-Au2-XIX {10811}].  dv:  PI-538742, T. urartu {10811}. 	
Gli-A2br {10811}.  [Gli-Au2-XX {10811}].  dv:  PI-428232, T. urartu {10811}. 	
Gli-A2bs {10811}.  [Gli-Au2-XXI {10811}].  dv:  PI-428188, T. urartu {10811}. 	
Gli-A2bt {10811}.  [Gli-Au2-XXII {10811}].  dv:  PI-428244, T. urartu {10811}. 	
Gli-A2bu {10811}.  [Gli-Au2-XXIII {10811}].  dv:  PI-538733, T. urartu {10811}. 	
Gli-A2bv {10811}.  [Gli-Au2-XXIV {10811}].  dv:  PI-428212, T. urartu {10811}. 	
Gli-A2bw {10811}.  [Gli-Au2-XXV {10811}].  dv:  TRI-6734, T. urartu {10811}. 	
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Gli-A2bx {10811}.  [Gli-Au2-XXVI {10811}].  dv:  PI-428254, T. urartu {10811}. 	
	
GLI-B2 {1125, 1607}.  [Gld 6B {1415}].  6BS {1122}. 6B {1607}.  v:  CS. 	
Gli-B2a {988}.  v:  CS{988}. 	
Gli-B2b {988}.  v:  Bezostaya 1 {988};  Cobra  {991};  Gladio {9986};  Sideral {991}. 	
Gli-B2c {988}.  v:  Courtot {991};  Escuala {9985};  Gabo {988};  Loreto {9986};  Manital {9986};  
Prinqual {991};  Siete Cerros 66 {988};  Sinton {995};  Yecora 70 {9985}. 	
Gli-B2d {988}.  v:  Akmolinka 1 {988};  Cesar {9981};  Friedland  {991};  Tselinnaya 20 {988}.Gli-B2e 
{988}.  v:  Arsenal {991};  Veronese {9986};  Zlatna Dolina {994}.  
Gli-B2f {988}.  v:  Basalt {9981};  Maris Freeman {988};  Master {991}. 	
Gli-B2g {988}.  v:  Capitole {991};  Capelle-Desprez {991};  Galahad {988};  Forlani {9986}. 	
Gli-B2h {988}.  v:  Castan {991};  Mentana {9986};  Pane 247 {9985};  Partizanka {994};  Sadovo 1  
{988};  Sistar{9986}. 	
Gli-B2i {988}.  v:  Insignia{988};  Robin{9981}. 	
Gli-B2j {988}.  v:  Farnese {9986};  Funo R250 {9986};  Novosadska Rana 1 {994}. 	
Gli-B2k {988}.  v:  Skala {988}. 	
Gli-B2l {988}.  v:  Clement {991};  Longbow {988};  Tracy {991}. 	
Gli-B2m {988}.  v:  Mironovskaya 808{988};  Open  {991};  Renan{991}. 	
Gli-B2n {988}.  v:  Japhet {9981};  Rouge de Bordeau {9981};  Solo {988}.  
Gli-B2o {988}.  v:  Hardi {9981};  Mara {9986};  Odesskaya 16 {988};  Pippo {9986};  Rivoli {991};  
Slavjanka {9981}. 	
Gli-B2p {988}.  v:  Pliska {983};  Champtal {991};  Oderzo {9986};  Recital {991};  Gazul {9985}.  
Gli-B2q {988}.  v:  Saratovskaya 39 {988}. 	
Gli-B2r {991}.  v:  Arminda {991};  Estica {991};  Genial {991}. 	
Gli-B2s {988}.  v:  Aquila {9981};  Saratovskaya 36 {988}. 	
Gli-B2t {988}.  v:  Tselinogradka {988}. 	
Gli-B2u {988}.  v:  Kirgizskaya Yubileinaya {988}. 	
Gli-B2v {988}.  v:  Declic {991};  Garant {991};  Libellula {9986};  Mahissa 1 {9985};  Poljarka {988}. 	
Gli-B2w {9986, 995}.  v:  Palata {9986};  Pembina {995};  Rieti DIV {9986}.	
Gli-B2x {994}.  v:  Super Zlatna (biotype) {994};  Prostor {9981};  251/83 {9981}. 	
Gli-B2y {9986}.  v:  Centauro {9986};  E. Morandi {9986}. 	
Gli-B2z {9985}.  v:  Maestro {9985}. 	
Gli-B2aa {9986}.  v:  Salmone {9986};  E. Mottin {9981}. 	
Gli-B2ab {991}.  v:  Bordier {9981};  Orepi {991}. 	
Gli-B2ac {991}.  v:  Scipion {991};  Artaban {991};  Riol{991};  Lontra{9981}. 	
Gli-B2ad {991}.  v:  Champion {991};  Chopin {991}. 	
Gli-B2ae {991}.  v:  Priam {991};  Etoile d'Choisy  {991};  Campeador {9985};  Krajinka (biotype) 
{994}. 	
Gli-B2af {9985}.  v:  Montjuich {9985};  Mocho Sobarriba {9985}. 	
Gli-B2ag {9981}.  v:  Jeja del Pais {9985};  Barbilla de Leon (MCB-1292) {9981}. 	
Gli-B2ah {9981}.  v:  Rojo de Humanes (MCB-1262) {9981};  Grano de Miracolo {9981}. 	
Gli-B2ai {9981}.  v:  Blanquillo (MCB-0908) {9981}. 	
Gli-B2aj {9981}.  v:  Negrete de Malaga (MCB-1754) {9981}. 	
Gli-B2ak {9981}.  v:  HY320 {9981};  Leader {9981}. 	
Gli-B2al {9981}.  v:  Dankowska {991}. 	
Gli-B2am {9981}.  v:  TM-275 {9981};  Uralochka {9981}. 	
Gli-B2an {9981}.  v:  Eagle {9981};  Glenwari {9981}. 	
Gli-B2ao {9981}.  v:  Olympic {9981};  Mokoan {9981}. 	
Gli-B2ap {9981}.  v:  Veda {9981};  Magnif 27 {9981}. 	
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Gli-B2aq {9981}.  v:  Winglen {9981};  Isis {9981}. 	
Gli-B2ar {9981}.  v:  Arbon {9981};  Roazon {9981}. 	
Gli-B2as {9981}.  v:  Strela {9981};  Sredneuralskaya {9981}. 	
Gli-B2at {9981}.  v:  Ranee {9981};  Javelin 48 {9981}. 	
Gli-B2au {9984, 9987}.  Null allele.  v:  Saratovskaya 29 {9987}. 	
	
GLI-D2 {1125, 1334}.  [Gld 6D {1415}].  6DS {1122}. 6D {1334}.  v:  CS. 	
Gli-D2a {988}.  v:  CS {988};  Maris Freeman  {988};  Sistar{9986};  Tracy {991}. 	
Gli-D2b {988}.  v:  Bezostaya 1 {988};  Cobra {991};  Farnese {9986};  Partizanka {994}. 	
Gli-D2c {988}.  v:  Escualo {9985};  Eridano {9986};  Rieti DIV {9986};  Siete Cerros 66 {988}. 	
Gli-D2d {988}.  v:  Dneprovskaya 521 {988}. 	
Gli-D2e {988}.  v:  Dollar {9985};  Lada {9981};  Mironovskaya 808 {988};  Open {991}. 	
Gli-D2f {988}.  v:  Creneau {991};  Kirgizskaya Yubileinaya  {988};  Rempart{991}. 	
Gli-D2g {988}.  v:  Capelle-Desprez {991};  Futur {991};  Galahad {988};  Ghurka {988};  Mec {9986}. 	
Gli-D2h {988}.  v:  Capitole {991};  Chinook {995};  Eagle  {00119};  Garant {991};  Sadovo 1 {988};  
Thatcher {995}. 	
Gli-D2i {988}.  v:  Insignia 49 {00119};  Lario {9986}. 	
Gli-D2j {988}.  v:  Arcane {991};  Gallo {9986};  Gazul  {9985};  Inia 66 {9985};  Mentana {9986}. 	
Gli-D2k {988}.  v:  Crvencapa {944};  Kzyl-Bas {988};  Skala {988}. 	
Gli-D2l. 	
Omitted. No reliable differences compared to existing alleles {9981}.	
Gli-D2m {988}.  v:  Marquis {988};  Rex {991};  Rinconada  {9985};  Suneca {119};  Veronese {9986};  
Yecora 70 {9985}. 	
Gli-D2n {988}.  v:  Castan {991};  Champlein {991};  Mahissa 1 {9985};  Mercia {988};  Pippo {9986}. 	
Gli-D2o {988}.  v:  Omskaya 12 {988}. 	
Cultivars Salmone and Resistente, which carry Gli-D2aa {9981}, were erroneously given as standards for 
allele Gli-D2o in {9986}.	
Gli-D2p {988}.  v:  New Pusa {988}. 	
Gli-D2q {988}.  v:  Cook {9981};  E. Mottin {9981};  Fournil {991};  Volshebnitsa (biotype) {988};  
Winglen {9981};  Soissons {991}. 	
Gli-D2r {988}.  v:  Kremena {988};  Mara {9986};  Montcada {9985}. 	
Gli-D2s {988}.  v:  Akmolinka 1 {988};  Bezenchukskaya 98 {988};  Selkirk (biotype) {995}. 	
Gli-D2t {9986}.  v:  Golia {9986};  Gabo {9981};  Manital {9986};  Bokal {9981}. 	
Gli-D2u {9986}.  v:  Loreto {9986};  Martial {991};  Cibalka {9981}. 	
Gli-D2v {991}.  v:  Epiroux {991};  Arbon {991}. 	
Gli-D2w {9985}.  v:  Navarro 150 {9985};  Javelin {9981};  Hopps {9981};  Canaleja {9985}. 	
Gli-D2x {9985}.  v:  Montjuich {9985};  Blanquillo{9985}. 	
Gli-D2y {9985}.  v:  Candeal Alcala {9985}. 	
Gli-D2z {9985}.  v:  Aragon 03 {9985}. 	
Gli-D2aa {9981}.  v:  Salmone {9981};  Resistente {9981}. 	
Gli-D2ab {9981}.  v:  Rojo de Boadilla de Campos (MCB-1031) {9981}.	
Gli-D2ac {9981}.  v:  Albatros {9981}. 	
Gli-D2ad {9981}.  v:  Hembrilla Soria (MCB-1298) {9981}. 	
Gli-D2ae {9984, 9987}.  Null allele.  v:  Saratovskaya 29 (mutant) {9987	
 
GLI-2 alleles were determined in 57 Yugoslav wheat varieties {994}.	
	
GLI-Agi2 {374}. 6Agi {374}.  ad:  Vilmorin 27/ Th. intermedium. 	
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GLI-R 
Gli-R2a {03116}.  d1 {03116}.  v:  Carnac hexaploid triticale {03116}. 	
Gli-R2b {03116}.  d2 {03116}.  v:  Mostral hexaploid triticale {03116}. 	
Gli-R2c {03116}.  t1 {03116}.  v:  Alamo hexaploid triticale {03116}. 	
Gli-R2d {03116}.  Null {03116}.  v:  Triticor hexaploid triticale {03116}. 	
Gli-R2e {03115}.  t2 {03115}.  v:  Tornado hexaploid triticale {03115}. 	
	
GLI-Rm2 {1339}.  6Rm {1340, 1339}.  ad:  CS/S. montanum. 	
The location of Gli-R2 in S. cereale is thought to have evolved from S. montanum {1339} via a 
translocation between 2R and 6R {1530}.	
	
GLI-Sl2 {573}.  6Sl {573}.  ad,su:  CS/Ae. longissima. 	
 
GLI-U2 {1335}.  6U {1335}.  ad:  CS/Ae. umbellulata.  
	
GLI-V2 {111}.  6VS {111}.  ad:  Creso/D. villosum. 	
	

GLI-3	
A GLI-3 set of loci coding for omega-type gliadins are located 22 to 31 cM proximal to GLI-1 on the 
short arms of group 1 chromosomes {422, 1403, 589}.	
GLI-A3 {1119, 1403}.  [Gld-2-1A {1416}].  1AS {1403}.  v:  Bezostaya 1. 	
Each of the following GLI-A3 alleles, apart from Gli-A3d, which is a null, controls one minor omega-
gliadin with molecular mass about 41k that occurs in the middle of the omega-region of APAGE 
fractionation. Gliadins controlled by these alleles differ in electrophoretic mobility in APAGE in that the 
fastest of three known GLI-A3-gliadins is controlled by Gli-A3a and the slowest by Gli-A3c {9983}. 
Gli-A3a {9983}.  v:  CS, Prinqual, Courtot, Tselinogradka, Bezenchukskaya 98. 	
Gli-A3b {9983}.  v:  Bezostaya 1. 	
Gli-A3c {9983}.  v:  Anda. 	
Gli-A3d {9983}.  Null {9983}.  v:  Saratovskaya 210, Kharkovskaya 6, Richelle. 	
 
GLI-B3 {1119}, {422}.  [Glu-B2 {589}, Gld-B6 {422}].  1BS {589}, {422}.  s:  CS*/Thatcher1B {422}.  
v:  Sicco {589}. 
Gli-B3a {589}, {1119}, {422}.  v:  CS. 	
Gli-B3b {589}.  v:  Sicco. 	
Gli-B3c {1119}, {422}.  s:  CS*/Thatcher1B. 	
	
GLI-R3 {164}.  1RS {164}.  al:  Four inbred lines (R2, J14, 8t, E2666). 	
	
GLI-Sl3 {1228}.  1S1S {1228}.  ad,su:  CS/Ae. longissima.  ma:  In Ae. longissima 2/Ae. longissima 10, 
three gliadin loci, one glucose phosphate isomerase, and two glutenin loci were mapped relative to one 
another {1228} as follows: GLU-Sl1 – 15.9 cM – GPI-Sl1 – 38 cM – GLI-Sl4 – 7.1 cM – GLU-Sl3 – 0.9 
cM – GLI-Sl1 – 5.6 cM – GLI-Sl5. GLU-Sl1 is located in 1SlL and the other loci are in 1SlS. 	
	
Gli-V3 {111}.  4VL {111}.  ad:  Creso/D. villosum. 	
 
GLI-4	
It is not clear how GLI-Sl4 and GLI-Sl5 relate to the GLI-4 and GLI-5 sets described below. A locus 
designated GLI-A4 controlling omega-gliadins in cv. Perzivan biotype 2 was mapped at 10 cM proximal 
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to GLI-A1 on the short arm of chromosome 1A {1205}.	
However, Metakovsky et al. {9983} have since shown that this locus and GLI-A3 are, in fact, the same 
locus. Furthermore, Dubcovsky et al. {277} did not find evidence for the simultaneous presence of both 
GLI-A3 and GLI-A4 in five 1A or 1Am mapping populations and concluded that GLI-A4 should be 
considered GLI-A3 until conclusive evidence for the former is obtained. For these reasons, variation at the 
locus GLI-A4 is not considered.	
 
GLI-5	
GLI-5 loci controlling omega-gliadins were mapped to the short arms of chromosomes 1A and 1B, distal 
to GLI-1 {1147}. The map distance between GLI-B5 and GLI-B1 was estimated as 1.4 cM (recombination 
value of 1.4 +/- 0.4%), although there was significant variation in recombination ranging from 0% to 
5.9% over the six crosses analysed. This variation was attributed to genotypic influence on the frequency 
of recombination.	
GLI-A5 {1147}.  1AS {1147}.  v:  Salmone. 	
Gli-A5a {9983}.  Null {9983}.  v:  CS. 	
Gli-A5b {9983}.  v:  Marquis. 	
Allele Gli-A5b controls two slow-moving, easily-recognizable omega-gliadins. It is present in all common 
wheat cultivars having alleles Gli-A1m and Gli-A1r (and, probably, in those having Gli-A1e, Gli-A1l and 
Gli-A1q), because earlier (for example, in {988}) two minor omega-gliadins encoded by Gli-A5b were 
considered controlled by these GLI-A1 alleles {9983} 
GLI-B5 {1147}.  1BS {1147}.  v:  Salmone. 	
Gli-B5a {1147}.  v:  CS. 	
Gli-B5b {1147}.  v:  Salmone. 	
In {988}, omega-gliadins controlled by GLI-B5 (allele Gli-B5b) were attributed to alleles at the GLI-B1 
locus (alleles Gli-B1c, i, k, m, n and o).	
	

GLI-6	
GLI-A6 {9983}, {993}.  1AS {9983}. 	
GLI-A6 was first explicitly described in {9983} but was first observed without designation in {993}. 
There is strong evidence that it is distinct from GLI-A3 and GLI-A5, mapping distally to GLI-A1, with 
which it recombines at a frequency of 2-5%. Currently three alleles are known, of which Gli-A6c is 
particularly well-described in {9983}: the molecular mass of the omega-gliadin controlled by this allele is 
slightly lower than those of the omega-gliadins controlled by GLI-A3 alleles. In {988}, the omega-gliadin 
controlled by Gli-A6c was attributed to Gli-A1f. Gli-A6c is rather frequent in common wheat and may 
relate to dough quality (preliminary data {9983}). 
Gli-A6a {9983}.  Null {9983}.  v:  CS; Bezostaya 1. 	
Gli-A6b {9983}.  v:  Bezenchukskaya 98. 	
Gli-A6c {9983}.  v:  Courtot, Anda, Mironovskaya 808. 	
	

GLI-7	
GLI-A7 {10547}.  1DS {10547}.  dv:  AUS18913 {10547}. 	
The gamma-gliadin encoded by this locus co-segregated with the T1 omega-gliadin encoded by the GLI-
DtT1 locus (currently included in the Catalogue as locus (GLI-DT1). GLI-A7 was located 0.69 cM from 
GLI-Dt1 {10547}.	
 
2.3.3. Other endosperm storage proteins 
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Triticin proteins The triticin proteins {1360} or [Triplet proteins {1357}] are storage globulins with 
homology to pea legumins and related proteins in oats, rice and several dicotyledonous species {1360}. 
Triticin gene segments including the hypervariable region were PCR-amplified, with preferential 
amplification of TRI-D1 for the only pair of primers giving consistent results {10322}.	
TRI-A1.  1AS {1357}.  v:  CS. 	
Tri-A1a.  [cs {1358}].  v:  CS. 	
Tri-A1b.  [h {1358}].  v:  Hope.	
	
TRI-D1 {707}, {1358}, {1357}.  1DS {1357}.  v:  CS. 	
Tri-D1a.  [cs {1358}].  v:  CS. 	
Tri-D1b.  [i {1358}].  v:  India 115. 	
 
2.3.4. Enzyme Inhibitors 
Inhibitors of alpha-amylase and subtilisin	
ISA1	
ISA-A1 {908}.  2AL {908}.  v:  CS. 	
Isa-A1a {908}.  v:  CS. 	
Isa-A1b {908}.  Null allele.  v:  Cajeme 71. 	
	
ISA-B1 {908}.  2BL {908}.  v:  CS. 	
Isa-B1a {908}.  v:  CS. 	
Isa-B1b {908}.  v:  Bihar. 	
	
ISA-D1 {908}.  2DL {908}.  v:  CS. 	
	
Orthologous genes were identified in Ae. speltoides and T. timopheevii {908}. All durum wheats 
investigated had the genotype Isa-A1b, Isa-B1b.	
 
Inhibitors (dimeric) of heterologous alpha-amylase 
Chromosome 3BS has duplicated loci controlling two dimeric inhibitors of exogenous a-amylases, one 
known as 0.53 or Inh I {1260}, and the other as WDA I-3 {1260}. Chromosome 3DS has a 
homoeologous locus controlling a dimeric inhibitor of exogenous a-amylases, known as 0.19 or Inh III 
{1260, 0124}, that is closely related to 0.53/Inh I. Intervarietal polymorphism for the WDA-3 protein was 
identified by isoelectric focussing of water-soluble endosperm proteins {0124}. This was 
interchromosomely mapped on 3BS using both a DH population of Cranbrook/Halberd, and a set of RILs 
of Opata 85/W-7984 (ITMI population) {0125}.	
Three genome allele specific primer sets were designed for the 3BS and 3DS alpha-amylase inhibitors in 
cv. Chinese Spring, based upon SNPs. Their validity was confirmed in 15 accessions of Triticum urartu, 
Triticum monococcum, Aegilops tauschii and Triticum dicoccoides. The results offered support that the 24 
kDa dimeric alpha-amylase inhibitors in cultivated wheat are encoded by a multigene family {10323}, 
previously proposed in {10324}, as the result of phylogenetic analysis of sequences characterized by 
cSNPs.	
IHA-B1	
IHA-B1.1 {1260}.  3BS {1260}.  v:  CS {1260}. 	
	
IHA-B1.2.  
Iha-B1.2 {0124}.  v:  CS {0124}.	
Iha-B1.2a {0124}.  3BS {0124}.  v:  CS {0124, 0125}. 	
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Iha-B1.2b {0125}.  Null allele.  v:  Cadoux {0125};  Cranbrook {0125};  Tasman {0125}.	
	
IHA-D1 {1260}.  3DS {1260}.  v:  CS {1260}. 	
	
Subtilisin inhibition	
SI-1	
SI-R1 {529}.  2RS {701}.2R {529}.  ad:  CS/Imperial, Holdfast/King II. 	
	
SI-H1 {528}.  [Isa 1 {528}].  2H {528}.  ad:  CS/Betzes.	
 
SI-2 
 
SI-B2 {701}.  1BS {701}.  su:  Bersee (Koga II). 
 
SI-D2 {701}.  1DS {701}.  v:  Koga II. 
 
SI-H2.  [Ica 2 {528}, Ica 1 {528}].  1H {528}.  ad:  CS/Betzes.  
 
SI-R2.  1RS {701}. 1R {529}.  ad:  CS/Imperial {529}.  tr:  Gabo 1BL.1RS {701}.  
 
SI-Sl2 {701}. 1Sl {701}.  ad:  CS/Ae. longissima.  
 
SI-U2 {701}.  1U {701}.  ad: CS/Ae. umbellulata.  
Considerable genetic variation for Si-2 was noted in {701}. A chromosome location for Si-H2 on 1HL 
was inferred in {528} but questioned in {701}.	
Three subunits of the wheat tetrameric inhibitor of insect a-amylase, CM1, CM3 and CM16, with 
homology to the dimeric and monomeric a-amylase inhibitors and the trypsin inhibitors, were located by 
Southern analysis of cDNAs pCT1, pCT2, and pCT3 to 4A, 4B, 4D; 7A, 7B, 7D; and 4A, 4B, 4D, 
respectively {427}.	
Genes encoding proteins which inhibit the action of mammalian and insect, but not cereal, a-amylases, 
were located in chromosomes 3BS, 3DS and 6DS of Chinese Spring {1260}. Also, genes encoding 
inhibitors of insect a-amylases were in H. chilense chromosomes 4Hch and 7Hch {1262}. 
 
Trypsin inhibition 
TI-1 
TI-H1.  [Itc 1 {528}].  3H {528}.  ad:  CS/Betzes.  
 
TI-R1.  3R {529}.  ad:  CS/Imperial. 	
 
TI-2 
TI-A2 {699}.  5AL {699}.  v:  CS.  
 
TI-B2 {699}.  5BL {699}.  v:  CS. 
 
TI-D2 {699}.  5DL {699}.  v:  CS. 
Ti-D2a {699}.  v:  CS.  
Ti-D2b {699}.  v:  Champlein.  
Ti-D2c {699}.  v:  Synthetic.  
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TI-Agi2 {699}.  5Agi {699}.  ad:  Vilmorin 27/ Th. intermedium.  
 
TI-Mt2 {699}.  5Mt {699}.  ad:  CS/Ae. mutica.  
 
TI-R2 {699}.  5RL {699}.  ad:  CS/Imperial. su:  CS/King II.  
 
TI-Sl2 {699}.  5SlL {699}.  ad:  CS/Ae. sharonensis.  
 
TI-U2 {699}.  1U {699}.  ad:  CS/Ae. umbellulata.  
 
2.3.5. Grain softness protein	
GSP-1 {1185}. 	
GSP-A1 {614}.  [GSP {614}].  5A {614}, {383}.  v:  CS {614}, {0383};  Rosella (GenBank AF177218) 
{383}. 	
	
GSP-B1 {614}.  [GSP {614}].  5B {614}.  v:  CS {614};  Glenlea {0385}. 	
In {1185} sequence of clone TSF33 from cv. Soft Falcon (GenBank X80379) was identical to this allele, 
as are ESTs for cv. CS (dbEST BJ235798) and cv. CNN (dbEST BE423845).	
	
GSP-D1 {614}.  [GSP {614}].  5DS {614}. 	
Gsp-D1a.  v:  CS {614};  Glenlea {0385}.  dv:  Ae. tauschii CPI1110799 (GenBank AF177219) {0383}.  
ma:  Co-segregation of Gsp-D1 and Ha {614}.	
Gsp-D1b {03105}.  dv:  Ae. tauschii TA1583 (GenBank AY252079) Pina-D1a, Pinb-D1a {3105};  
TA2475 (GenBank AY252087) Pina-D1a, Pina-D1i {03105}. 	
Gsp-D1c {03105}.  dv: Ae. tauschii TA2369 (GenBank AY252081) Pina-D1c, Pinb-D1h {03105};  
CPI110799 (GenBank AF177219) {0383}. 	
Gsp-D1d.  dv:  Ae. tauschii TA2536 (GenBank 252093) Pina-D1c, Pinb-D2i {03105};  TA2374 
(GenBank AY252046) Pina-D1d, Pinb-D1i {03105};  TA2458 (GenBank AY252084) Pina-D1e, Pinb-
D1i {03105};  TA2436 (GenBank AY252048) Pina-D1f, Pinb-D1i {03105}. 	
Gsp-D1e.  dv:  Ae. tauschii TA2527 (GenBank AY252066) Pina-D1c, Pinb-D1h {03105};  TA2512 
(GenBank AY252092) Pina-D1d, Pinb-D1i {03105};  TA2495 (GenBank AY252091) Pina-D1e, Pinb-
D1i {03105}. 	
Gsp-D1f.  dv:  Ae. tauschii TA1649 (GenBank AY252063) Pina-D1d, Pinb-D1h {03105};  TA2455 
(GenBank AY252073) Pina-D1d, Pinb-D1i {03105}.	
Gsp-D1g.  dv:  Ae. tauschii TA1599 (GenBank AY252062) Pina-D1a, Pinb-D1j {03105}. 	
Gsp-D1h.  dv:  Ae. tauschii TA1691 (GenBank AY252064) Pina-D1a, Pinb-D1j {03105}. 	
Gsp-D1i {03105}.  v:  Yecora Rojo (GenBank AY255771) Pina-D1b, Pinb-D1a {03105}. Gsp-D1j 
{10077}.  s:  CS*/Red Egyptian 5D, Pina-D1, Pinb-D1 and Gsp-D1 {10077}. 	
In {1185} the sequence of clone TSF69 from cv. Soft Falcon (GenBank S72696) is identical, as are ESTs 
for cv CS (dbEST BJ237450) and cv CNN (dbEST BE422565). This locus has a large deletion 
encompassing genes PINA-D1, PINA-D1 and GSP-D1 {10077}.	
In {1185} partial-sequence clone TSF61 from cv. Soft Falcon (GenBank X80380) was identical to this 
allele.	
	
2.3.6. Histone H1 proteins	
HSTH1-1	
HSTH1-A1 {0215}.  5AL {0215}.  v:  CS {0215}. 	
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HSTH1-B1 {0215}.  5BL {0215}.  v:  CS {0215}. 	
	
HSTH1-D1 {0215}.  5DL {0215}.  v:  CS {0215}.  
 
HSTH1-2 
HSTH1-A2 {0215}.  5AL {0215}.  v:  CS {0215}.  
HstH1-A2a {0215}.  v:  CS {0215}.  
HstH1-A2b {0215}.  Null allele {0215}.  v:  Mara {0215};  10 others{0215}. 
 
HSTH1-B2 {0215}.  5BL {0215}.  v:  CS {0215}. 
HstH1-B2a {0215}.  v:  CS {0215};  19 others  {0215}.  
HstH1-B2b {0215}.  v:  Excelsior {0215}.  
 
HSTH1-D2 {0215}.  5DL {0215}.  v:  CS {0215}.  
HstH1-D1a {0215}.  v:  CS {0215};  18 others {0215}.  
HstH1-D1b {0215}.  v:  Grekum 114 {0215};  Kirgizsky Karlik {0215}. 
 
The relationship of this gene series with a Hst-A1, Hst-B1, Hst-D1 series in group 5 chromosomes {0216} 
based on DNA hybridization studies was not established. 
 
2.3.7 Iodine binding factor	
A monomeric water-soluble protein from mature grain which preferentially binds iodine {818}.	
IBF-1	
IBF-A1 {818}.  5AL {818}.  v:  CS. 	
Ibf-A1a {818}.  v:  CS. 	
Ibf-A1b {818}.  v:  Cappelle-Desprez. 	
Ibf-A1c {818}.  v:  Hope. 	
Ibf-A1d {818}.  v:  Chris. 	
Ibf-A1e {818}.  v:  Sears' Synthetic. 	
	
IBF-B1 {818}.  5BL {818}.  v:  CS. 	
Ibf-B1a {818}.  v:  CS. 	
Ibf-B1b {818}.  v:  Cappelle-Desprez. 	
Ibf-B1c {818}.  v:  Ciano 67. 	
Ibf-B1d {818}.  v:  Sears' Synthetic. 	
	
IBF-D1 {818}.  5DL {818}.  v:  CS. 
Ibf-D1a {818}.  v:  CS. 	
Ibf-D1b {818}.  v:  Cappelle-Desprez. 	
Ibf-D1c {818}.  v:  Purple Pericarp. 	
Ibf-D1d {818}.  v:  Sears' Synthetic. 	
	
IBF-Agi1 {818}.  5Agi {818}.  ad:  Vilmorin/Th. intermedium. 	
IBF-E1 {818}.  5EL {818}.  ad:  CS/E. elongata. 	
IBF-H1 {818}.  4H {818}.  ad:  CS/Betzes. 
IBF-R1 {818}.  5RL {818}.  ad:  CS/Imperial, CS/KingII. 	
IBF-Sl1 {818}.  5Sl {818}.  ad:  CS/Ae. sharonensis. 	
IBF-U1 {818}.  5U {818}.  ad:  CS/Ae. umbellulata. 	
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2.3.8 Lipopurothionins	
PUR-1	
PUR-A1 {351}.  1AL {351}.  v:  CS {351}. 	
A PCR marker specific for PUR-A1 was developed in {9976}.	
	
PUR-B1 {351}.  1BL {351}.  v:  CS {351}. 	
A PCR marker specific for PUR-B1 was developed in {9976}.	
	
PUR-D1 {351}.  1DL {351}.  v:  CS {351}. 	
PCR marker specific for PUR-D1 was developed in {9976}. 	
A locus in chromosome 5DS affects the level of lipopurothionin {351}.	
	
PUR-R1.  1RL {1261} = 1RS.1BL.  ad:  CS/Imperial.  su:  Several 1R(1B) lines.  tr:  Aurora, Kavkaz. 	
A PCR marker specific for PUR-R1 was developed in {9976}.	
 
2.3.9. Lectins 
LEC-1	
LEC-A1.  1AL {1427}.  v:  CS. 	
	
LEC-B1.  1B {1427}.  s:  CS*/Hope 1B. 	
	
LEC-D1.  1DL {1427}.  v:  CS. 	
	
LEC-U1.  1U {1427}.  ad:  CS/Ae. umbellulata. 	
	
2.3.10. Puroindolines and grain softness protein	
Puroindolines a and b are the major components of friabilin, a protein complex that is associated with 
grain texture (see 'Grain Hardness'). The name 'puroindoline' and the complete amino acid sequence of 
puroindoline from cv. Camp Remy was given in {0382}. Hard grain texture in hexaploid wheat results 
from unique changes in the puroindoline amino acid sequence or, currently, four null forms {0295} of the 
completely linked genes (max. map distance 4.3 cM) {452}. Tetraploid (AABB, AAGG) wheats lack 
puroindolines and are consequently very hard {03103}. A searchable database of wheat varieties and their 
puroindoline genotype is available at http://www.wsu.edu/~wwql/php/puroindoline.php. Grain softness 
protein-1 is a closely related gene which is closely located to the puroindoline genes {03111, 1185}. 
'GenBank' and 'dbEST' refer to sequence databases available at NCBI (also available throught EMBL and 
DDB).	
Reviews {10522, 10523} provide comprehensive descriptions of the molecular genetics and regulation of 
puroindolines. Morris and Bhave {10524} reconciled the D-genome puroindoline alleles with DNA 
sequence data. Bonafede et al. {10525, 10526} developed a CS line (PI 651012) carrying a 5AmS.5AS 
translocation from T. monococcum; the translocated chromatin carries A-genome Pina, Pinb and Gsp-1 
alleles that confer softer kernel texture.	
PINa-1	
PINa-A1 {03103, 03104, 03108}.  dv:  T. urartu unspecified accession {03103};  TA763 (GenBank 
AJ302094) {03104, 03108};  TA808 (GenBank AJ302095) {03104, 03108}. PINa-Am1 {0083}. 5AmS 
{0083}.  dv:  T. monococcum DV92 (cultivated), G3116 (spp. aegilopoides) (GenBank AJ242715) 
{0083};  unspecified acession (GenBank AJ249933) {03103};  PI277138 (GenBank AJ302093) {03104};  
PI418582 (GenBank AJ302092) {03104}; T. monococcum spp. monococcum TA2025, TA2026 
(GenBank AY622786), TA2037 (GenBank AJ242715) {03108}; T. monococcum spp. aegilopoides 
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TA183, TA291, TA546, TA581 (GenBank AY622786) {03108}. 	
In T. monococcum PINa-Am1 is completely linked to GSP-Am1 {0083}.	
 
PINa-D1 {452}.  5DS {452}.  v:  CS (GenBank DQ363911) {03108};  Capitole (GenBank X69914) 
{03110}. 	
This locus has a large deletion encompassing genes PINa-D1, PINb-D1 and GSP-D1. This allelic 
combination confers a harder kernel texture than Pina-D1a/Pinb-D1b {10077}.	
Pina-D1a {452}.  v:  Bellevue {0249};  Capitole (GenBank X69914) {03110};  Courtot {0249};  Fortuna 
{0249};  Galaxie {0249};  Heron {1035};  Renan (GenBank CR626934) {10440};  Soissons {0249}.  v2:  
Aurelio Pinb-D1a {0249};  Bezostaja Pinb-D1b {0249};  Bilancia Pinb-D1a {0249};  Bolero Pinb-D1a 
{0249};  Brasilia Pinb-D1b {0249};  Centauro Pinb-D1a {0249};  Cerere Pinb-D1b {0249};  CS Pinb-
D1a {0249}, {452};  Colfiorito Pinb-D1b {0249};  Cologna 21 Pinb-D1b {0249};  David Pinb-D1b 
{0249};  Democrat Pinb-D1b {0249};  Etruria Pinb-D1b {0249};  Francia Pinb-D1b {0249};  Gemini 
Pinb-D1b {0249};  Genio Pinb-D1b {0249};  Gladio Pinb-D1b {0249};  Lampo Pinb-D1a {0249};  
Leone Pinb-D1a {0249};  Leopardo Pinb-D1a {0249};  Libero Pinb-D1a {0249};  Livio Pinb-D1a 
{0249};  Marberg Pinb-D1b {0249};  Mentana Pinb-D1a {0249};  Mieti Pinb-D1b {0249};  Mose Pinb-
D1a {0249};  Neviana Pinb-D1a {0249};  Newana Pinb-D1b {0249};  Oscar Pinb-D1a {0249};  Pandas 
Pinb-D1b {0249};  Pascal Pinb-D1b {0249};  Penawawa Pinb-D1a {03104};  Sagittario Pinb-D1b 
{0249};  Salgemma Pinb-D1b {0249};  Saliente Pinb-D1b {0249};  Salmone Pinb-D1b {0249};  Serena 
Pinb-D1a {0249};  Serio Pinb-D1b {0249};  Veda Pinb-D1b {0249};  Zena Pinb-D1b {0249}.  dv:  Ae. 
tauschii upspecified accession (GenBank AJ249935) {03103};  TA2475 (GenBank AY252037) Pinb-
D1i, Gsp-D1b {03105};  TA1599 (GenBank AY252011) Pinb-D1j, Gsp-D1g {03105};  TA1691 
(GanBank AY252013) Pinb-D1j, Gsp-D1h {03105}; Ae. tauschii unidentified accession (GenBank 
AJ249935) {03103}; Ae. tauschii CPI 110799 (GenBank CR626926) {10440}. 	
Pina-D1a is present in all soft hexaploid wheats and possibly all hard hexaploid wheats that carry a 
hardness mutation in puroindoline b {452}, {1035}, {0082}, {0204}, {0295}.	
Pina-D1b {1035}.  Null allele.  i:  Falcon/7*Heron, Heron/7*Falcon {03109};  Gamenya Seln.{0203, 
0298}; Heron/7*Falcon sel. {0203, 0298};  PI 644080 (Alpowa/ID377s//7*Alpowa) {10429};  Near-
isogenic pairs were developed in McNeal, Outlook, Hank, Scholar and Explorer {10527}.  v:  Butte 86 
{1035};  Eridano {0249};  Falcon {1035};  Glenlea (GenBank AB262660). This BAC clone also contains 
Pinb-D1a {10431};  Kalyansona{0249};  Super X {0249};  Yecora Rojo {0204}.  v2:  Amidon Pinb-D1a 
{0249};  Ciano Pinb-D1a {0249};  Dorico Pinb-D1a {0249};  Golia Pinb-D1a {0249};  Guadalupe Pinb-
D1a {0249};  Barra Pinb-D1a {0249};  Inia 66 Pinb-D1a {0249};  Indice Pinb-D1a {0249};  Jecora 
Pinb-D1a {0249};  Manital Pinb-D1a {0249};  Mendos Pinb-D1a {0249};  Padus Pinb-D1a {0249};  
Prinqual Pinb-D1a {0249};  Sibilia Pinb-D1a {0249}. 	
Present only in some hard hexaploid wheats. Pina-D1b is associated with harder texture than Pinb-D1b 
{0177, 0206}.	
This allele is now defined as a 15,380 bp deletion versus other possible puroindoline a nulls {10428, 
10391}. 	
Pina-D1c {03105}.  dv:  Ae. tauschii TA2369 (GenBank AY252031) Pinb-D1h, Gsp-D1c; TA2527 
(GenBank AY252015) Pinb-D1h, Gsp-D1e {03108}; Ae. tauschii TA10 (GenBank AY649746) {03108}. 	
Pina-D1d {03105}.  dv:  Ae. tauschii PI452131 (GenBank AJ302098) Pinb-D1i {03104};  PI554318 
(GenBank AJ302099) Pinb-D1k {03104};  TA1649 (GenBank AY252012) Pinb-D1h, Gsp-D1f {03105};  
TA2374 (GenBank AY251996) Pinb-D1i, Gsp-D1d {03105};  TA2512 (GenBank AY252042) Pinb-D1i, 
Gsp-D1e {03105};  TA2455 (GenBank AY252022) Pinb-D1i, Gsp-D1f {03105};  TA2536 (GenBank 
AY252043) {03105}; Ae. tauschii TA 1704 (GenBank AY649744) {03108}. 	
Pina-D1e {03105}.  dv:  Ae. tauschii TA2458 (GenBank AY252034) Pinb-D1i, Gsp-D1d {03105};  
TA2495 (GenBank AY252041) Pinb-D1i, Gsp-D1e {03105}. 	
Pina-D1f {03105}.  dv:  Ae. tauschii TA2436 (GenBank AY251998) Pinb-D1i, Gsp-D1d {03105}. 	
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Pina-D1g {03105}.  dv:  Ae. tauschii TA1583 (GenBank AY252029) Pinb-D1a, Gsp-D1b {03105}. 	
Pina-D1h {10118}.  v:  X. aegilotriticum CIGM86.946-1B-0B-0PR-0B (GenBank AY573898) Pinb-D1o 
{10118}. 	
Pina-D1i {10118}.  v:  X. aegilotriticum CIGM87.2784-1B-0PR-0B (GenBank AY573899) Pinb-D1k 
{10118}. 	
Pina-D1j {10118}.  v:  X. aegilotriticum CIGM88.1363-0B (GenBank AY573900) Pinb-D1o {10118}. 	
Pina-D1k {10077}. [homonym: Pina-D1b/Pinb-D1h(t)].  s:  CS*/Red Egyptian 5D substitution line, 
Pinb-D1q, Gsp-D1i {10077}.  v:  Bindokku {10305};  Cheyenne-A {10305};  Chosen 68 {10305};  
Gaiyuerui {10316};  KT020-584  {10432};  Saiiku 18 {10305};  Saiiku 44 {10305};  Safangmai 
{10316};  Tachun2 {10316};  ZM2851 {10316};  ZM2855 {10316}. 	
This allele is currently used to denote a large deletion of undetermined size that involves PINa-D1, PINb-
D1 and GSP-D1 {10077}. The deletion of both puroindolines is associated with harder kernel texture than 
other known puroindoline hardness alleles {10077, 10305, 10432}. 	
Pina-D1l {10168}.  [Pina-D1c {10168}].  v:  Baikezaomai Chinese landraces {10208};  
Chengduguangtou {10208};  Guangtouxiaomai {10208};  Sanyuehuang  {10208};  Xiaoyuhua {10208}.  
v2:  Fortuna (USA) Pinb-D1a {10168};  Glenman Pinb-D1a {10168}. 	
Pina-D1l has a C deletion leading to an open reading frame shift and premature stop codon; PINA null, 
hard kernel texture {10208}.	
Pina-D1m {10208}.  v:  Hongheshang (GenBank EF620907) {10208}. 	
C-to-T substitution: Proline-35 to serine; hard kernel texture {10208}.	
Pina-D1n {10208}.  v:  Baimangchun {10208};  Hongheshang (GenBank EF620907) {10208};  Xianmai 
(GenBank EF620908) {10208};  Yazuixiaomai Chinese landraces {10208};  Yazuizi {10208};  
Zhuantoubaike {10208}. 	
G-to-A substitution: Tryptophan-43 to stop codon; PINA null hard kernel texture {10208}.	
Pina-D1o {10311}.  dv:  Ae. tauschii RM0182 (GenBank AY608595) {10311}. 	
Pina-D1p {10316}.  v:  T. aestivum Jing 771 (GenBank AY599893) {10316}. 	
Pina-D1q {10316}.  v:  U29 (GenBank AB181238) {10316};  Muu-27 (homonym 'a2', Pina-D1p) 
{10316}. 	
	
PINb-A1 {03104, 03108}.  dv:  T. urartu TA763 (GenBank AJ302103) {3104};  TA808 (GenBank 
AJ302104) {03104, 03108}.  
Pinb-D1a {452}.  v:  Hill 81 {452}.  v2:  Adder Pina-D1a {0317};  Amidon Pina-D1b {0249};  Aurelio 
Pina-D1a {0249};  Barra Pina-D1b {0249};  Bilancia Pina-D1a {0249};  Bolero Pina-D1a {0249};  
Centauro Pina-D1a {0249};  CS Pina-D1a {0249,452};  Ciano Pina-D1b {0249};  Dorico Pina-D1b 
{0249};  Fortuna (USA) Pina-D1b {0249};  Glenman Pina-D1b {0249};  Golia Pina-D1b {0249};  
Guadalupe Pina-D1b {0249};  Inia 66 Pina-D1b {0249};  Jecora Pina-D1b {0249};  Idice Pina-D1b 
{0249};  Karl Pina-D1a {0317};  Lampo Pina-D1a {0249};  Leone Pina-D1a {0249};  Leopardo Pina-
D1a {0249};  Libero Pina-D1a {0249};  Livio Pina-D1a {0249};  Manital Pina-D1b {0249};  Mendos 
Pina-D1b {0249};  Mentana Pina-D1a {0249};  Mose Pina-D1a {0249};  Neviano Pina-D1a {0249};  
Oscar Pina-D1a {0249};  Padus Pina-D1b {0249};  Penawawa Pina-D1a {03104};  Prinqual Pina-D1b 
{0249};  Serena Pina-D1a {0249};  Sibilia Pina-D1b {0249};  Sigyn II Pina-D1a {0317}.  dv: Ae. 
tauschii unspecified accession (GenBank AJ249936) {03103};  TA1583 (GenBank AY251981) Pina-
D1a, Gsp-D1b {03105}. 	
Pinb-D1a is present in all soft hexaploid wheats and possibly all hard hexaploid wheats carrying the Pinb-
D1b, -D1c, -D1d, -D1e, or -D1f mutations {452}, {1035}, {0082}, {0204}, {0295}. 
Pinb-D1b {452}.  5DS {452}.  i:  Paha*2/Early Blackhull/5*Paha {0203,0298}; Early Blackhull 
der./5*Nugaines seln. {0203, 0298};  hard sib sel. from Weston {03107};  PI 644081 
(Alpowa/ND2603//7*Alpowa) {10429}.  s:  CS*7/Cheyenne 5D {452}.  v:  Thatcher {0204};  Wanser 
{452};  hard component of Turkey {0204};  Cheyenne (GenBank DQ363914) {10315};  Renan 
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(GenBank CR626934) {10440}.  v2:  Bastion Pina-D1a {0317};  Bezostaya Pina-D1a {0249};  Brasilia 
Pina-D1a {0249};  Cerere Pina-D1a {0249};  Colfiorito Pina-D1a {0249};  Cologna 21 Pina-D1a 
{0249};  David Pina-D1a {0249};  Democrat Pina-D1a {0249};  Etruria Pina-D1a {0249};  Francia 
Pina-D1a {0249};  Gemini Pina-D1a {0249};  Genio Pina-D1a {0249};  Gladio Pina-D1a {0249};  
Marberg Pina-D1a {0249};  Mieti Pina-D1a {0249};  Newana Pina-D1a {0249};  Pandas Pina-D1a 
{0249};  Pascal Pina-D1a {0249};  Sagittario Pina-D1a {0249};  Salgemma Pina-D1a {0249};  Saliente 
Pina-D1a {0249};  Salmone Pina-D1a {0249};  Serio Pina-D1a {0249};  Veda Pina-D1a {0249};  Zena 
Pina-D1a {0249}. 	
Pinb-D1b is a "loss-of-function" mutation resulting from the replacement of a glycine by a serine at 
position 46 {452}. 
Pinb-D1c {0082}.  i:  PI 644082 (Alpowa/Red Bobs//7*Alpowa) {10429}.  v:  Avle {0082};  Bjorke 
{0082};  Portal {0082};  Reno {0082};  Tjalve {0082}. 	
Pinb-D1c is a "loss-of-function" mutation resulting from the replacement of a leucine by a proline at 
position 60 {0082}.	
Pinb-D1d {0082}.  i:  PI 644083 (Alpowa/Mjolner//7*Alpowa) {10429}.  v:  Bercy {0082};  Mjolner 
{0082};  Soissons (homonym 'b1') {10433}. 	
Pinb-D1d is a "loss-of-function" mutation resulting from the replacement of a tryptophan by an arginine 
at position 44 {0082}.	
Pinb-D1e {0204}.  i:  PI 644084 (Alpowa/Canadian Red//7*Alpowa) {10429}.  v:  Gehun {0204};  
Canadian Red {0204};  Chiefkan {0204};  Yunxianxiaomai {10427}. 	
Pinb-D1e is a "loss-of-function" mutation resulting from the replacement of a tryptophan by a stop codon 
at position 39 {0204}.	
Pinb-D1f {0204}.  i:  PI 644085 (Alpowa/Sevier//7*Alpowa) {10429}.  v:  Abyssinia AV12.4 {10430};  
The hard component of Utac{0204}. 	
Pinb-D1f is a "loss-of-function" mutation resulting from the replacement of a tryptophan by a stop codon 
at position 44 {0204}.	
Pinb-D1g {0204}.  i:  PI 644086 (Alpowa/Andrews//7*Alpowa) {10429}.  v:  Andrews {0204}. 	
Pinb-D1g is a "loss-of-function" mutation resulting from the replacement of a cysteine by a stop codon at 
position 56 {0204}.	
Pinb-D1h {03105}.  dv:  Ae. tauschii TA2369 (GenBank AY251983) Pina-D1c, Gsp-D1c {03105}; 
TA2527 (GenBank AY251965) Pina-D1c, Gsp-D1e {03105};  TA1649 (GenBank AY251963) Pina-
D1d, Gsp-D1f {03105};  TA10 (GenBank AY649748) {03108};  CPI110799 (GenBank AY159804) 
{10037}. 	
Pinb-D1i {03105}.  dv:  Ae. tauschii TA2475 (GenBank AY251989) Pina-D1a, Gsp-D1b {03105};  
TA2536 (GenBank AY251993) Pina-D1c, Gsp-D1d {03105};  TA2374 (GenBank AY251948) Pina-
D1d, Gsp-D1d {03105};  TA2512 (GenBank AY251992) Pina-D1d, Gsp-D1e {03105};  TA2455 
(GenBank AY251972) Pina-D1d, Gsp-D1f {03105};  TA2458 (GenBank AY251986) Pina-D1e, Gsp-
D1d {03105};  TA2495 (GenBank AY251991) Pina-D1e, Gsp-D1e;  TA2436 (GenBank AY251947) 
Pina-D1f, Gsp-D1d {03105}; Ae. tauschii TA1704 and TA2381 (GenBank AY649747) {03108, 10315}; 
Ae. tauschii isolate Q03-002 (GenBank DQ257553) (referred to as allele 2) {10314}; Ae. tauschii CPI 
110799 (GenBank CR626926) {10440}. 	
Q03-002, TA1704, and TA2381 were incorrectly assigned Pinb-D1w in the 2006 supplement.	
Pinb-D1j {03105}.  dv:  Ae. tauschii TA1599 (GenBank AY251962) Pina-D1a, Gsp-D1g {03105};  
TA1691 (GenBank AY251964) Pina-D1a, Gsp-D1h {03105}; Ae. tauschii TA1691 (GenBank 
AY251946) {03108}. 	
Pinb-D1k.  dv:  Ae. tauschii PI554318 (GenBank AJ302108) Pina-D1d {03104}. 	
Pinb-D1l {10119}.  v:  GaoCheng8901 {10119}. 	
{10208} reported Pinb-D1b in Gaocheng 8901.	
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Pinb-D1m {10118}.  v:  X. aegilotriticum CIGM87.2783-1B-0PR-0B (GenBank AY573901) Pina-D1c 
{10118}. 	
Pinb-D1n {10118}.  v:  X. aegilotriticum CIGM92.1708 (GenBank AY573902) Pina-D1d {10118}. 	
Pinb-D1o {10118}.  v:  X. aegilotriticum CIGM93.247 (GenBank AY573903) Pina-D1e {10118}. 	
Pinb-D1p {10121}.  [Pinb-D1z {10316}].  v:  Dahuangpi (GenBank AY581889) {10316};  Nongda 3213 
{10121};  Nongda 3395 {10121};  Qindao landrace {10305};  Qitoubai {10305};  Shijiazhuang 34 
{10305};  Zigan {10305}. 	
The single nucleotide A deletion occurs in the AAAA at position 210-213 and is assigned to the last 
position at 213. Homonym: Pinb-D1i(t) {10305}. This homonym sequence (allele) was incorrectly 
assigned Pinb-D1z, 'b3', Pinb-D1u.	
Pinb-D1q {10077}.  s:  CS*/Red Egyptian 5D substitution line, Pina-D1k, Gsp-D1i {10077}.  v:  
Jingdong 11 (GenBank EF620909) {10313}. 	
This allele was used originally (2004 supplement) in combination with Pina-D1k and Gsp-D1i to denote 
the large deletion that encompasses PINa-D1, PINb-D1, and GSP-D1 {10077} (cf. Pins-D1k). The 
haplotype nomenclature of this deletion is under review. Pinb-D1q is currently used to denote the C-to-G 
SNP at position 218 {10313}.	
Pinb-D1r {10209}.  [Pinb-D1h {10209}].  v:  Hyb65 (NCBI AJ619022) {10209}. 	
G insertion: open reading frame shift and premature stop codon; hard kernel texture {10209}.	
Pinb-D1s {10209}.  v:  NI5439 (NCBI AJ619021) {10209}. 	
G insertion as in Pinb-D1r and an A-to-G substitution; hard kernel texture {10209}.	
Pinb-D1t {10208}.  v:  Guangtouxianmai (GenBank EF620910) {10208};  Hongma{10208}. 	
G-to-C substitution: Glycine-47 to arginine; hard kernel texture {10208} 
Pinb-D1u {10427}.  v:  Tiekemai (GenBank EF620911) {10427}; 31 hard Yunnan endemic wheats (T. 
aestivum ssp. yunnanense King) {10427}. 	
Possesses a G deletion at position 127 leading to a shift in ORF {10427}.	
Pinb-D1v {10305, 10316}.  [Pinb-D1i(t) {10305}, Pinb-D1r {10316}].  v:  Qingdao Landrace 1 
{10305};  Qitoubai {10305};  Shijiazhuang 34 {10305};  Tachun 3 (GenBank AY598029) {10316};  
Zigan {10305};  homonym 'b5' {10316}. 	
The original assignment of this allele in the 2006 supplement was incorrect; the sequence/varieties in 
{10305] are Pinb-D1p as listed above for that allele. The following variety/sequence was assigned Pinb-
D1y in the 2006 supplement; but the original assignment of {10316} is now unchanged.	
Pinb-D1w {10314}.  [Pinb-D1q {10316}].  v:  Jing 771 (GenBank AY640304, AB180737) {10316};  
homonym 'b4' {10316}.  dv:  Ae. tauschii 002 (GenBank DQ257553) {10314}; Ae. tauschii ssp. tauschii 
TA1704 (GenBank AY649747) {10315}; Ae. tauschii ssp. anathera TA2381 (GenBank AY649747 
{10315}. 	
This variety/sequence was incorrectly assigned Pinb-D1x in the 2006 supplement; the original assignment 
of {10316} is now unchanged.	
Ae. tauschii isolate Q03-002 (GenBank DQ257553) (referred to as allele 2) {10314}; Ae. tauschii 
TA1704 and TA2381 (GenBank AY649747) {10315}; Ae. tauschii CPI 110799 (GenBank CR626926) 
{10440} were incorrectly assigned this allele in the 2006 supplement; they are Pinb-D1i as listed above.	
Pinb-D1x {10528}.  v:  Kashibaipi (GenBank AM909618) {10528}. 	
Pinb-D1y. 	
The original assignment of this allele in the 2006 supplement was incorrect; the sequence for Tachun 3 in 
{10305} is Pinb-D1v as listed above. The original assignment of {10316} is now unchanged. Currently 
there is no assignment for this allele.	
Pinb-D1z. 	
This allele/sequence is identical to, and listed under, Pinb-D1p. Currently there is no assignment for this 
allele.	
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Pinb-D1aa {10391}.  v:  Changmangtoulongbai (GenBank EF620912) {10391}; Hongtutou 1 {10391}; 
Hongtutou 2 {10391}. 	
Pinb-D1ab {10432}.  v:  KU3062 {10432};  KU3069 {10432};  Tuokexunyihao {10528}. 	
Pinb-D1ac {10570}.  v:  Kashibaipi {10570}; Red Star {10570}. 	
G to A substitution at position 257 and C to T substitution at position 382 {10570}.	
	
PINa-S1 {03108}.  dv:  Ae. speltoides PI 393494 (GenBank AJ302096) {03104}; PI 369616 (GenBank 
AJ302097) {03104}; Ae. speltoides spp. speltoides TA2368 (GenBank AY622787), TA1789 (GenBank 
AY622788) {03108}; Ae. speltoides spp. ligustica TA1777 (GenBank AY622789) {03108}. 	
PINa-Sb1 {03108}.  dv: Ae. bicornis spp. typica TA1954, TA1942 {03108}. 	
Pina-Sl1 {03108}.  dv: Ae. longissima spp. longissima TA1912 (GenBank AY622790) {3108}; Ae. 
longissima spp. nova TA1921 (GenBank AY622791) {03108}. 	
Pina-Ss1 {03108}.  dv:  Ae. searsii TA1837, TA1355 (GenBank AY622792) {03108}. 	
Pina-Ssh1 {03108}.  dv:  Ae. sharonensis TA1999 (GenBank AY622796) {03108}. 	
	
Pinb-D1b, Pinb-D1c, Pinb-D1d, Pinb-D1e, Pinb-D1f, or Pinb-D1g are present in hard hexaploid wheats 
not carrying the Pina-D1b (null) mutation {452, 1035, 0082, 0204}. 
 
Wheats with Pinb-D1b were slightly softer and a little superior to those with Pina-D1b in milling and 
bread-making characteristics although there was considerable overlap {0206}.  
Transgenic rice with the Pina-D1a and Pinb-D1a alleles possessed softer grain {0207}. 
Genotypes for a selection of North American wheats are given in {0204}. 
In T. monococcum the gene order was reported to be: tel - GSP-1 - PINa - PINb {0083, 10122} whereas 
in Ae. squarrosa it was: tel - GSP-1 - PINb- PINa {10037}. 
The soft kernel trait was transferred to durum {10899}. The soft kernel trait was transferred to durum; 
firstly, to Langdon durum Selection 1-674 and then by backcrossing to cv. Svevo {10899}, which was in 
turn used to develop backcross derivatives in cv. Alzada, Havasu, Kyle, and Strongfield {11444}. Genetic 
evidence indicated that ~24.4 Mbp from CS chromosome 5DS replaced ~20 Mbp of 5BS {11444}. 
Further cytogenetic analysis identified the translocation breakpoint in a 39 bp region within a putative 
glcosyltransferase gene {11489}. 
Ikeda et al. {10305} reported a double-null with apparently no PINa-D1 or PINb-D1 genes present in v:  
Bindokku, Cheyenne 'A', Chosen 68, Saiiku 18, Saiiku 44, and tentatively assigned it Pina-D1b/Pinb-
D1h(t). How this deletion compares with the double null mutation reported by Tranquili et al. {10077} 
which was assigned Pina-D1k/Pinb-D1q is unknown.	
Lines possessing the alien-derived genes Lr57 and Yr40 lack puroindoline genes and therefore should be 
hard phenotypes {10770}.	
 
2.3.11. Endosperm-specific wheat basic region leucine zipper (bZIP) factor storage activator alias 
Storage protein activator 
	
SPA-1	
SPA-A1 {10908}.  1AL {10909}.  v:  Recital {10909}.	
	
SPA-B1 {10908}.  1BL {10909}.  v:  Recital{10908}.  ma:  Glu-B1 - 1.3 cM - Spa-B1 {10909}. 	
Spa-B1a {10908}.  v:  Chinese Spring {10909}; Recital {10908}; Australian genotypes listed in 
{10908}. 	
Spa-B1b {10908}.  v:  Renan {10909}; Australian genotypes listed in {10908}. 	
	
SPA-D1 {10908}.  1DL {10909}.  v:  Recital {10909}. 	
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After testing an ealier hypothesis that SPA genes affected wheat quality, analyses conducted by both 
{10908} and {10909} obtained no evidence supporting a significant effect and attributed any variation to 
the closely linked GLU-B1 locus.	
	
2.3.12. Salt soluble globulins	
GLO-1 are endosperm proteins (23-26 kDa) soluble in salt but not in water {455}.	
GLO-1	
GLO-A1 {455}.  1AS {455}.  v:  CS.  ma:  Distally located: GLO-A1(distal) – 5.2 cM – GLI-A1 {1077}.	
	
GLO-B1 {455}.  1BS {455}.  v:  CS. 	
	
GLO-D1 {455}.  1DS {455}.  v:  CS.  ma:  Distally located: GLO-D1(distal) – 2.9 cM – GLI-D1 {1077}. 	
GLO-E1 {455}.  1ES {455}.  ad:  CS/E. elongata. 	
GLO-R1 {455}.  1RS {455}.  ad:  CS/Imperial.  su:  1B/(1R), eg., Salzmunde 14/44. 	
 
2.3.13. Serine protease inhibitors alias serpins	
Serine proteinase inhibitors or serpins are salt soluble proteins (~43 kDa) representing about 4% of the 
total protein in wheat and barley endosperms. They may have a role in plant defense.	
SRP-1 
SRP-A1 {10754}.  5AL {10754}. 	
Srp-B1a {10754}.  [Srp5Ba {10754}].  v:  Etawah {10755}; Federation {10755};  Frame {10755};  
Pugsley {10754};  Stylet {10755}. 	
Srp-B1b {10754}.  Null allele.  v:  Correll {10755}; EGA Eagle Rock {10755};  Gladius {10755};  Yitpi 
{10755}. 	
This allele reduced milling yield by 0.4% {10755}.	
	
SRP-B1 {10754}.  [Srp5B {10754}].  5BL {10754}. 	
 
SRP-D1 {10754}.  5DL {10754}. 	
 
2.3.14. Starch granule proteins	
The proteins, designated SGP-1, are starch synthases, encoded by SsII-A1, SsII-B1 and SsII-D1 {0042}.	
SGP-1 See also starch synthase SSII-1 	
SGP-A1 {1615}.  7AS {1615}.  v:  CS. 	
Sgp-A1a {1615}.  v:  CS. 	
Sgp-A1b {1615}.  Null allele.  v:  Chosen 30, Chosen 57. 
Sgp-A1c {1615}.  v:  Hua Non 9. 	
	
SGP-B1 {1615}.  7BS {1615}.  v:  CS. 	
Sgp-B1a {1615}.  v:  CS. 	
Sgp-B1b {1615}.  Null allele.  v:  K79. 	
Sgp-B1c {1615}.  v:  Gnatruche.	
Sgp-B1d {1615}.  v:  Waratah. 	
 
P-D1 {1615}.  7DS {1615}.  v:  CS. See also 	
Sgp-D1a {1615}.  v:  CS. 	
Sgp-D1b {1615}.  Null allele.  v:  T116. 	
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SGP-2	
SGP-A2 {1615}.  v:  CS.	
	
Sgp-B2 {1615}.  v:  CS.  
	
Sgp-D2 {1615}.  v:  CS. . 	
	
SGP-3 See also starch synthase, SSI-1 
Sgp-A3 {1615}.  7AS {1615}.  v:  CS.  
Sgp-A3a {1615}.  v:  CS.  
Sgp-A3b {1615}.  Null allele.  v:  Norin 61.  
 
Sgp-B3 {1615}.  7BS {1615}.  v:  CS.  
Sgp-B3a {1615}.  v:  CS.  
Sgp-B3b {1615}.  Null allele.  v:  Crest.  
Sgp-B3c {1615}.  v:  Spica.  
 
SGP-D3 {1615}.  7DS {1615}.  v:  CS. 	
 
A triple null stock (SGP-1 null wheat) is reported in {0137}. Deletion mapping indicated that the gene 
order on the 7S arms is: centromere - SGP-1 – SGP-3 – Wx {1615}. 
 
2.3.15. Starch synthase 
SSI-1.  Starch synthase I proteins are identical to starch granule proteins SGP-3 {0041}. 	
 
SSI-A1 {0041}.  7A {0041}. 
 
SSI-B1 {0041}.  7B {0041}. 
 
SSI-D1 {0041}.  7D {0041}.  
 
SSII-1.  Starch synthase II proteins are identical to the starch granule proteins SGP-1 {0042} 
SsII-A1 {0042}.  7A {0042}.  
	
SsII-B1 {0042}.  7B {0042}. SsII-D1 {0042}.  7D {0042}. 	
 
2.3.16. Water soluble proteins 
WSP-1.  WSP-1 are monomeric grain endosperm proteins identified by their high pI's {817}. 
WSP-A1 {817}.  7AL {817}.  v:  CS.  
Wsp-A1a {817}.  v:  CS.  
Wsp-A1b {817}.  v:  Huntsman.  
Wsp-A1c {817}.  v:  Hope.  
Wsp-A1d {817}.  v:  Sicco.  
Wsp-A1e {817}.  v:  Condor.  
	
WSP-B1 {817}.  7BL {817}.  v:  CS. 	
Wsp-B1a {817}.  v:  CS. 	
Wsp-B1b {817}.  v:  Hope. 	
Wsp-B1c {817}.  v:  Condor. 	
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WSP-D1 {817}.  7DL {817}.  v:  CS  
Wsp-D1a {817}.  v:  CS.  
Wsp-D1b {817}.  v:  Sears' Synthetic IPSR 1190903.  
Wsp-D1c {893}.  v:  T4 = Agatha {890,893}; Indis {890,892}.  
	
WSP-E1 {817}.  7E {817}.  ad:  CS/ E. elongata. 	
WSP-H1 {817}.  7H {817}.  ad:  CS/Betzes. 	
WSP-Hch1 {817}.  7Hch {817}.  ad:  CS/H. chilense. 	
WSP-Sl1 {817}. 7Sl {817}.  ad:  CS/Ae. sharonensis.  
WSP-V1 {817}.  7V {817}.  ad:  CS/D. villosum. 	
	
2.3.17. Waxy proteins 
Waxy protein (granule-bound starch synthase = ADP glucose starch glycosyl transferase, EC 2.4 1.21 = 
GBSSI) is tightly bound within endosperm starch granules and is involved in the synthesis of amylose 
{1616}. Waxy variants, characterised by starch granules containing increased amylopectin and reduced 
amylose, are preferred for Japaness white salted or "udon" noodles {1650}. Similar waxy phenotypes are 
controlled by orthologous genes in barley, maize and rice but are not known to occur in rye {725}. All 
combinations of the null alleles were produced in Chinese Spring {0018}. Partial genomic clones of 
various diploid, tetraploid, and hexaploid wheats were sequenced {0278, 0279}.	
A multiplex PCR assay for identifying waxy genotypes is described in {10032}. 
WX-1 
WX-A1 {1053}, {180}.  [Wx-B1 {1054, 1053}, Xwx-7A {179}, {180}].  7AS {1053}, {180}.  v:  CS.  
ma:  Variation in the microsatellite gene Xsun1-7A provides a co-dominant marker for this locus {116}. 	
Wx-A1a {1054}.  [Wx-B1a {1054}].  v:  Bao Hua {10989}; CS; Hoshuu.  tv:  Langdon {10989}. 	
Wx-A1b {1054}.  [Wx-B1b {1054}].  Null allele.  v:  California {10032}; Kanto 79; Kanto 107; Shino 
{10032};  Shirodaruma {1617};  Sturdy {10032, 1617}.  v2:  Mochi-Otome Wx-B1b Wx-D1b {10032}; 
Nebarigoshi Wx-b1b {10032}.  tv:  Asrodur {0111}; MG826 {03101}; A variant allele was present in 
one Iranian and one Italian accession {03101}. The complete genomic sequences for the Wx-A1a allele 
from CS {0073} and the cDNA sequence for the Wx-A1b allele from Kanto 107 {0075} were determined.	
Wx-A1c {1617}.  v:  Pakistan Zairaishi selection {10629}; QT105 {1617};  WB6 {1617}. 	
Wx-A1d {1616}.  tv: T. dicoccoides KU 8937B {1616}. 	
Wx-A1e {1616}.  tv:  KU 3659 {10629}; T. durum KU 3655 and KU 3659 {1616}. 	
Wx-A1f {10187}.  Null allele.  v:  Turkey-124 {10187}; Turkey-140 {10187};  Turkey-171 {10187};  
Turkey-280 {10187};  Turkey-299 {10187}. 	
Lines with this allele produce a PCR product with a 173 bp insertion in an exon {10187}.	
Wx-A1g.  Wx-A1' {10587}.  v:  PI 348476 {10587}; Spelt accessions PI 348576 {10587};  2778 Epeautre 
Noir Velu {10587}. 	
Wx-A1h {10763}.  Null allele.  tv:  Buck Topacio {10763}. 	
This is probably a unique allele possessing a 1 bp deletion in exon 6 leading to frameshift and a stop 
codon: partial sequence GQ120523 {10763}.	
Wx-A1i {10989}.  v:  KU9259{10989}. 	
Wx-A1j {10989}.  v:  M1 {10989}. 	
Functional markers for Wx-A1c, Wx-A1d, Wx-A1e and Wx-Ali were developed from DNA sequences 
{10990}.	
 
WX-B1 {1053,180}.  [Wx-A1 {1054, 1053}, XWx-4B {179, 180}, XWx-4A {961}].  4AL {1054, 180}.  v:  
CS.  tv:  A variant allele was present in three accessions {03101}. 	
A dominant PCR marker for identifying heterozygotes at the Wx-B1 locus is reported in {10732}. 
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Wx-B1a {1054}.  [Wx-A1a {1054}].  v:  CS; Joshuu. 	
The complete genomic sequence for Wx-B1a from CS was determined {0073}. 
Wx-B1b {1054}.  [Wx-A1b {1054}].  Null allele.  v:  Kanto 79 {1617}; Kanto 82 {1617}; Kanto 107 
{1617};  Norin 98 {1617};  Gabo {1617};  Reward {10032};  Satanta {1617};  Yukon {10032}.  v2:  
Mochi-Otome Wx-A1b Wx-D1b {10032};  Nebarigoshi Wx-A1b {10032}.  v:  For list of Australian 
wheats, see {1650}.  tv:  Blaquetta (BG-13701) {0111}. 	
An ELISA-based method was developed for distinguishing wheat lines carrying this null allele {10325}. 
Wx-B1c {1617}.  v:  AF24 {10629}; Chousen 40 {0094};  Cikotaba {1617, 10629};  Junguk 12 {1617, 
10629}. 	
Wx-B1d {1616}.  tv: T. durum KU 4213D {1616}; KU 4213D {10629}; KU 4224C {1616}. 	
Wx-B1e {0027}. v:  Blue Boy II {0027}; Canthatch {0027};  Eureka {0027};  Gotz {0027};  Norin 44 
{0027};  Turkey Red {0027}. 	
Wx-B1f {0111}.  tv:  BG-12413 {0111}; BG-12415 {0111}.	
	
Wx-BS1g {10587}.  al:  Ae. speltoides 33 {10587}. 	
Wx-BSL1h {10587}.  al:  Ae. longissima 12 {10587}. 	
	
WX-D1 {1053}, {180}.  [XWx-7D {179, 180}].  7DS {1053}, {180}.  v:  CS. 	
Isolation of a wheat cDNA encoding WX-A1 and WX-D1 was reported in {0123} and {0167}, 
respectively. 	
Wx-D1a {1054}.  v:  CS. 	
Wx-D1b {1617}.  Null allele.  v:  Bai Huo (Baihuomai) {1617}; DHWx12 {0117}. v2:  Mochi-Otome 
Wx-A1b Wx-B1b {10032}.  ma:  STS marker Xsun1-7D produces a distinct band of about 260 bp 
(compared with the standard 840 bp), indicative of a smaller PCR product, but the gene is non-functional 
{0116, 0117}; Xsun4(Wx)-7D is a perfect marker {0118}. 	
The complete genomic sequence for Wx-D1a from CS {0073} and the cDNA sequence for the Wx-D1b 
allele from Bai Huo {0075} were determined.	
Wx-D1c {1617}.  v:  Scoutland {1617}. 	
Wx-D1d {0118}.  v:  K107Wx1 {0118};  K107Wx2 {0118};  One Iranian and one Italian accession 
{03101}. 	
Wx-D1e {0117}.  Null allele {0117}.  v:  NP150 {0117}. 	
STS marker Xsun1-7D failed to produce a PCR product {0117 
Wx-D1f.  [Wx-d1e {0234}].  v:  Tanikei A6599-4 {0234}.Relative to Kanto 107, Tanikei A6599-4 carries 
an alanine to threonine substitution at position 258 in the mature protein {0234}. 	
 
Wx-DDN1g {10587}.  al:  Ae. ventricosa 12 {10587}.  
	
Various hard and soft wheats with alleles Wx-A1b, Wx-B1b and Wx-D1b are listed in {0304}. 15% of 
Chinese wheats possessed Wx-B1 null alleles {10357}.	
Isolation of genomic sequences for the genes encoding granule-bound starch synthase (GBSSI or WX) in 
T. monococcum, Ae. speltoides and Ae. tauschii was reported in {0168}. Cloning of a second set of 
GBSSI or waxy genes, GBSSII, which were shown to be located on chromosomes 2AL, 2B and 2D, was 
reported in {0167}.	
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Wheat Gene Catalogue – 3. Pathogenic Disease/Pest Reaction 

For disease/pest reaction gene guidelines see Introduction, no. 8.  
 
Note: In listings of multiple alleles, the chromosomes locations and ma: citations with generally be given 
with the particular allele that was located or mapped. 

3.1. Abiotic Stress Responses: Dehydrin-response Element Binding Factors 

DREB proteins are a large family of transcription factors induced by abiotic stresses. Using genome-
specific primers as probes for an orthologous Dreb1 gene series was placed on chromosomes 3A, 3B and 
3D {10729}. SNPs in DREB-B1 permitted mapping in chromosome 3BL in the ITMI (Opata 85 / W7984) 
mapping population. See also section 2.2.42. 

DREB A1.  3A {10729}. 

Dreb-A1 {10729}.   

DREB-B1 {10729}.  3BL {10729}.  ma:  Xmwg818-3B – 27.3 cM – Dreb-B1 – 11.2 cM – Xfbb117-3B 
{10729}. 

Dreb-B1.   

Dreb-B1a {10729}.  v:  Opata 85 {10729}.  

Dreb-B1b {10729}.  v:  W7984 {10729}.  

DREB-D1. 

Dreb-D1 {10729}.  3D {10729}.  

 

3.2. Reaction to Barley Yellow Dwarf Virus 

Disease: Barley yellow dwarf;  Cereal yellow dwarf 

BDV1 

Bdv1 {1363, 1379}.  7D {1379}. 7DS {1363}.  i:  Jupeteco 73R (compared to Jupeteco 73S) {1363}. v:  
Anza {1379};  Condor BW3991 {1379};  Tyrant BW3872 {1379};  Hahn BW4097 {1379};  Parrot 
BW10817{1379};  Siren BW18643 {1379};  Many CIMMYT genotypes. Bdv1 is completely linked with 
Ltn, Sr57, Lr34 and Yr18. See Ltn, Lr34, Yr18.  
Note: BW = CIMMYT wheat accession number. 

BDV2 
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Bdv2 {58}.  Derived from Th. intermedium  7D = T7DS-7Ai#1S.7Ai#1L group.7DL = T7DS.7DL-
7Ai#1L {0182}, {552}.  tr:  TC14 {0201}, {59};  H960642 {0182}.  v:  Glover (with TC6) {10491};  
Mackellar = LH64C (from tissue culture) {10177}; TC14*2/Hartog {0225}; TC14*2/Spear {0201}; 
TC14*2/Tatiara {0225};  Yw243, Yw443, Yw642 and Yw1029 (derived by ph1 induced recombination) 
see {10177}.  ma:  Distal 10% of 7DL, translocation point between RFLP markers Xpsr680 and Xpsr965 
{0182};  Complete association with Xpsr129-7D, Xpsr548-7D, XksuD2-7D, XcslH81-7D, and Xgwm37-
7D selected as a diagnostic marker {0225};  Two RGAP and 1 RAPD markers developed for the Yw 
series also effective for at least TC14 {10177}.  
7D = T7DS-7Ai#1S.7Ai#1L {552}  tr:  TC5, TC6, TC8, TC9, TC10 {59}.  
1B = T1BS-7A#1S.7Ai#1L {552}  TC7 {447}.  
7Ai#1S {552} su:  TAF2 {59};  Lines 5395 & 5395-243AA{552}.  
Small recombinant segments are described in a pontin series of lines: recombinants were obtained with 
Lr19 but not with Sr25 {11097}. 

BDV3  

BDV3 in wheat shows distored inheritance that varies with genetic background 

Bdv3 {10159}.  Derived from Th. intermedium cv. Ohahe {10158}  7DS.7DL-7EL {10157}. v:  P961341 
PI 634825 {10157};  P98134 {10159}.  ad:  P107 {10159}.  su:  P29 (7D(7E) {10156}.  ma:  A SSR-
BDV marker is described in {10159}.  
Further translocation lines with Bdv3 are described in {10882}. 

 

3.3. Reaction to Bipolaris sorokiniana 

Diseases: Spot blotch and common root rot. 
Spot blotch 

The pathogen harbours Tox A in common with Parastagonospora nodurum, Parastagonospora avenaria 
tritici and Pyrenophora tritici-repentis {11255, 11768}. 

SB1 

Sb1 {10855}.  Partial resistance  7DS {10855, 10856}.  i:  HUW234Ltn+ {10855}.  v:  Saar {10856};  
Lines with Lr34/Yr18/Pm38/Sr57 - see Reaction to Puccinia triticina, Reaction to Puccinia striiformis, 
Reaction to Blumeria graminis, Reaction to Puccinia graminis, Leaf tip necrosis.  ma:  Pleiotropic or 
closely linked with Lr34/Yr18/Pm38/Sr57 located between Xgwm1220-7DS and Xswm10-7DS (1.0 cM 
interval) {10856};  see also Reaction to Puccinia triticina, Reaction to Puccinia striiformis, Reaction to 
Puccinia graminis and Reaction to Blumeria graminis.  c:  Putative ABC transporter {10648}. 

SB2 
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Sb2 {11255}.  QSb.bhu-5B {11255}.  5BL {11255}.  bin:  5BL1-0.55-0.75.  v:  Ning 8201 {11255}; 
Yangmai 6 {11255}; YS116 {11255}.  ma:  Xgwm639-5B – 1.4 cM – Sb2 – 0.06 cM – Xgwm1043-5B 
{11255}. 

sb2.  [Tsn1 {11255}.  v:  Duster {11376}; Sonalika {11255}. Presumably all genotypes with Tsn1. 

SB3 

Sb3 {11256}.  3BS {11256}.  bin:  3BS8-0.78 -1.00.  v:  Line 621-7-1 {11256}.  ma:  Sb3/XWGGC3959 
were mapped to a 2.2 cM interval between Xbarc133/Xbarc147/Xcfp30-3B/XWGGC5911 and 
XWGGC4320 {11255};  XWGGC12798 – 0.08 cM – SB3XW GGC9893/XWGGC10235 – 0.07 cM – 
XWGGC6119 {11255}.  

SB4 

Sb4 {11592}.  4BL {11592}.  v:  Line 7H9094 {11592}.  ma:  YK12831 – 1.18 cM – SB4/YK12828 – 
0.01 cM – YK13104 {11592}.  
Line 7H909 was selected from a segregating F4 line from a cross of resistant cultivars GY17 and Zhongyu 
1211 {11592}. 

QTL 
Yangmai 6 (R)/Sonalika (S):  RIL population: AUDPC was controlled by four QTLs derived from 
Yangmai 6, viz. QSb.bhu-2AL (Xbarc353-2A – Xgwm445-2A, R2=0.148), QSb.bhu-2BS (Xgwm148-2B – 
Xgwm375-2B, R2=0.205), QSb.bhu-5BL (Xgwm67-5BL – Xgwm371-5BL, R2=0.386) and QSb.bhu-6DL 
(Xbarc173-6D – Xgwm732-6DL, R2=0.225) {10719}.  

 

3.4. Reaction to Blumeria graminis DC. 

Disease: Powdery Mildew. 
Resistance genes and their molecular associations are reviewed in {10141}. 

3.4.1. Designated genes for resistance 

Note: Chancellor, used as a susceptible genetic background, for some near-isogenic lines probably carries 
Pm10 and Pm15 {1479}. 33 NILs, including 22 resistance genes and 3 genetic backgrounds are listed in 
{10389}. 

PM1  

Pm1a {562}.  [Mla {348}, Pm1 {130}, Mlt {1175}].  7AL {1305}.7A {1293}. i: Axminster/8*Chancellor 
{132}; CI 14114 = As II/8*Chancellor {132}; CI 13836/8*Chancellor {132}; Kenya C6041/5*Federation 
{1168}; Norka/8*Chancellor {132}.  s: CS*5/Axminster 7A {1293}.  v:  Anfield {98};  As II {130};  
Axminster {1175,130};  Birdproof {165};  Bonus {1554};  CI 13836 {130};  Converse {1175};  Fedka 
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{939};  Festival {1554};  Fram I {130};  Huron CI 3315 {1175,1554};  Kenora {1554};  Kenya W744 = 
C6041 {1175,130};  Norka {1175,130};  Pika {130};  Sweden W1230 {1554};  Thew {1175};  TU 4 
{130};  Zhengzhou 871124 {570}.  v2:  Anfield Pm9 {1287};  BGRC 44514 Pm3a {1628};  Mephisto 
Pm2 Pm9 {540};  Normandie Pm2 Pm9 {165};  Pompe Pm9 {1287};  Ring Pm9 {1287};  Sappo Pm2 
Pm4b (Carries Lr20) {310};  Solo Pm2 Pm4b {52}.  ma:  Co-seg. with Xcdo347-7A using NILs{ 864};  
Co-segregation or close linkage with three RAPDs; one RAPD converted to a STS {570};  Note: In Solo, 
Pm1 is translocated to chromosome 7D {52};  Complete cosegregation of several markers including 
Xcdo347-7A, Xpsr121-7A, Xpsr680-7A, Xpsr687-7A, Xbzh232(Tha)-7A, Xrgc607-7A and Xsts638-7A 
with Pm1 and Lr20 was reported in {323}.  c:  Encodes a nucleotide-binding, leucine rich repeat protein 
with close similarity to Pm21 {11509}. 

Reference {11402} provides further evidence for a non-recombinogenic region in distal chromosome arm 
7AL. The region appeared to have re-arrangements involving all three homoeologous group 7 
chromosomes. This casts doubt regarding an allelic series at the PM1 locus {11509}. 

Pm1b {562}. v:  MocZlatka {562}.  

Pm1c {562}.  [Pm18 {853}, {562}].  v:  Blaukorn {0011};  M1N {562},{1628};  M1N was described as 
an undesignated subline of Weihenstephan M1{540}.  ma:  AFLP marker 18M2 was diagnostic for Pm1c 
{0011}.  

Pm1d {562}.  v:  T. spelta var duhamelianum TRI2258 {562}.  ma:  AFLP marker 18M1 – various Pm1 
alleles 0.9 cM {0011}. 

Pm1e {0322}.  [Pm22  {1134}].  v:  Elia{1134};  Est Mottin {1134};  Ovest {1134};  Tudest {1134};  
Virest {1134}.  

PM2  TraesCS5D01G044600 {11503}. 

Pm2a{11049}.  [Mlu {1175}, Mlx {1088}, Pm2 {130}].  [Mlx {10885D  {1007};  Pm48 {10935}.  
5DS{945}. i: CI 14118 = Ulka/8*Chancellor {132}; CI 14119 = CI 12632/8*Chancellor {132}; 
Federation*4 /Ulka {1168}.  v:  Avalon {96};  Bounty {96};  Claire {11678}; Fenman {96};  Galahad 
{1531};  H8810/47 {130};  Longbow {1531};  Maris Beacon {1592};  Maris Nimrod {1592};  Maris 
Sportsman {96};  Maris Templar {1592};  Mattis {11678}; Norman {96};  Orestis {1079};  PI 92378  
{1168};  PI 181374{1168};  Sea Island {130};  Sentry {96};  S2303 {945}; Synthetic(Iumillo/Ae. 
tauschii) {1168}; Tobasco {11678}.TP 114/2*Starke deriv {626};  Ulka {1175, 130};  XX186 = T. 
durum Santa Maria/Ae. squarrosa BGRC 1458 Pm19 {853}.  v2:  Apollo Pm4b Pm8 {541};  Brigand 
Pm6 {96};  Brimstone Pm6 {1531};  CI 12632 Pm6 {130};  CI 12633 Pm6 {133};  Compal Pm4b  
{854};  Crossbow Pm5 Pm6{98};  Gawain Pm6 {1531};  Halle Stamm 13471 Mld {97};  Heiduck Pm6  
{541};  Hustler Pm6{96};  Hornet Pm8 {1531};  Kinsman Pm6 {96};  Mardler Pm6 {96};  Maris Dove 
Mld {1592};  Maris Fundin Pm6 {96};  Maris Huntsman Pm6  {1592};  Mephisto Pm1 Pm9 {540};  
Normandie Pm1 Pm9 {165};  Parade Pm5 Pm6{1531};  Rendezvous Pm4b Pm6 {1531};  Solo Pm1 
Pm4b {52};  Timmo Pm4b {96};  TP 114 Pm6 {626};  Virtue Pm6 {96};  Walter Pm4b Pm6 {1428}.  
dv: Ae. squarrosa BGRC 1458 {853};  Forty accessions of Ae. tauschii  {852}.  ma:  Pm2 – 3.5 cM – 
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Xbcd1871-5D using F2s{864}; Xcfd81-5D – 2.0 cM – Pm2 {10366}.  c:  NBS-LRR structure {11270}. 
GenBank LN999386, protein CZT14023.1. The TraesCS5D01G044600 allele in susceptible CS and 
Taichung 29 differed from the Pm2a allele by a 7 bp deletion in the first intron {11503}. Several alleged 
alleles at the Pm2 locus were are likely Pm2a {11503}.  Allelism of Pm2a and Pm2b was based on more 
than 7,600 F2 plants.  Tobasco was independently reported to have Pm3a {10843}. 

Pm2b {11049}.  Putatively derived from Agropryron cristatum  [PmPB3558{11049}, PmKM2939  
{11049}].  bin:  C-5DS1-0-0.63.  v:  KM2939 {11049};  PB3558{11075}.  ma:  Xscar112 – 0.5 cM – 
Pm2b – 1.3 cM – Xscar203/Xmag6176/Xcfd81-5D{11049}; Xcfd81-5D – 5.5 cM – PmPB3558 – 3.9 cM 
– Xbwm25 – 0.9 cM – Xbwm21 – 0.9 cM – Xbwm20 {11075}. 
Deleted: Identified as Pm2a {11503}.  

Pm2c {11061}.  [PmNM {11061}].  5DS {11061}.  bin:  5DS-1-0-0.63.  v:  Niaomai {11061}.  ma: 
Xcfd81-5D – 0.4/0.1 cM – Pm2c – 7.5/4.9 cM  – Xcfd78-5D {11061}.  
Deleted: Identified as Pm2a {11503}.  

Several alleles of Pm2 with wheat and alien origins have been reported in Chinese genotypes – see 
temporary designations.  The complex nature of temporarily named powdery mildew resistance genes in 
the Pm2 region is discussed in {11380}.  Several alleged alleles at the Pm2 locus are likely Pm2a 
{11503}. 

PM3. 

PM3 has 92.9% identity with PM8 at the protein level {11398}. 

Pm3a {130}, {132}.  [Mla {1168}].  1A {1007}.1AS {947}, {943}.  i: Asosan/8*Chancellor {132} = CI 
14120; Asosan/3*Federation {1168}. v:  Asosan {130}, {1168};  BGRC 44514 Pm1a {1628};  Coker 797 
{786};  Florida 301 {786};  Florida 302 {786};  Hadden {97};  Halle Stamm {97};  Madrid {10843};  
Merker {10843};  Norin 3 {1134};  Norin 29 {1134};  PI 46890 {1439};  Robigus {10843};  Saluda 
{786};  Tabasco {10843};  Tyler {1419}.  ma:  Xbcd1434-1A – 1.3 cM – Pm3 using NILs{864}; 
Xwhs179-1A – 3.3 cM – Pm3{522}. Xgdm33-1A – 2.3 cM – Pm3/Xpsp2999-1A{313}.  Sequence 
AY939880 {10292}. 

Tobasco was independently reported to have Pm2a {11678}, Pm48 {10935}. 
 

Pm3b {130}, {132}.  [Mlc {165}, Pm3j {10405}].  1A  {1007}.  i:  Chul*8/Chancellor = CI 14121 
{132}; T. sphaerococcum*8/Chancellor = CI 15887 {539}.  v:  Chul {165};  Enorm {10843}.  ma:  
Xbcd1434-1A – 1.3 cM – Pm3b using NILs {864}.  c:  The isolation of Pm3b is reported in {10064}. The 
Pm3b gene (GenBank AY325736) is a coiled-coil NBS-LRR type of disease resistance gene {10064}.  

Pm3c {130}, {132}.  [Pmi {10405}, Mls {1175}].  1A {1007}, {134}.  i:  Sonora/8*Chancellor {132} = 
CI 14122; Sonora/4* Federation {1168}; Triticale/8*Chancellor {539}.  s:  CS*7/Indian 1° {134}.  v:  
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Borenos {854};  Cawnpore {1628};  CI 3008 {130};  CI 4546 {130};  Hindukush {1628};  Indian 
{1175};  Sonora {130}, {1168};  Sturgeon {1175}.  c:  Sequence DQ251587, DQ517917 {10405}.  

Pm3d {1628}.  [Mlk {434}, Ml-k {540}, {10405}.  1° {1628}.  v:  Axona {0313};  Cornette {0313};  
Herold {540};  Indian 4 {0313};  Kadett {0313};  Kanzler  {0011};  Kleiber {0313};  Kolibri {540, 542, 
1628};  Ralle {540};  Socrates {heterogeneous} {540};  Star {heterogeneous}{540};  Syros {540};  
Vergas {10843}.  v2:  Kadett Pm4b {540};  Turbo Pm4b {540}.  c:  Sequence AY9398881 {10292}. 
DQ251488, DQ517518 {10405}. 

Pm3e {1628}.  v:  Sydney University Accession W150 = AUS 6449 {939, 1628}.  v2:  Cortez Pm5 allele 
{10843}.  ma: Pm3e – 7.1 cM – Xwmc818-1A {10843}.  

Pm3f {1628}.  i:  Michigan Amber/8*Chancellor {1628};  This allele was distinguished from Pm3c with 
only one of 13 pathogen cultures.  v:  Viza {10843}.  c:  Sequence DQ071554 {10292}.  

Pm3g {0070}.  [Mlar {854}].  1AS {0313}. 1A  {0070}.  v:  Avo{1629};  Aristide{1629};  Champetre 
{0313};  Courtot {1629};  Lutin {0313};  Oradian {0313};  Rubens {0313};  Soissons {0313};  Valois 
{0313}.  ma:  Pm3g – 5.2 cM – Gli-A5 – 1.9 cM – Gli-A1 {0070};  Pm3g was completely linked to 
microsatellite Xpsp2999{313}.  c:  Sequence DQ251489, DQ517919 {10405}.  

The Pm3a, Pm3b, Pm3d and Pm3f alleles form a true allelic series based on sequence analysis {10292}. 
Following the cloning and sequencing of Pm3b {10064}, 6 other alleles were sequenced {10405}. The 
Chinese Spring (susceptible) allele, Pm3CS, considered to be ancestral and present in many hexaploid and 
tetraploid wheats, was also transcribed {10405, 10406}. Other wheats possessed a truncated sequence 
(e.g. Kavkaz), or were null {10405,10406}. Unique markers were developed for all 8 transcribed alleles, 
and for individual alleles {10405}. 

Alleles Pm3b, Pm3d, and Pm3f were detected in Scandinavian varieties using allele-specific markers 
{10681}. 

PM4 {131}. TraesSYM2A03G00828360 {11774}. 

Pm4a {1464}.  [Pm4 {131}].  2AL {1464}.  i:  CI 14123 = Khapli/8*Chancellor {131}; CI 14124 = 
Yuma/8*Chancellor {131}.  v: Aikang 58 {11753};  Steinwedel*2/Khapli {939};  Yangmai 10 {10176};  
Yangmai 11 {10176}.  tv:  Khapli {131};  Valgerado {97};  Yuma {131}.  ma:  Co-seg with Xbcd1231-
2A.2 & Xcdo678-2A using F2s{864}; Xbcd1231-2A.1 – 1.5 cM – Pm4 – 1.56 cM – Xbcd292-2A{864};  
Pm4a – 3.5 cM – AFLP markers 4aM1 and 4aM2 {11};  Xbcd1231-2A was converted to a STS marker 
and to a Pm4a-specific dominant PCR marker {10176};  Xgwm356-2A – 4.8 cM – Pm4a{10176}.  c:  
Similar structure to Pm4b {11525}. 

Pm4b {1464}.  [Mle {1591}].  2° {52}.  2AL {1464}.  i:  Federation*7/T. carthlicum W804 {1464}; 
VPM1/7*Bainong 3217 {11287}.  v:  Achill {540};  Ajax  {540};  Arkas {540};  Armada {96};  Atlantis 
{11};  Boheme {11};  Botri (heterogeneous) {854};  ELS {1591};  Facta  {854};  Factor 
(heterogeneous){854};  Fakon {854};  Fazit {854};  Hermes {540};  Horizont  {540};  Maris Halberd;  
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Max {540};  Olymp {540};  Orbis {540};  RE714 {1220};  Renan  {16};  Ronos{1079};  S-25 {52};  S-
28 {52};  TP 229  {626,1591};  Weihenstephan M1 {1591};  VPM1 {97}.  v2:  Apollo Pm2 Pm8  
{541,802};  Boxer Pm5{541};  Compal Pm2 {854};  Kadett Pm3d {540};  Kronjuwel Pm8 {541};  
Mission Pm5 {1531, 541};  Rang Pm1 {52};  Rendezvous Pm2 Pm6 {1531}; Solo Pm1 Pm2 {540, 52};  
Sorbas Pm6 {541};  Timmo Pm2 Pm6 {96};  Turbo Pm3d {540};  v:  Xiaomaomai {11774};  Walter 
Pm2 Pm6 {1428}.  ma:  Pm4b – 4.8 cM – Xgbx3119b-2A {272};  Xgwm382-2A – +/-10 cM – Pm4b – +/-
2 cM – XgbxG303-2 {354};  STS241 – 4.9 cM – Pm4b – 7.1 cM – SRAP Me8/Em7220 – 4.7 cM – 
Xgwm382-2A{10553}; Xics13 – 1.3 cM – Pm4b – 1.7 cM – Xics43 covering a 6.7 Mb physical region 
{11287}.  c:  Encodes a putative chimeric protein of a serine/threonine kinase and multiple C2 domains 
and transmembrane regions; Pm4b undergoes alternative splicing to generate two isoforms, both of which 
are essential for resistance function {11525}. Genbank: Pm4b_V1 CDS: MT783929; Pm4b_V2 CDS, 
MT783930. Closest homologue of the C2 domain of Pm4b in CS is TraesCS2A01G557900. 
 
Pm4c {10583}. [Pm23 {1618}]  2AL {10583} – earlier reported on 5AL {1618}.  v2:  81-7241 Pm8 
suppressed{1618, 10583}.  ma:  Xbarc122-2 – 1.4 cM – Pm4c – 3.5 cM – Xgwm356-2 {10583}. 
Pm4b and Pm4c are identical at the nucleotide level {11774}.   

Pm4d {10744}.  2AL {10744}.  bin:  2AL1-0.85-1.00.  v:  GR18-1 {11701}; SYMattis {11525, 11775};.  
Tianmin 668 {11702};  Tm27d2 = WW St2022/Tm27//Amor = TRI 29584 {10744}.  dv: T. monococcum 
Tm27 {10744}.  v:  ma:  A 218 bp fragment was amplified with STS marker ResPm4 as were other Pm4 
alleles {10744}, Located within the intervals 75.889 – 78.702 Mb {11701} and 76.148 – 76.803 
{11702}..  

Pm4e {11317}.  2AL {11317}.  v:  D29 {11317}.  ma:  Xgdm93-2A – 4.9 cM – Pm4e/Xsts_bcd1231 – 
1.8 cM – Xhbg327-2A {113017}; Xwgrc763-2A – 0.13 cM – Pm4e/Xwgrc872-2A/Xwgrc869-2A – 0.58 
cM – Xwgrc982-2A, a region of about 6.1 Mb {11335}. 
Pm4d and Pm4e are identical at the nucleotide level {11774}.  

A recessive resistance gene (pmXXM {11661}) in Xiaomaomai had a similar protein structure to Pm4d, 
Pm4e and Pm4h {11661}. 

Pm4f.  v:  WATDE0571 {11775}. 
 
Pm4g.  v:  WW-740 {11775}. 
 
Pm4h.  v:  WW-474 {11774}. 
 
Pm4i.  v:  WATDE0048 {11775}. 
 
Pm4j. v:  WATDE0592 {11775}. 
 
Add note at end of Pm4 section: Some variants of PM4 confer resistance to wheat blast {11632, 11735, 
11775} – see Reaction to Magnaporthe grisea. 
PM5.  TraesCS7B02G441700 (susceptible allele) (chr7B: 706.811-706.816 Mb) {11533}. 

https://protect-au.mimecast.com/s/t3XTCL7EwMfRMJBDpuB0TyJ?domain=wheatomics.sdau.edu.cn


 

8   PATHOGENIC DISEASE/PEST REACTION  

 

Pm5a {0257}. Pm5a was transferred to hexaploid wheat from T. dicoccum via Hope and H-44.  
Recessive.  [Pm5 {787}, mlH {771}].  7B  {964}.7BL {771}.  i:  Hope/8* Chancellor = CI 14125{570}.  
s:  CS*6/Hope 7B {964}, {771}. v:  Alidos {854};  Aotea {964};  Caldwell {786};  Ga 1123 {786};  
Galaxie {0257};  Glenwari {964};  Hardired {786};  Hope {964};  H-44 {964};  Kontrast {854};  
Kormoran {1079};  Kutulukskaya {257};  Lambros {0257};  Lawrence {964};  Navid {0257};  Pagode 
{0257};  Redcoat {97};  Redman {964};  Regina {0257};  Renown {964};  Selpek {540};  Sicco {96}, 
{0257};  Spica {964};  Tarasque{0257};  Warigo {964};  Zolotistaya {0257}.  v2:  Arthur Pm6{786};  
Coker 983 Pm6 {786};  Double Crop Pm6 {786};  Granada Pm8 {541};  Saar Pm38 Pm39 {10481};  
Sensor Pm8 {541}.  c:  GenBank MK955160. 

Pm5b {0257}.  [Mli {558}, {540}].  v:  Aquila{96, 541};  Carimulti {541};  Cariplus {541};  Cucurova 
{0257};  Dolomit {541};  Falke {541};  Flanders  {96};  Fruhprobst {0257};  Ilona {0257};  Ibis {96};  
Kirkpinar-79 {0257};  Kontrast {0257};  Kormoran  {541};  Krata {541};  Markant {541};  Mercia 
{1531};  Milan {541};  Nadadores {0257};  Reiher  {541};  Rektor{541};  Rothwell Perdix  {96};  Siete 
Cerros {0257};  Severin {541};  Sicco {96};  Sperber {541};  Tukan {541};  Una {0257};  Urban {541};  
Wattines {541};  Wettiness {0257}.  v2:  Bert Pm6 {541};  Boxer Pm4b {541};  Crossbow Pm2 Pm6 
{98};  Kristall Pm8 {541};  Mission Pm4b {1531, 541};  Parade Pm2 Pm6 {1531}.  c:  GenBank 
MK955159. 

Pm5c {257}.  7B {0257}.  v:  T. sphaerococcum cv. Kolandi {0257}.   

Pm5d {0257}.  7B {0257}.  bin:  7BL 0.86-1.00 {10542}.  i:  IGV 1-455 = CI 10904/7*Prins {0257}; CI 
10904/7*Starke {0257}.  v:  Dream {10542}.  ma:  Xgwm611-7B – 2.1 cM – Pm5d – 2.0 cM – 
Xgwm577-7B – 1.0 cM – Xwmc581-7B {10542}. c  Same sequence as Pm5e {11533}. 

Pm5e {0258}.  Recessive and hemizygous effective {0258}; usually dominant {11708}.  [mlfz {0259}]; 
PmAL11 {11708}.  i:  H962R {11707).  v:  AL11 {11708}.  Baiyouyantiao (previously published as 
PmBYYT {11533}); Fuzhuang 30 {0258}; Hongquanmong (previously published as PmH {11533}; 
Mazhamai (previously published as Mlmz {11533}); Tangmai 4 (previously published as PmTm4 {11533, 
10961, 11533}); Xiaobaidongmai (previously published as Pmxbd {0258, 11533}).  ma:  Xgwm1267-7B 
– 6.6 cM – Pm5e – 12.6 cM – Xubc405628-2B {0258}.  KASP marker AL11-K2488 {11708}.  c:  
Identified as a CC-NBS-LRR {11533}. GenBank MK955156.  
Although Duanganmang (PmDGM) had an identical sequence and UTR to Pm5e, a second completely 
linked gene was postulated to account for a different response pattern to the Pm5e control {11705}. 

pm5.  c:  CS (susceptible allele): TraesCS7B02G441700 (chr7B: 706.811-706.816 Mb); GenBank 
MK955157. 

Genotype lists: {0313, 10405, 10406}  

PM6 

Pm6 {627}.  [Mlf {626}].  2B {1088}.  i: CI 13250/7*Prins {0069}; CI 12559/8*Prins {0069};  Eight 
Prins derivatives {10576}; PI 170914/7*Prins 6 NILs based on Prins {0139, 0069}.  v:  1969 IVGS Line 

https://protect-au.mimecast.com/s/t3XTCL7EwMfRMJBDpuB0TyJ?domain=wheatomics.sdau.edu.cn
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C {626};  Abe {97,1256};  Coker747 {786, 1079};  Mengavi {97};  Oasis {786};  Timgalen {98}; TP 
114/2*Starke deriv. B {626}.  v2:  Arthur Pm5a {786}, {97};  Brigand Pm2 {96};  Brimstone Pm2 
{1531};  CI 12632 Pm2 {1088}, {626};  CI 12633 Pm2 {1088}, {626};  Crossbow Pm2 Pm5 {98};  
Double Crop Pm5a {786};  Garwain Pm2 {1531};  Greif Pm5a {0011};  Heiduck Pm2 {541};  Hustler 
Pm2 {96};  Kinsman Pm2  {96};  Mardler Pm2 {96};  Maris Fundin Pm2 {96};  Maris Huntsman Pm2 
{1592};  Parade Pm2 Pm5 {1531};  Rendezvous Pm2 Pm4b {1531};  Sorbas Pm4b {541};  Timmo Pm2 
Pm4b {96};  TP 114 Pm2 {626};  Virtue Pm2 {96};  Walter Pm2 Pm4b {1428}.  ma:  Close linkage with 
Xbcd135-2B (1.5+-1.4 cM), Xbcd307-2B (4.7 +- 2.5 cM) and Xbcd266-2B (4.5 +- 2.4 cM) {69};  Mapped 
to the interval Xbcd35-2B-Xpsr934-2B {139};  However, the fact that Timgalen and a 'CI12632/Cc' line 
lacked the critical T. timopheevii markers {0139} is cause for concern;  RFLP marker Xbcd135-2B was 
converted to STS markers NAU/STSBCD135-1 and NAU/STSBCD135-2 which showed linkage of 0.8 cM with 
Pm6 {10576}. Pm6 was localized to a 0.9 Mb physical region in chromosome 2BL {11451}. 

PM7 

Pm7.  Derived from S. cereale cv. Rosen.  4BL {270}, {271}, {389} = T4BS.4BL-5RL {543}, but more 
recently revised to T4BS.4BL-2R#IL {389}, {380}.  i:  Transec/8*Chancellor.  v:  Transfed {269};  
Transec {273}.  

PM8 

Pm8.  Derived from Petkus rye - see Yr9, Lr26, Sr31.  1BL.1RS. 1R(1B).  i:  MA1 and MA2, four-
breakpoint double translocation lines 1RS-1BS-1RS-1BS. 1BL in Pavon {0084}.  v:  Corinthian {1531};  
Dauntless {1531};  Ambassador {1531};  Disponent {541};  GR876 {753};  Halle Stamm {97};  
Hammer {98};  Others {1208};  ST1-25 {201};  Slejpner {1531};  Stetson {1531};  Stuart {96}.  v2:  
Apollo Pm2 Pm4b {541};  Granada Pm5 {541};  Hornet Pm2 {1531};  Kristall Pm5 {541};  Kronjuwel 
Pm4b {541};  Sensor Pm5 {541}.  tv:  Cando*2/Veery = KS91WGRC14 {381}.  
1BS/1RS recombinants 2.9 cM proximal to Gli-B1/GluB3 {0084}.  Crosses between three lines with Pm8 
and Helami-105, a 1BL.1RS line with Pm17, indicated that Pm8 and Pm17 were allelic {524}. Earlier, 
these genes were reported to be genetically independent {1463}.  ma:  Pm8 is located between Gli/Glu3 
and rust resistance genes Sr31, Lr26 and Yr9 {11354}.  An STS marker distinguished Pm8 from Pm17 
{0186}. Pm8 is located between Gli/Glu3 and rust resistance genes Sr31, Lr26 and Yr9 {11354}.  c:  
GenBank KF572030. Pm8 is an orthologue of Pm3 and an allele of Pm17 in the rye genome {11276, 
11398}. Pm8 has 92.9% identity with Pm3 at the protein level {11398}.  

PM9 

Pm9 {347}.  7AL.7A {347}.  v:  N14 {562}.  v2:  Anfield Pm1a {1287};  Mephisto Pm1a Pm2 {540};  
Normandie Pm1a Pm2 {347};  Pompe Pm1a {1287};  Ring Pm1a {1287}. 

PM10  
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Pm10 {1482}.  1D {1482}. v:  Norin 4 {1482};  Norin 26 {1482};  Norin 29 {1482};  Penjamo 62 
{1482};  Shinchunaga {1482}.  v2: T. spelta duhamelianum Pm11 {1481}.  
Pm10 was detected using a culture derived from a hybrid of B. g. tritici and B. g. agropyri. 

PM11 

Pm11 {1481}.  6BS {1481}. v:  Chinese Spring {1481};  Salmon {1481}; T. compactum No. 44 {1481}.  
v2: T. spelta duhamelianum Pm10 {1481}.  
Pm11 was detected using a culture derived from a hybrid of B. g. tritici and B. g. agropyri 

PM12 

Pm12 {1017}.  Derived from Ae. speltoides. 
The earlier location of 6A {1017} was not correct. 6B = 6BS-6SS.6SL {572}, {598}. 6S1S {598}.  v: 
Wembley*6/Ae. speltoides #31 {598}, {1017}.  al:  Ae. speltoides CL214008 = K {1017}.  ma: Pm12 
was mapped to a translocated segment proximal to Xpsr551-6B {598};  Secondary recombination analysis 
indicated that Pm12 was located in the long arm of 6S between Xwmc105 and Xcau127 {10517}.  

PM13 

Pm13.  Derived from Ae. longissima accession TL01.  
T3BL.3BS-3S1#1S.  v:  Recombinant N12-3 containing 2.82 Mb of 3Sl (11756}.  al:  Ae longissima 
TL01, TL20, TA1910 {11756}.  ma:  STS marker Xutv13 {0036};  several other markers located in 
introgressed segments {0036}.  
3B {173} = T3BL.3BS-3S1#1S {389}  v:  R1A {174};  R1B {0055};  R4A {0055};  R6A {0055}.  ma:  
Pm13 was mapped to a translocated 3S1S segment distal to Xcdo-460-3B {0036};  Two markers, 
AelMLKL-1 and AelMLKL-8, developed {11756}.  
3D {173} = T3DL.3DS-3S1#1S {389}.  v:  R2A{0055};  R2B {0055}.  tv:  R1D {174}.  
3S1#1S.  al:  Ae. longissima.  

c:  Encodes a mixed lineage kinase domain kinase-like (MLKL) or kinase fusion protein (FLP) {11756}. 

PM14 

Pm14 {1478}.  6B {1478}. v2:  Akabozu Pm10Pm15 {1478};  Kokeshikomugi Pm15 {1478};  Norin 10 
Pm15 {1478}.  
Pm14 and Pm15 were detected using hybrids between B. g. tritici and B. g. agropyri cultures. 

PM15 

Pm15 {1478}.  7DS {1478}.  v2:  Akabozu Pm14 {1478};  Chinese Spring Pm11 {1478};  
Kokeshikomugi Pm14 {1478};  Norin 4 Pm10 {1478};  Norin 10 Pm14 {1478};  Norin 26 Pm10  
{1478};  Shinchunaga Pm10  {1478}; T. macha subletschumicum Pm10{1478}; T. compactum No. 44 
Pm11 {1478}.  
Pm14 and Pm15 were detected using hybrids between B. g. tritici and B. g. agropyri cultures. 
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PM16 

Pm16 {1201}.  4A {1201}. 5B {10217}.  v:  Line 70281 = Norman/*3 Beijing 837 {10217};  Norman 
lines with resistance from T. dicoccoides CL1060025{1201}.  tv:  T. dicoccoides CL1060025 {1201}.  
ma: Pm16 – 5.3 cM – Xgwm159-5B {10217}.  
To account for the different chromosome locations a 4A-4B translocation was suggested {10217}. Based 
on the 5B location and similar disease responses Pm16 and Pm30 may be the same {10217}. 

PM17 

Pm17 {97}, {544}, {838}.  
1AS = T1AL.1R#2S  {389}, {185}, {1624}  v:  Amigo {561};  Century {216};  Embrapa 16 {11355}; 
Hugenoot {11355}; McCormack {10758};  Nekota {21};  Neobrara {21};  TAM107 {216};  TAM200 
{216};  TAM201 {216};  TAM202 {21};  TAM303 {10758}; Tribute {10758};  TXGH13622 {11355}.  
al:  Insave rye Nr 10458 {11398}.  c:  Pm17 shares 96% nucleotide identity with Pm8 (83% at the protein 
level) and low but significant identity with Pm3CS {11355}. GenBank MH077963. 
1BS = T1BL.1R#2S {561}  v2:  Helami 105 Pm5 {561}.  ma:  A STS marker distinguished Pm17 from 
Pm8 {0286}; Pm7 – 7.8 cM – Xmwg68-1R – 10.9 cM – Sec-1 in 1RS {10167}.  
Pm8 and Pm17 were reported to be allelic {524}, see note under Pm8.  

Pm17 is allelic with Pm8 in rye and orthologue of Pm3 {11398}. 

PM18.  Deleted, see Pm1c.  

PM19 

Pm19 {853}.  7D {853}.  v:  T. durum 'Moroccos 183'/Ae. tauschii AE 457/78 {853}.  v2:  Synthetic 
XX186 Pm2 {853}.  dv: Ae. tauschii {853}.  

PM20 

Pm20 {386}.  [M1P6L {543}].  6BL = T6BS.6R#2L {386}, {389}, {543}.  v:  KS93WGRC28 = PI 
583795 {386}, {382};  6RL.  su:  6R{6D} {543}.  ad:  6R addition {543}.  al:  Prolific rye {543}.  

PM21 

Pm21 {1177}.  6AS = T6AL.6VS#2 {1177, 11714}.  bin:  6VS 0.45-0.58 {10859}.  v:  Yangmai 18 
{11352};  9 independent translocations {1177}; A derivative named HP33 was described as a ‘cryptic’ 
translocation {11275}.  ma:  RAPD OPH171900 (synonym 'OPH17-1900') was associated with Pm21 and 
RAPD OPH171000 (synonym OPH17-1000') with its absence {1176}; RAPD OPH171400 and SCAR 
markers SCAR1400 and SCAR1265 associated with Pm21 are described in {14};  Marker NAU/Xibao15, 
developed from a serine/threonine gene upregulated by powdery mildew infection, acts as a co-dominant 
marker for lines carrying Pm21 {10519};  Potentially useful markers are provided in {10918}. Genetic 
mapping in a resistant ´ susceptible D. villosum cross identified two RGA candidate loci (markers 



 

12   PATHOGENIC DISEASE/PEST REACTION  

 

6VS-09.4 and 6VS.09.4b) co-segregating with Pm21 and overlapped by an EMS-induced susceptible 
mutation {11352}.  c: Pm21 is likely the serine/threonine kinase gene Stpk-V {10859}. NLR-V1, one of 
two NLR-V genes in HP33, was identified as the candidate for Pm21 {11275}. GenBank MF716955. 
Silencing of NLR-V1 compromised Pm21 resistance in the T6AL.6VS lines described below and 
decreased the level of resistance in the T6DL.6VS lines described below {11275}. Marker 6VS-09.4 but 
not marker 6VS-09.4b was deleted in a susceptible mutant indicating that the former was Pm21 – the 
protein product had a CC-NBS -LRR structure – GenBank MF370199 {11353}. This gene was different 
from Stpk-V {11275} but was quite similar to NLR-V1 {11353}. 
6AL.6AS-6VS#2S {11578}.   

Pm21, PmV and Pm12 were shown to be orthologous and diagnostic markers for each gene were 
developed in {11704}. 
See also PmV. 
See also PM31. 

Three lines, Pm97033, Pm97034 and Pm07035, with a 6DL.6VS translocation were developed from a 
different source of H. villosa {10194}. These may carry Pm21. 

See also PmV. 

PM22 {1134}.  Deleted.  

Pm22.  Deleted, renamed as Pm1e.  

PM23  Deleted. 

Pm23.  Deleted, Renamed as Pm4c. 

PM24.  TraesCS1D02G058900; AET1Gv20142700. This locus is also named RMG1 (RWT4) – see 
Reaction to Magniporthe grisea. 
 
Pm24 {571, 11414}. [Pm24a {571}, Pm24b {10994}, WTK3 {11414}].  6D {571}. 1DS {0150}.  bin:  
1DS5-0.54-1.00.  v:  Baihulu {10994, 11414}; Chiyacao {571};  Hongmangmai {11414}; Hulutou 
{11413, 11414}.  ma:  Xgwm789-1D/Xgwm603-1D – 2.4 cM – Pm24/Xgwm1291-1D – 3.6 cM – 
Xbarc229-1D{10109, 10957};  Xgwm789/Xgwm603-1D – 2.4 cM – Pm24 – 6 cM – Xbarc229-1D 
{10109, 10957, 10994}. Located in a 9.3 cM region flanked by Xgwm337-1D and Xcfd83/Xcfd72-1D 
{11413}.  c:  Pm24 encodes a tandem kinase protein with putative pseudokinase domains. The gene was 
designated Wheat Tandem Kinase 3 (WTK3) – this gain of function mutation was conferred by a 6 bp 
deletion of lysine/glycine codons (K400G401) in the KIN1 domain {11414}. GenBank MK950855. The 
same candidate gene was predicted for PmDTM in Datoumai (11556), but according to those results 
Chiyacao, Hulutou and Datoumai showed differential responses to an array of Bgt isolates {11414}.  
 

PM25 

Pm25 {1343}.  [PmTmb {1344, 1343}].  1A {1343}.  v:  PI 599035 = NC94-3778{1344}.  v2: 
NC96BGTA5 = Saluda*3/PI 427662 Pm3a {1343}.  dv:  T. monococcum PI 427662 {1343}.  ma:  
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Linked with 3 RAPDs, the nearest, OPAG04950, at 12.8 +/- 4.0 cM {1343};  Associated with 3 RAPDs 
{1344}.  

PM26 

Pm26 {0001}.  Recessive {0001}.  2BS {0001}.   s:  Bethlehem*8/T. turgidum var. dicoccoides 2BS 
{0001}.  tv:  T. turgidum var. dicoccoides TTD140 {0001}.  ma:  Co-segregation with Xwg516-2B 
{0001}.  

PM27 

Pm27 {0002}.  6B (6B-6G) {0002}.  v:  Line 146-155-T {0002}.  tv:  T. timopheevii var. timopheevii K-
38555 {0022}.  ma:  6BS......Xpsr8/Xpsr964-6B – Pm27 – Xpsr154/Xpsr546-6B ......6BL {0002};  Co-
segregation with Xpsr3131-6B {0002}.  

PM28 

Pm28 {0022}.  1B {0022}.  v:  Meri {0022}.  

PM29 

Pm29 {0129}.  Derived from Ae. ovata.  7DL.  v:  Pova {0129}.  ma:  Location confirmed by co-
segregation with molecular markers {0129}.  

PM30 

Pm30 {0163}.  [MIC20]  5BS{0163}.  v:  87-1/C20//2*8866 Seletion {0163}.  ma:  Pm30 – 5.6 cM – 
Xgwm159-5B {0163}.  
Pm30 could be the same as Pm16 {10217}. 

PM31 Deleted. This gene designation {0301} is not valid; subsequent studies {10918} showed the gene 
is Pm21. 

Pm31 {0301}.  [mlG {0301}].  6AL {0301}.  v:  G-305-M/781//3*Jing411 {0301}.  tv:  T. dicoccoides 
G-305-M {0301}.   ma:  cent....Pm31 – 0.6 cM – Xpsp3029.1-6A – 2.5 cM – Xpsp3071-6A {0301}. 

PM32 

Pm32 {10025}.  Derived from Ae. speltoides {10025}.  1B=1BL.1SS{10025}.  v: L501 = Rodina*6/Ae. 
speltoides {10025}. 

PM33  

Pm33 {10205}.  [PmPS5B {10205}].  2BL {10205}.  v:  Am9 = T. carthlicum PS5/Ae. umbellulata Y39 
{10205}.  tv2: T. carthlicum PS5 PmPS5A {10205}.  ma:  Xgwm536-2B – 18.1 cM – Pm33 – 1.1 cM – 
Xwmc317-2B – 1.1 cM – Xgwm111-2B – 1.8 cM – Xgwm383-2B{10205}.  
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PM34 

Pm34 {10241}.  5DL {10241}.  v:  PI 604033 = NC97BGTD7 = Saluda*3/Ae. tauschii TA2492 
{10241}.  dv: Ae. tauschii TA2492 {10241}.  ma:  Xbarc177-5D – 5.4 cM – 2.6 cM – Xbarc144-5D 
{10241}.  

PM35 

Pm35 {10342}.  5DL {10342}.  v:  NC96BGTD3 = PI 603250 = Saluda*3/TA2377 {10342}.  dv: Ae. 
tauschii ssp. strangulata TA2377 {10342}.  ma: Xcfd26-5D – 11.9 cM – Pm35 {10342}.  

PM36 

Pm36 {10356}.  5BL {10356}.  bin:  5BL6-0.55-0.76 {10356}.  tv:  MG-FN14999, a durum backcross 
line 5BIL-29 {10356}; T. turgidum ssp. dicoccoides MG29896 {10356}.  ma:  Xcfd7-5B – 10.7 cM – 
Pm36 – 0.8 cM – EST BJ261636 – 8.9 cM – Xwmc75-5D {10356}; 5BIL-42 identified as the derivative 
with shortest T dicoccoides segment; IWB7454 (537.36 Mb, Svevo RefSeq) – PM36 – IWB22904 (538.44 
Mb) {11709}. 

PM37  

Pm37 {10372}.  7AL {10274, 10372}.  v:  PI 615588 = NC99BgTAG11 = Saluda*3/PI 427315{10372}.  
tv:  PI 427315 = T. timopheevii ssp. Ameriacum {10372}.  ma:  Pm37 (PmAG11) was about 15 cM 
proximal to a cluster of markers that earlier co-segregated with Pm1 {10372};  A cross indicated linkage 
between Pm37 and Pm1{10372}; Xgwm332-7A – 0.5 cM – Pm37 – 0.5 cM – Xwmc790-7A – 15.5 cM – 
Pm1  {10372}. 
A further gene derived from T. monococcum PI 427772 was identified in BCBGT96A = PI 599036 = 
Saluda*3/PI 427772 {10479}. A single resistance gene was identified on chromosome 7AL in hexaploid 
germplasm NC96BGT4 (a T. monococcum derivative). This gene was proximal to Pm1 and considered to 
be different from Pm37, although possibly allelic {10274}.  

PM38  TraesCS7D03G0183600 

Pm38 {10373}.  Adult plant resistance  7DS {10374}.  i:  RL6058 = Tc*6/PI 58548{10374}.  v:  Lines 
with Sr57/Lr34/Yr18.  v2:  Saar Pm5a Pm39 {10481}.  ma:  Xgwm1220-7D – 0.9 cM – Lr34/Yr18/Pm38 
– 2.7 cM {10374}.  c:  ABC transporter; See Lr34.  
This gene is identical to Yr18, Sr57, Lr34 and Ltn and confers stem rust resistance in some genetic 
backgrounds; see Reaction to Puccinia triticina, Reaction to Puccinia striiformis. 

PM39 

Pm39 {10481}.  Adult plant resistance 1BL  {10481,10480}.  i:  Avocet-R+Lr46/Yr29 = Avocet-
R*3//Lalb mono 1B*4/Pavon 76 {10480}.  v:  Genotypes with Lr46/Yr29; see Reaction to Puccina 
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triticina, Reaction to P. striiformis.  v2:  Saar (CID: 160299, SID: 188) Pm5a Pm38 {10481}.  ma:  
Xwmc719-1BL – 4.3 cM – Lr46/Yr29/Pm39 – 2.5 cM – Xhbe248-1BL {10481}.  

PM40 

Pm40 {10539}.  Derived from Th. intermedium {10539}.  Pm40 was not derived from Th. intermedium 
{11710}.  7BS {10539}.  bin:  C-7BS-1-0.27.  v:  GRY19 {10539};  Partial amphiploid TAI7047 
{10539};  Yu {10539};  PI 672538 {11710}; Yu24 {10539}.  ma:  Xwmc426-7B – 5.9 cM – Xwmc334-
7B – 0.2 cM – Pm40 – 0.7 cM – Xgwm297-7B – 1.2 cM – Xwmc364-7B {10539}; Xwmc-7B – 0.58 cM – 
Pm40 – 0.26 cM – BF291338 {11710}. Flanked by EST markers BF478514 and BF291338 {11711}. c:  
TraesCS7B01G164000, an NLR with an additional NBS region was identified as a candidate {11711}.  
 

PM41 

Pm41 {10551}.  Derived from T. dicoccoides.  3BL {10551}.  bin:  0.63-1.00.  v:  XXX = 87-
1*4/Langdon/IW2 {10551}.  tv:  Langdon/IW2 Seln. XXX {10551}; T. dicoccoides IW2 {10551}.  ma:  
BE489472 – 0.8 cM – Pm41 – 1.9 cM – Xwmc687-3B{10551}.  c:  Encodes a unique CC-NBS-LRR 
gene {11454}. GenBank MN395289. Orthologs: in tv: Zavitan (TRIDC3BG077810) and Svevo 
(TRITD3Bv1G261150.1), and common wheat cv. Claire, but not in Chinese Spring {11454}.  
Pm41 and associated marker alleles showed strongly distored inheritance with reduced frequencies 
relative to Langdon alleles {10551}. 

PM42 

Pm42 {10559}.  Derived from T. dicoccoides.  Recessive.  2BS {10559}.  bin:  2BS-0.75-0.84.  v:  P63 = 
Yanda 1817/G303-1M/3*Jing 411 {10559}.  tv:  T. dicoccoides G303-1M {10559}.  ma:  BF146221 – 
0.9 cM – Pm42 – Xgwm148-2B {10559}.  

PM43 

Pm43 {10560}.  Derived from Th. intermedium.  2DL {10560}.  v:  Line CH5025 = 76216-
96/TAI7045//2*Jing 411 {10560};  Partial amphiploid TAI7045 {10560}.  al:  Th. intermedium Z1141 
{10560}.  ma:  Xwmc41-2D – 2.3 cM – Pm43 – 4.2 cM – Xbarc11-2D {10560}.  

PM44 

Pm44 {10790}.  3AS {10790}. v:  Hombar {10790}.  ma:  Flanked by SSR markers distally located in 
chromosome arm 3AS {10790}. CURATOR’S NOTE: This gene nane was based on a pre-publication 
request; the publication cannot be located.  

PM45 

Pm45 {10791}.  [Pm57-6D {10790}].  6DS{10791}.  v:  Line NWG0099 {10791}.  v2:  D57{10791}.  
ma:  Close linkages are reported in the draft manuscript.  
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PM46 

Pm46 {10847}.  Partial resistance.  4DL {10847, 10678}.  bin:  Distal to break point 0.56 FL{10678}.  i:  
RL6077 =  Thatcher*6/PI250413 {10847,10678}.  v:  Chapingo 48 {11070}.  ma:  Pleiotropic or closely 
linked with Lr67/Yr46/Sr55/Ltn3 and aassociated with Xgwm165-4D and Xgwm192-4DL {10847, 
10678}.  c:  This multiple disease resistance locus was identified as a hexose transporter most similar to 
the STP13 family and containing 12 predicted transmenbrane helices {11070}.  

PM47 

Pm47 {10912}.  Reccessive.  [PmHYLZ {10912}].  7BS{10912}.  bin:  7BS1-0.27-1.00.  v:  
Hongyanglazi {10912}.  ma:  Xgpw2119-7B – 7.5 cM – BE606897 – 1.7 cM – Pm47 – 3.6 cM ascob– 
Xgwm46-7A {10912}.  

PM48 

Pm48 {10935}.  Identified as Pm2a {11678}. [Pm46 {10935}].  5DS {10935}.  bin:  5DS1.  v:  Tabasco 
{10935}.  ma:  Xgwm205-5D – 17.6 cM – Pm48 – 1.3 cM – Xmp510(BE498794) – 1.8 cM – Xcfd81-5D 
{10935}.  

PM49 

Pm49  {10938, 10937}.  [Ml5323 {10937}].  2BS {10937}.  bin:  2BS-0.84-1.00.  tv:  T. dicoccum 
MG5323 {10937}.  ma:  Xcau516-2B – 7.2 cM – Pm49 – 4.1 cM – XCA695634 {10937}.  

PM50 

Pm50 {10942}.  2AL {10942}.  bin:  C-2AL1-0.85.  v:  K2 TRI29907 {10942}.  tv:  T. dicoccum M129 
{10942}.  ma:  Xgwm294-2A – 2.9 cM – Pm50 {10942}.  
K2 is a backcross derivative of German winter wheat cv. Alcedeo with T. dicoccum accession M129 as 
donor of mildew resistance {10942}. 

PM51 

Pm51 {11026}.  Putative Th. ponticum derivative.  [PmCH86 {11026}].  2BL {11026}.  bin:  2BL6-
0.89-1.00.  v:  CH7086 {11026}.  ma:  Xwmc332-2B – 3.2 cM – Pm51 – 1.5 cM – BQ246670 {11026}.  

PM52 

Pm52 {11029}.  [MlLX90 {11028, 11029}].  2BL {11028}.  bin:  2BL-0.35-0.50.  v:  DH51302 
{11715}; Jimai 22 {11714}; Liangxing 99 {11028, 11029, 11716}; Shimai 26 {11715}.  ma:  Xcfd73-2B 
– 5.3 cM – Xwmc441-2B – 0.2 cM – XBE604758 – Pm52 – 2.9 cM – Xgwm120-2B {11028}; 
XBE604758 – 5.5 cM – Xics34 – Pm52 – 0.8 cM – Xics30  – 6 additional ics markers – Xgwm120 
{11029}. Located in a 533.6 – 612.9 Mb interval {11716}.  
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PM53 Curator’s note: A publication of this gene could not be located. 

Pm53 {11045}.  Derived from Ae. speltoides.  [PmNC-S16 {11045}].  5BL {11045}.  v:  NC09BGTS16, 
PI669386 = Saluda*3/TAU829 {11045}.  al:  Ae. speltoides TAU829 {11045}.  ma:  
Xwmc759/Xgwm499-5B/IWA6024 – 0.7 cM – Pm53 – IWA2454 – 5.9 cM – Xgwm408-5B {11045}. 

PM54  

Pm54 {11050}.  [PmA2K {11050}].  6BL {11050}.  bin:  6BL-0.450-1.00.  v:  AGS2000 PI612956 
{11050}.  ma:  Xgpw2344-6B – 1.00 cM – wPt-9256 – Pm54 – 1.2 cM – Xbarc134-6B {11050}.  

PM55  c:  CC-NBS-LRRR {11742}. 

Pm55 {11108}.  Derived from Dasypyrum villosum.  [Pm5VS {11108, 11109}].  5AS (5VS.5AL) 
{11108}. 5DS (5VS.5DL) {11109}.  v:  NAU421 {11108};  NAU415 {11108, 11109}.  ma:  A 730 bp 
5EST-237 band is associated with chromosome 5VS {11109};  5VS also carries puroindoline genes; 
therefore all lines with this gene will be soft (5VS.5DL) or supersoft (5VS.5AL).  
The backgrounds of NAU415 and NAU 421 are Chinese Spring. The PM resistance conferred by this 
gene gradually increases from the third leaf stage and reaches an immunity level by the seventh leaf stage. 

Pm55a {11742}.  Pm55 {11108}.  Growth stage and tissue-specific.  [Pm5VS#4S{11108, 11109}]. 5AS 
(5AL 5VS#4S) {11108}.  v:  NAU185 {11742}. 
This allele has a closely linked dominant inhibitor {11742}. 

The backgrounds of NAU415 and NAU 421 are Chinese Spring. The PM resistance conferred by this 
gene gradually increases from the third leaf stage and reaches an immunity level by the seventh leaf stage. 

Pm55b {11742}.  5DS (5DL.5VS) {11109}.  v:  NAU421 {11108};  NAU415 {11108, 11109}; NAU 
{11742}; TF5V-1 {11742}.  ma:  A 730 bp 5EST-237 band is associated with chromosome 5VS 
{11109}.  

5VS also carries puroindoline genes; therefore all lines with this gene will be soft (5VS.5DL) or supersoft 
(5VS.5AL).  

Pm55a and Pm55b interact differently with the Pm55a inhibitor SuPm55 {11742}. 

PM56 

Pm56 {11155}.  Derived from S. cereale.  6AS (T6AL.6RS) {11155}.  v:  LM47-6 {11155}.  al:  S. 
cereale cv. Qinling {11155}.  
Study of misdivision products from a double monosomic 6A, 6R located Pm56 to the subterminal region 
of 6RS {11155}. 

PM57 
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Pm57 {11159}.  Derived from Ae. searsii.  2BL (T2BS·2BL-2SS#1) {11159}.  v:  Line 89-346, 
TA5108{11159};  Line 89(5)69, TA5109 {11159};  Line898(6)88 {11728};  TA5109 {11728}.  ad:  
BCS+2SS#1 TA3581 {11159}.  c:  Encodes a tandom kinase with putative kinase-pseudokinse domains 
followed by a von Willebrand domain and orthologue of Lr9 (88.3% amino acid similarity) {11728}. 
Line 89-346 has a 28% distal Ae. searsii segment and line 89(5)69 has a 33% distal Ae. searsii segment 
{11159}. 

PM58 

Pm58 {11171}.  Derived from Ae. tauschii.  [PmTA1662 {11171}].  2DS {11171}.  v:  U6714-A-011, PI 
682090 {11320}; U6714-B-056, PI 682089 {11320}.  dv:  Ae. tauschii TA1662 {11171}.  ma:  Co-
segregation with KASPTMmarkers K-TP331370, KTP338253, K-Tp15990 and K-Tp313873 {11171}.  Co-
segregating marker Xkasp68500 developed from AET2Gv20068500 distinguished TA1662 from random 
common wheat accessions {11749}. 

PM59 

Pm59 {11214}.  [Pm181356 {11214}].  7AL {11214}.  bin:  7AL15-0.00-1.00.  v:  PI 181356 {11214}.  
ma:  Xwmc525-7A – 1.8 cM – Xmag1759 – 0.5 cM – Pm18156 – 5.7 cM – Xmag1714 – 20.0 cM – 
Xcfa2257-7A {11214}. 

PM60 

Pm60 ex T. urartu {11250}.  [PmR2 {11250}].  7AL {11250}.  bin:  7AL16-0.86-1.00.  dv:  PI 428196 
{11250}; PI 428210 {11250}; PI 428215{11250}; PI 428306 {11250}; PI 428309 {11250}; PI 428310 
{11250}; PI 538737 {11250}; PI 538751 {11250}.  c:  NBS-LRR; the sequence in PI 428309 (GenBank 
MF996807) is 4,365 bp. The sequence in PI 428215 (designated Pm60a; GenBank MF996808) has a 240 
bp insertion relative to PI 428309 whereas PI 428210 (designated Pm60b, GenBank MF996806) lacks the 
same sequence, which corresponds to two LRRs {11250}.  Transformants with Pm60a conferred 
resistance to a lower number of Bgt isolates than transformants with Pm60 or Pm60b {11663}. 

PI 428210 carries an adjacent gene (possibly a paralog) that conferred resistance to a Bgt isolate virulent 
to Pm60 and Pm60b {11663}. 
Two of three resistant haplotypes of Pm60 were transferred to common wheat (11651}. 

Pm60 ex T. dicoccoides {11551}. TRIDC7AG077150.  v:  3D249 (derivative of WE18) {11608}, Ruta 
{11551}.  itv:  WEW G18-6 / LDN RIL 154 {11551}; G18-16 {10886, 11551}.  tv:  MlWE18 {11608}; 
MlIW72 {10545, 11609}, MlIW172 {11095}, PmG16 {10886, 11551}.    v  Ruta {11551}.  ma:  
Xuhw386-7A – 0.3 cM – Pm60 – 1.4 cM – Xuhw-7A {11551}. 
Further resistant haplotypes were identified for MlIWE6 (MW375704) and MlIW113 and PmIW226 
(MW375704) {11761}. Evidence of allelic variation was also presented {11761}. 
The cloned PM60 sequences from the diploid and tetraploid sources differed by 8 SNP that changed 6 
amino acids {11551}. 
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pm60.  dv:  G1812 {11250}. 

Gene PmU, flanked by Xwmc273-7A and Xpsp3003-7A, was transferred to common wheat from T. urartu 
accession UR206 (JIC 10100015) {11402}. Xwmc273-7A was 7.8 cM proximal to PM60 {11250}. 

PM61 

Pm61 {11290}.  4AL {11290}.  bin:  4AL4-0.8-1.00.  v:  Xuxusanyuehuang {11290}.  ma:  Xgwm160-
4A – 0.23 cM – Pm61 – 0.23 cM – Xicsx79 {11290}. 
Pm61 was considered to be at a different locus to MlIW30, a dominant gene in T. dicoccoides accession 
IW30 and its hexaploid derivative Line 2L6 {11289}. 

PM62 

Pm62 {11321}.  [Pm2VL {11321}.]  Adult-plant resistance.  2BS·2VL#5 {11321}.  v:  NAU1823 
{11321}.  ma:  X2L4g9P4/Hae111 {11159}. 

PM63 

Pm63 {11331}.  Pm628024 {11331}.  2BL {11331}.  bin:  2BL6-0.89-1.00.  PI 628024 {11331}.  v:  PI 
628024 {11331}.  ma:  Xwmc175-2B – 1.7 cM – Xstars419-2B – 0.6 cM – Pm63 – 1.1 cM – Xbcd135.2 – 
2B; 710.3 – 723.4 in the CS RefSeq 1.0 {11331}. 

PM64 

Pm64 {11346}.  [PmWE35 {11346}].  2BL {11346}.  bin:  2BL4-0.5-0.89.  v:  WE35 {11346}.  tv:  T. 
dicoccoides G-573-1 {11346}.  ma:  Xwmc175-2B – 1.12 cM – Pm64/Xgwm47-2B – 2.18 cM – 
Xwmc332-2B {11346}. Complete repulsion linkage with Yr5 in 644 F3 lines {11346}. 

 
PM65 

 
Pm65 {11356}.  [PmXM208 {11356}].  2AL {11356}.  v:  Xinmai 208 {11356}.  ma:  Xhbg327-2A – 
4.4 cM – XresPm4/XTaAetPR5 – 0.6 cM – PmXM208 – 1.6 cM – Xbarc122-2A {11356}. An allelism test 
of Pm65 and Pm4a showed a recombination value of 10.3 cM based on the frequency of susceptible F2 
plants {11356}. 
 
Putative Pm65 allele {11752}.  Pm351817 {11752}.  v:  PI 351817 {11752}.  ma:  Stars-KASP662 
(771.21 Mb, CS RefSeq 2.1) – 0.9 cM – Pm351817 – 0.6 cM – Stars-KASP656 (771.81 Mb). 2.5 cM 
proximal to a marker for Pm4 {11752}. 

 
PM66 

Pm66 {11364}.  4BS (4BL.4Sl#7S) {11364}.  v:  TA3465 {11364}.  al:  Ae. longissima (unknown 
accession).  ma:  4SlS markers developed in {11364}.  
PM67 
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Pm67 {11426  Pm1V#5 {11426}.  1D (1DL.1VS#5) {11426}.  v:  NAU18105 {11426}.  su:  NAU18103 
(1V(1D)) {11426}.  al:  Dasypyrum villosum 011140 {11426}. 
Lines with Pm67 showed complete immunity as seedlings but adult plants produced some conidial 
development on leaves whereas the culms, leaf sheaths and spikes were mildew-free {11426}. 

PM68 

Pm68 {11466}.  2BS {11466}.  bin:  2BS-0.84-1.00.  tv:  T. durum TRI 1796 {11466}.  ma:  Xdw04 
(TRITD2Bv1G010030, chr2B:21587671-21591163) – 0.22 cM – PM68 – 0.22 cM – Xdw12 
(TRITD2Bv1G010880, chr2B:23374401-23375310) – 3.0 Mb – PM26/Xcau516-2B 
(TRITD2Bv1G012960, chr2B:26398438-26414596) – 36.8 cM – PM42 {11466}. 

PM69  

Pm69 {11541}.  PmG3M {11302}.  6BL {11302}.  bin:  6BL-0.7-1.00.  v:  Ruta + Pm69 {11627}.  itv:  
Svevo + Pm69 {11627}.  tv:  T. dicoccoides G-305-3M {11302, 11627} TD116180 (University of Haifa 
Wild Cereal Gene Bank), CGN19852 (Netherlands Centre for Genetic Resources) {11541}.  ma:  
Xgpw7262-6B – 6.9 cM – PM69 (PmG3M) – 4.5 cM – Xedm149-6B {11302}.  c:  Pm69 comprises Rx_N 
with RanGAP interaction sites, NB-ARC, and LRR domains {11627}. GenBank KY825226.1.  
Collinearity analyses indicated homoeology with SR13 {11627}.  

PM70 

Pm70 [{11724}].  3BS (by association with Sr2 and Lr27 {11723}.  s:  CS (Hope 3B) {11723}.  v:  Hope 
{11723}.  tv:  Yaroslav emmer {11723}.  ma:  Association of Pm70 with Sr2, Sr27 and Pbc1 {11723}. 

MLO 
Mlo mutants in barley confer durable resistance to powdery mildew; most mlo mutants have deleterious 
effects on plant growth and morphology, but a few selected for negligible deleterious effects have been 
widely used in barley breeding. Most species have MLO homologs. MLO is considered a gene for 
susceptibility since overexpression leads to increased haustorial index {11743}. TaMLO-A1, TaMLO-B1 
and TaMlo-D1 located in chromosome arms 5AL, 4BL and 4DL {11743} are 98% and 99% identical at 
the nucleotide and protein levels, respectively {11744}.  
Plants with combined Tamlo-A1, Tamlo-B1 and Tamlo-D1 mutations were resistant to powdery mildew 
{11744} but exhibit abnormal growth {11745}. A mutant with a 304 bp targeted deletion in TaMLO-4B 
had normal phenotype when combined with the mutant orthologs {11745}. This mutation led to ectopic 
activation ofa closely linked gene TaTMT3B (Tonoplast monosaccharide transportase 3, 
TraesCS4B02G322000) leading to a normal plant phenotype {11745}.  
 
Genotype lists: Chinese wheats{1608, 572}; Finnish wheats {0028}; French wheats {1629}; Hungarian 
wheats {02104}; Western Siberian wheats{1101}. Others {0313, 10405, 10406} 

Complex genotypesDrabent {heterogeneous} Pm2 Pm4bPm9/Pm1 Pm2 Pm4b Pm9 {1287};  
Nemares Pm1 Pm2Pm4b Pm6 Pm9 {1287};  
Planet, Sappo & Walter Pm1 Pm2 Pm4b Pm9 {096,097,540,1287,1428} Scandinavian wheats {10681}. 

https://protect-au.mimecast.com/s/Gw9uCXLW2mUXxNlV8s6APFx?domain=genesys-pgr.org
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3.4.2. Suppressors of PM resistance genes 

Some wheats which on the basis of cytological and rust tests carry 1RS from Petkus rye, do not express 
resistance due to presence of a suppressor {385}. Zeller & Hsam {1625} located a suppressor of Pm8 and 
Pm17 in chromosome 7D of Caribo. Mildew resistance was suppressed in Florida, Heinrich, Ikarus, 
Olymp and Sabina, which are derivatives of Caribo with 1BL.1RS. According to Ren et al. {1209}, 
SuPm8 does not suppress Pm17. Hanusova et al. {492} listed 16 wheats that carry a suppressor of Pm8; 
111 wheats did not carry the suppressor. In contrast, a high frequency of suppression occurred in 
CIMMYT wheats {108}, {1208}. Further genotypes are identified in {491}, {11025}. Although Line 81-
7241 carries Pm8 as well as Pm23, evidence was presented to indicate that Pm8 was suppressed in Line 
81-7241 {1618} and, by inference, indicated that Chinese Spring possessed SuPm8. 

SuPm8 {1209}.  1AS {1209}. v:  Wheats with Gli-A1a {1209} including CS;  Lists in {1208}, {491, 
108}.  
Pm8 was suppressed when locus Pm3 is transcribed (including Chinese Spring and Thatcher which have 
no currently detectable Pm3 resistance alleles) {10828}. 

3.4.3. Temporarily designated genes for resistance to Blumeria graminis 

PmHHXM.  PmXNM {11748}.  v:  Xiaonanmai {11748}.  ma:  PmXnm was flanked by markers 
caps213923 (744.11 Mb) and kasp511718 (744.41 Mb) {11748}. 

PmHYM [{11732}].  pmHYM {11732}.  Recessive.  7BL {11732}.  v:  Hongyoumai {11732}.  ma:  
Allelic with Pm5e and mlXBD and differed in specificity from lines carrying Pm5a, Pm5b, Pm5e and 
MlXBD {11732}. 

Pm2Mb {11662}.  2DL {11662}.  v:  2DL-2MbL translocation lines.  ad:  CS + 2Mb TA7733 {11662}.  
ma:  Mapped to a FL 0.49 – 0.667 region containing 19 2Mb-specific markers {11662}. 

PMTR1 & PMTR3I. SECCE6Rv1G0382290. 

PmTR1 & PmTr3 {11686}.  6RS {11686}.  v:  TR1 and TR3 were described as stable wheat lines 
derived from different triticale sources; TR1 had post-seedling (‘age-dependent’) resistance and TR3 had 
all stage resistance.  c:  These genes were shown to be allelic and the different responses were attributed 
to differences in expression {11686}. Both proteins had similarity to Pm12 and Pm21, but differed from 
Pm8, Pm17 and Pm50 {11686}. 

PmV {11703}.  T6DL.6VS#4S {11703}.  v:  Yangmai 22 {11703}. 

Pm6Sl {11597}.  Derived from Ae. longissimum.  6A and 6B {11597}.  ad:  CS + 6Sl#3 TA7548 
{11597}.  v:  T27 (Ti6AS.6AL-6Sl#3-6AL) {11597}; R43 (T6BS.6BL-6Sl#3l#3 {11597}.  al:  Ae. 
longissimum TA1910 (11597).  ma:  Mapped to a distal 6Sl#3 interval of 42.8 Mb flanked by markers 
Ael58410 and Ael5799 {11597).  
Pm6Sl conferred resistance to 28 of 30 Chinese Bgt isolates {11597}. 



 

22   PATHOGENIC DISEASE/PEST REACTION  

 

Pm10V-2 {11380}.  5DS {11380}.  bin:  5DS-0-0.63.  v:  10V-2 {11380}.  ma:  Xbwm25- 
5D/Xswgi066-5D – 1.2 cM – Pm10V-2/several markers – 1.2 cM – Xcfd-5D {11380}.  

Pm2026 {10604}.  [pm2026 {10604}].  Recessive {10604}. 5AmL {10604}.  bin:  5AL17-0.78-1.00 
{10604}. dv: T. monococcum TA2026 {10604}.  ma:  Xcfd39-5A – 1.8 cM – Xcfd1493-5A/Xmg2170-5A 
– 0.9 cM – Pm2026 – 2.5 cM – Xgwm126-5A{10604}.  

PmAF7DS {11291}.  7DS {M10891}. v:  Arina {11291}.  ma:  Xpsr160-7D – 1.3 cM – Xgwm350a-7D 
– 4.7 cM – PmAF7DS – 9.9 cM – Xbarc184/Xgwm111-7D {11291}. 
Three of 61 Israeli Bgt isolates were avirulent: all three isolates were from tetraploid wheat accessions. It 
is possible that the gene may be present in many common wheat accessions.  

PmAS846 {10926}.  5BL {10926}.  bin:  5BL14-0.75-0.76.  v:  N9134 {10926};  N9738{10927}. tv: T. 
dicoccoides AS846 {10926}.   ma: XMAG2498-5B – 1.3 cM – Pm36/XBJ261635 – 1.1 cM – PmAS846 – 
1.3 cM – XFCP1-5B {10927}.  

PmCn17 {10686}.  1BS=1BL.1RS {10686}.  v:  Chuannong 17 {10686}.  al:  S. cereale R14 {10686}.  

pmDHT {11447}.  Recessive.  7BL {11447}.  v:  Dahongtou S761 {11447}.  ma:  
XBE443877/Xwmc526-7B – 0.8 cM – pmDHT – 0.8 cM – Xgwm611/Xwmc581-7B – 0.9 cM – 
XBF473539/Xgwm577-7B – 0.9 cM – Xgwm577-7B {11447}. 

PmG3M {11302}.  6BL {11302}.  bin:  6BL-0.7-1.00.  tv:  T. dicoccoides G-305-3M {11302}.  ma:  
Xgpw-6B – 13.6 cM – PmG3M – 3.5 cM – Xuhw213-6B – 5.7 cM – Xedm149-6B {11302}. 

PmJM23 {11445}.  5DS {11445}.  v:  Jimai 23 {11445}.  ma:  Xytu3004 – 0.7 cM – 
PmJM23/Xytu201/Xbwm21/Xcfd81-5D – 1.8 cM – Xswgi068/Xbwm20 {11445}. 

PmG16 {10886}.  7AL {10886}.  bin:  7AL16 0.86-0.90.  tv:  T. dicoccoides G18-16 {10886}.  ma:  
Xgwm1061/Xgwm344-7A – 1.2 cM – PmG16/wPt-1424/wPt6019 – 2.4 cM – wPt-
0494/wPt9217/Xwmc809-7A {10886}.  

PmHNK {10706}.  3BL {10706}.  v:  Zhoumai 22 {10706}.  ma:  Xgwm108-3BL – 10.3 cM – PmHNK – 
3.8 cM – Xwmc291-3BL {10706}.  

PmHNK54 {10897}.  2AL  {10897}. bin:  2AL1 C-0.85.  v:  Zheng9754{10897}.  ma:  Xgwm372-2A – 
5.0 cM – PmHNK54 – 6.0 cM – Xgwm312-2A {10897}.  

PmHo {11176}.  2AL {11176}.  v:  Mv Hombar {11176}.   ma:  XwPt-665330 – 0.3 cM – PmHo – 0.1 
cM – XwPt-3114 {11176}.  

PmHHXM {11565}.  4AL {11565}.  v:  Honghuaxiaomai {11565}.  ma:  Located in a 1.77 Mb (0.18 
cM) region flanked by Xkasp475200 and Xhnu522 {11565}. 
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PmKN0816 {11598}.  2BL {11598}.  v:  KN0816 {11598}.  ma:  Mapped to a region of chromosome 
carrying Pm6, Pm33, Pm51, Pm64 and PmQ but distinguished from each other by specificity {11598}. 

PmLS5082 {11629}.  2BL {11629}.  v:  LS5082 {11629}.  ma:  Located in the interval 710.3 – 711.0 
Mb {11629}. 

PmLX66 {11162}.  PmLX66 was allelic with Pm2 {11162}.  5DS{11162}.  v:  Liangxing 66 {11162}. 
Identified as Pm2a {11503}. 

PmLK906 {10476}.  Resistance is recessive {10476, 10477}.  2AL{10476, 10477}.  v:  Lankao 90(6)21-
12 {10476};  Zhengzhou 9754{10476}.  ma:  TacsAetPR5-2A/Pm4 – 3.9 cM – Xgwm265-2A – 3.72 cM – 
Pm39 – 6.15 cM – Xgdm93-2A {10476, 10477}; TacsAetPR5-2A was converted to an STS marker 
{10477} 

PmNJ3946 {11677}.  3AS {11677}.  dv:  T. monococcum Line NJ3946 {11677}; PI 191097 = TA2032 
{11677}.  ma:  Xbarc294-3A – 1.1 cM – PmNJ3946 – 0.8 cM – Xwgrc5153-3A {11677}. 

PmPBDH {11647}.  4AL {11647}.  v:  PBDH {11647}.   ma:  Mapped to a 3.2 cM interval, 719.1-726.2 
Mb (CS RefSeq 1.0) {11647}. 
Cytology failed to detect a putative Agropyrum cristatum segment in PBDH {11647}. 

PmPs5A {10205}.  2AL{10205}.  v:  AM4{10205}.  tv2:  T. turgidum subsp. carthlicum pS5 
Pm33{10205}.  ma:  Xgwm356-2A - 10.2 cM - PmPS5A; PmPS5A is located at or near the Pm4 
locus{10205}.  

PmQ {11461}.  Recessive.  v:  Hongxinmai {11461}.  ma:  Xstars419-2B – 0.6 cM – Xicsq405 2B – 0.8 
cM – PmQ – 0.2 cM – XWGGBH913-2B {11461}. 
PmQ is very close to Pm51, Pm63 and Pm64. 

PmXQ-0508 {11734}.  2AS {11734}.  v:  Line XQ00508 {11734}.  ma:  Located to 226.7 kb interrval 
{11734}. All F2 plants in crosses with lines having Pm26 (1,226 plants), Pm42 (1,198 plants) and Pm26 
(1,583 plants) were resistant to the test isolate but the response arraye of the lines appeared to be diferente 
{11734}. 

PmSGD {11453}.  Recessive.  7BL {11453}.  v:  Shangeda {11453}.  ma:  SNP2-58 – 0.4 cM – PmSGD 
– 0.8 cM – SNP2-46 {11453}. 

PmTb7A.1{11130}.  7AL {11130}.  bin:  7AL 18-0.90-1.00.  dv: T. boeoticum PAU5088 PmTb7A.2 
{11130}.  ma:  Mapped to a 4.3 region flanked by wPt4553 and Xcfa2019-7A {11130};  Estimated to be 
46 cM proximal to Pm1 {11130}.  

PmTb7A.2 {11130}.  7AL {11130}.  dv:  T. boeoticum PAU5088 PmTb7A.1 {11130}.  ma:  Mapped to 
a 0.8 cM region flanked by MAG1759 and MAG2185b in the region of Pm1 {11130}.  
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PmTm4 {10961}.  7BL {10961}.  bin:  7BL10-0.78-1.00. v:  Tanmai4 {10961}.  ma:  Xgwm611-7B – 
7.0 cM – PmTm4 – 14.6 cM – Xest92 – 2.9 cM – Xbarc1073/Xbarc82-7B {10961};  XWGGC6892 – 0.6 
cM – PmTm4/XWGGC5746 – 0.03 cM – XWGGC891 {11452}. 

PmTx45 {11374}.  Recessive.  4BL {11374}.  bin:  4BL5-0.85-1.00.  v:  Tian Xuan 45 {11374}.  ma:  
Ax-110673642 – 3.0 cM – PmTx45 – 2.6 cM – ILP4B01G266900 {11374}. 

PmU {11251}.  7AL {11251}.  dv:  UR206 {11251}.  ma:  Xwmc273-7A – 2.2 cM – PmU – 3.8 cM – 
Xpsp3003-7A {11251}. 
PmU was transferred to, and was effective in, common wheat. 

PmW14 {11162}.  PmW14 is allelic with Pm2 {11162}.  5DS {11162}. v:  Wennong 14 {11162}. 
Identified as Pm2a {11503}.  

PmWE99 {11166}.  Derived from Thinopyrum intermedium.  2BS{11166}.  bin:  2BS-0.84-1.00.  v:  
WE99.   ma: Pmwe99 – 10.4 cM – Xgwm148-2B – 3.1 cM –Xbarc55-2B {11162}.  
GISH failed to detect alien chromatin. 

Pmx {11009}.  Reccessive.  2AL {11009}.  bin:  2AL1-0.58-1.00.  v:  Xiaohongpi {11009}.  ma: 
Xhbg327-2A – 0.6 cM – Pmx/Xsts-bcd1231 – 8.9 cM – XresPm4/Xgpw4456-2A {11009}.  
This gene and close markers showed distorted segregation ratios and some discrepancy of markers 
relative to Pm4 alleles {11009}. 

PmY39 {10367}.  2U(2B) {10367}.  su:  Laizhou 953*4/Am9 (Am9 = Ae. umbellulata Y39/T. turgidum 
ssp. carthlicum PS5) {10367}.  dv:  Ae. umbellulata Y39 {10367}.  ma:  Associated with 2U markers 
Xgwm257, Xgwm296 and Xgwm319 {10367}.  

PmYm66 {10619}.  2AL {10619}.  v:  Yumai 66 {10619}.  ma: XKsum193-2A – 2.4 cM & 3.6 cM – 
PmYm66 {10619}.  

Ml3D32 {10892}.  5BL  {10892}.  bin:  5BL 0.59-0.76.  tv:   T. dicoccoides I222 {10892}.  v:  3D232 
{10892}.  ma:  Xwmc415-5B – 1.3 cM – Ml3D232 – 3.3 cM – CJ832481{10892};  Co-segregation with 8 
EST markers including an NBS-LRR analogue {10892}.  

MlAB10 {10873}.  2BL {10873}.  bin:  2BL6 0.89-1.00.  v:  NC97BGTAB10, PI 604036 {10873}.   tv:  
T. dicoccoides PI 471746 {10873}.  ma:  Xwmc445-2B – 7 cM – MlAB10{10873}.  

Ml-Ad {854}. v:  Adlungs Alemannen  {854}.  

Ml-Br {854}.  v:  Bretonischer Bartweizen {854}.  

Mld {96}.  4B{97}.  v2:  Halle 13471 Pm2 {96};  H8810/47 Pm2 {96};  Maris Dove Pm2 {96}.  tv: T. 
durum line {96}.  

Ml-Ga {854}.  v:  Garnet {854};  Many old German cultivars {854}.  
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MlHLT {18057}. Pm24 {11414}.  1DS {11257}.  v:  Hulutou {11257}.  ma:  Xgwm-1D – 1.7 cM – 
Xwggc3026 – 1.5 cM – MlHLT – 2.1 cM – Xwggc3148 – 4.0 cM – Xcfd83-1D {11257}.   

MlIW72 {10545}.  See Pm60. 7AL {10545}.  bin:  FL 0.86 {10545}.  tv:  T. dicoccoides IW72 
{10545}.  ma: Xmag1759-7A – 8.2 cM – MlIW72 – 3.3 cM – Xmag2185-7A – 1.6 cM – Xgwm344-7A 
{10545}.  

MlIW30 {11289}.  [MLIW30 {11289}].  4AL {11289}.  bin:  Line 2L6 {11289}.  v:  Line 2L6 {11289}.  
tv:  T. dicoccoides IW30 {11289}.  ma:  Xbarc78-4A – 1.00 cM – XB1g2020.2 – 0.1 cM – MlIw30 – 0.1 
cM – XB1g2000.2 – 2.6 cM – Xgwm350-4A {11289}. 

MlIw170  {10921}.  2BS. bin:  2BS3-0.84-1.00 {10921}.  tv: T. dicoccoides IW170 {10921}.  ma: 
XcauG2 –  0.6 cM – MlIw170/Xcfd238-2B – 2.15 cM – XcauG8/BF201235/Xwmc243-2B {10921}; Iw1 – 
18.77 cM – MlIw170 {10921}.  
This gene is located in the same region as Pm26 {10921}. 

MlIW172 {11095}.  7AL {11095}.  bin:  7AL-16-0.86-0.90.  tv: T. dicoccoides IW172 {11095}.  ma:  
WGGC4664/WGGC4665/WGGC4668 – 0.44 cM – MlIW172 – 0.7 cM – WGGC4659 {11095}.  

Mljy {0339}.  Recessive, hemizygous-effective {0339}  7B {339}.  v2:  Jieyan 94-1-1 Pm8 {0339}.  

Mlm2033 {10393}.  7AL {10393}.  dv:  T. monococcum TA2033 {10393}.  ma:  Xmag1757/Xmag2185 
– 2.7 cM – Mlm2033/Xmag2185 – 1.3 cM – Xgwm344-7A {10393}; Xmag1757 – 5.9 cM – 
Mlm2033/Xmag2185/Xgwm344/Xgwm146-7A – 4.7 cM – Xmag1986 {10393}; 
Xmag1757/Xmag1714/Xmag1759 – Mlm2033 – 0.9 cM – Xmag2185/Xgwm344-7A{10393}; 
Xwgrc353/Xwggc4659 – 0.84 cM – Mlm2033/Xmag8626/Xmag9060/Xmag2185/Xmag5240 – 0.06 cM – 
Xmag8415/Xmag8220 {11190}.  

Mlm80 {10393}.  7AL {10393}.  dv:  T. monococcum ssp. aegilopoides M80  {10393}.  ma: 
Xmag1757/Xmag1759 – 3.6 cM – Mlm80 – 0.7 cM – Xmag2166/Xgwm344-7A {10393}; Xwggc4655 – 
0.29 cM – Mlm80 – 0.57 cM – Xwgrc253/Xwgrc271 {11190}.  
Mlm2033 and Mlm80 appeared to be allelic and their relative locations suggest they are allelic with Pm1 
{10393}. 

MlNFS10 {11666}.  4AL {11666}.  tv:  T. turgidum ssp. dicoccoides NFS10 {11666}.  ma:  Located to 
a 0.3 cM interval of 2.1 Mb (729275816-731365462) in CS refseq 1.0 {11666}. 
Considered to be located at a different locus to Pm61 and MlIW30 {11666}. 

MlNCD1 {11004}.  7DS {11004}.  bin:  7DS4-0.61-1.00 {11004}. v:  NC96BGD1 PI597348 {11004};  
Saluda*3/TA2570 {11004}.  ma:  Xgwm635-7D – 5.5 & 8.3 cM – MlNCD1 – 16.2 cM & 13.6 cM – 
Xgpw328-7D{11004}.  

mlRd30 {10175}.  Reccesive  7AL {10175}.  v:  RD30 {10175};  TA2682c {10175}.  ma: Xgwm344-7A 
– 1.8 cM – mlRD30 – 2.3 cM – Xksuh9-7A {10175}.  
TA2682c carries a second dominant gene located in chromosome 1A {10175}. 
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Mlre {1220}.  6AL {0142}.  v2:  RE714 Pm4b {0142, 1220}.  tv: T. dicoccum 119  {1220}.  
Mlre showed a residual effect on the quantitative expression of APR in the presence of B. graminis 
pathotypes considered virulent for Mlre in standard seedling tests {0016}. In addition to Mlre, a QTL for 
resistance effective at the seedling stage was associated with microsatellite marker Xgwm174-5D {0142}. 

Mlsy {339}.  Recessive, hemizygous-effective {0339}  7B {0339}. v:  Siyan 94-2-1 {0339}.  

MlUM15 {11216}.  Derived from Aegilops neglecta.  7AL {11216}.  bin:  7AL15-0.99-1.00.  v:  
NC09BGTUM15 {11216}.  al:  Ae. neglecta TTCC 223 {11216}.  ma:  Xwmc525-7A/IWA8057 – 0.7 cM 
– Xcfa2257-7A – 0.4 cM – MlUM15 – 0.8 cM – Xcfa2240-7A – 2.8 cM – Xmag2185 – 3.4 cM – 
IWA29295 – 4.0 cM – IWA4434 {11216}.  

MlWE74 {11589}.  2BS {11589}.  v:  WE74 {11589}.  tv:  T. dicoccoides G-748-M {11589}.  ma:  
Mapped to a 799.9 kb region corresponding to physical region 25.48-26.28 in CHr2_Zavitan v2.0 (26.59-
27.01 in IWGSC RefSeq v1.0) {11589}. The relationship to Pm26 and MlIW170 was not established 
{11589}. 

Mlxbd  {0259}.  Recessive and hemizygous-effective {0258}  7B {0259}.  v:  Xiaobaidong {0258}.  

MlTd1055 {10029}.  tv:  T. dicoccoides 1055 {10029}.  

MlWE74 {11665}.  2BS {11665}.  v:  WE74 = YD1817/G-748-M//7*ND01 {11665}.  tv:  T. 
dicoccoides G-748-M {11665}.  ma:  Co-segregated with WGGBD425 {11665}.Located in the same 
region as Pm26, MlIW170, and MlWE74 {11665}. 

Mlzec1 {10127}.  [MLZec {10127}].  2BL {10127}.  v:  Zecoi 1 = Ralle*3/T. dicoccoides Mo49 
{10127}.  tv:  T. dicoccoides Mo49 {10127}.  ma:  Distally located in chromosome 2BL {10127}; 
Xwmc356-2B – 2.0 cM – PmZec1 {10127}. 

Ml92145E8-9 {11436}.  2AL {11436}.  bin:  2AL1-0-0.85.  v:  Line 92145E8-9 {11436}.  ma:  
Xwmc181-2A – 9.3 cM – Xsdauk682-2A – 2.8 cM – Ml92145E8-9 – 0.8 cM – Xsdauk-2A – 18.7 cM – 
Xgwm356-2 {11436}. 

Unnnamed resistance gene {11612}.  WTK4 {11612}.  7D {11612}.  dv:  Ae. tauschii Ent-079 
{11612}; Ent-080 {11612}; Ent-085 {11612}; Ent-102 {11612}.  v:  Synthetic derivatives of the above 
diploid accessions {11612}.  ma:  Located within a 60 kb insertion relative to the AL8/78 reference 
genome in region 4.76 – 5.06 Mb {11612}.  c:  Wheat tandom kinase; MW295405 {11612}. 

A normally inherited resistance to powdery mildew in wheat-Th. intermedium translocation line 08-723 
(?B-?St.6AL) was reported in {11035}. 

3.4.4. QTLs for resistance to Blumeria graminis 

QTL: Several QTLs were detected in two RE714/Hardi populations when tested at two growth stages and 
with different cultures over three years. The most persistent and effective QTL was located in the vicinity 
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of Xgwm174-5D {0272}. Three QTLs, QPm.vt-1B, QPm.vt-2A and QPm.vt-2B, with additive gene action, 
accounted for 50% of the variation in a population developed from Becker/Massey {0284}. These QTLs 
were confirmed by the addition of extra markers to the Becker/Massey map and in a separate analysis of 
USG 3209 (A Massey derivative)/Jaypee (susceptible) {10505}. USG 3209 possessed Pm8 (1BL.1RS) 
and an unknown specific resistance factor and their combination had a positive effect on APR even 
though neither was effective against the races used to identify the QTL {10505}. QTLs on chromosomes 
1A, 2A, 2B, 3A, 5D, 6A and 7B were detected in a RE714/Festin population in multiple locations and 
over multiple years. The QTL on chromosome 5D was detected in all environments and all years and was 
associated with markers Xgwm639-5D and Xgwm174-5D. Resistance was contributed by RE714. A QTL 
coinciding with MlRE on 6A was also detected in all environments. The QTL on chromosome 5D and 6A 
accounted for 45% to 61% of the phenotypic variation {0354}. 
Ae. tauschii CIAe8 (R) / Ae. tauschii PI 574467 (S): Resistance conferred by recessive genes 
pmAeCI8_2DS (14.48 – 16.32 Mb) and pmAeCI8_7DS {4.72 – 4.98 MB); the former overlapped the 
location of dominant Pm58 and the latter was likely WTK4 located in a ~60 kb insertion and encoding a 
wheat tandom kinase {11695}. 

Avocet R(S)/Saar (R): F6 RILs: QTL located on chromosomes 1BL (close to Xwmc44-1B) (Pm39), 7DS 
(Xgwm1220-7D) (Pm38) and 4BL (XwPt-6209) (resistance allele from Avocet R {10481}.  

AGS 2000 (Pm3a + Pm8 / Pioneer 26R61 (Pm8). QSuSuPm.uga-1AS(SuPm8) with an inhibitory effect 
on powdery mildew response was located at or near Pm3a. QPm.uga-7AL from Pioneer 26R61 flanked by 
Xcfa2257-7A and Xwmc525-7A was in the region of the Pm1 locus, even though the test culture was 
virulent for known Pm1 alleles {11025}.  

CI 13227(S) / Suwon 92(R): SSD population: APR (field resistance) was closely associated with Hg. 
Xpsp2999-1A and Xpm3B.1 and Xpm3B.2 were designed from the Pm3b sequence {REF}. 

Fukuho-Komugi / Oligoculm: DH population: QTL for adult plant resistance located on 1AS (R2=22%, 
Pm3 region, Xgdm33 - Xpsp2999), 2BL (R2=8%, Xwmc877.1-Xwmc435.1) and 7DS (R2=10%) derived 
from Fukuho-komugi, and 4BL (R2=6% at one of two sites, Xgwm373-Xgwm251) from Oligoculm 
{10335}. The QTL on 7DS, flanked by Xgwm295.1-7D and Ltn, is likely to be Lr34/Yr18. 

Jingdong 8 / Aikang 58 (R): RIL population: Pm4a and several QTL from both parents {11753}. 
 
Liangxing 99 / Zhongzuo 9504: RIL population: A QTL Qaprpm.caas.2B in the same region as Pm52 
and APR QTL Qaprpm.caas.7A in a 1.3 cM region flanked by Xicscl726-7AL and XicsK128-7A 
{11716}. 
 
Lumai 21(R) / Jingshuang 16(S):, F3 lines: Three QTLs from Lumai 21: QPm.caas-2BS, Xbarc98-2BS – 
Xbarc1147-2BS interval, R2=0.106-0.206; QPm.caas-2BL, Xbarc1139-2BL – Xgwm47-2BL interval, 
R2=0.052-0.101; and QPm.caas-2DL, Xwmc18-2DL – Xcfd233-2DL interval, R2=0.057-0.116 {10707}. 
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RE9001(R) / Courtot(S) RIL population: QPm.inra-2B (R2 = 10.3-36.6%), in the vicinity of Pm6, was 
consistent over environments {10360}. Eleven QTL, detected in at least one environment were identified 
by CIM {10360}. 

SHA3/CBRD(S)/Naxos(R): RIL population: A major QTL on chromosome 1AS accounted for 35% of 
the phenotypic variation; other QTL from Naxos were on 2DL, 2BL and 7AL. Although SHA3/CBRD 
possessed a Pm3 allele suppressed Pm8 which appeared to be effective in Norway {10934}.  

Tianmin 668 / Jingshuang 16: RIL population: Three QTL in chromosome arms 2AS (3,573 – 4.347 
Mb), 2BL (56.844 – 70.698 Mb), and 5AL (4.412 – 4.719 Mb) were detected in Tianmin 666; Pm4d 
(2AL) identified in the same line was not effective in the field {11702}.  
 
QPm.sfr-1A {0051}.  1A {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Oberkulmer {0051}. ma:  Associated with Xpsr1201-1A and Xpsr941-1A 
{0051}.  

QPm.sfr-1B {0051}.  1B {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Forno {0051}.  ma:  Associated with Xsfr3(LRR)-1B and Xpsr593-1B 
{0051}.  

QPm.sfr-1D {0051}.  1D {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Oberkulmer {0051}.  ma:  Associated with Xpsr168-1D and Xglk558-1D 
{0051}.  

QPm.sfr-2A {0051}.  2A {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Oberkulmer {0051}.  ma:  Associated with Xpsr380-2A and Xglk293-2A 
{0051}.  

QPm.sfr-2D {0051}.  2D {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Oberkulmer{0051}.  ma:  Associated with Xpsr932-2D and Xpsr331-2D 
{0051}.  

QPm.sfr-3A {0051}.  3A {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Forno{0051}.  ma:  Associated with Xpsr598-3A and Xpsr570-3A{0051}.  

QPm.sfr-3D{0051}.  3D {0051}.  v: Forno/T. spelta var. Oberkulmer mapping population; the resistance 
was contributed by Oberkulmer {0051}.  ma:  Associated with Xpsr1196-3D and Xsfr2(Lrk10)-3D 
{0051}.  

QPm.sfr-4A.1 {0051}.  4A {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Forno {0051}.  ma:  Associated with Xgwm111-4A and Xpsr934-
4A{0051}.  
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QPm.sfr-4A.2 {0051}.  4A {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Forno {0051}. ma:  Associated with Xmwg710-4A and Xglk128-4A 
{0051}.  

QPm.sfr-4B {0051}.  4B {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Forno {0051}.  ma:  Associated with Xpsr593-4B and Xpsr1112-4B 
{0051}.  

QPm.sfr-4D  {0051}.  4D{0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Forno {0051}.  ma:  Associated with Xglk302-4D and Xpsr1101-4D 
{0051}.  

QPm.sfr-5A.1 {0051}.  5A {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Oberkulmer {0051}.  ma:  Associated with Xpsr644-5A and Xpsr945-5A 
{0051}.  

QPm.sfr-5A.2 {0051}.  5A {0051}. v: Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Oberkulmer {0051}.  ma:  Associated with Xpsr1194-5A and Xpsr918-5A 
{0051}.  

QPm.sfr-5B {0051}.  5B {0051}.  v: Forno/T. spelta var. Oberkulmer mapping population; the resistance 
was contributed by Oberkulmer {0051}.  ma:  Associated with Xpsr580-5B and Xpsr143-5B {0051}.  

QPm.sfr-6B {0051}.  6B {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Forno {0051}.  ma:  Associated with Xpsr167-6B and Xpsr964-6B {0051}.  

QPm.sfr-7B.1 {0051}.  7B {0051}.  v:  Forno/T. spelta var. Oberkulmer mapping population; the 
resistance was contributed by Forno {0051}.  ma:  Associated with Xpsr593-7B and Xpsr129-7B {0051}.  

QPm.sfr-7B.2 {0051}.  This QTL corresponds to Pm5 {0051}.  7B {0051}.  v:  Forno/T. spelta var. 
Oberkulmer mapping population; the resistance was contributed by Forno{0051}.  ma:  Associated with 
Xglk750-7B and Xmwg710-7B {0051}.  

QPm.ipk-2B {0255}.  2BS {0255}.  v:  Opata/W-7984 (ITMI) RI mapping population {2055};  
Resistance was contributed by Opata  {0255}.  ma:  Associated with Xcdo405-2B and Xmwg950-2B 
{0255}.  

QPm.ipk-4B {0255}.  4B {0255}.  v:  Opata/W-7984 (ITMI) RI mapping population {0255};  Resistance 
was contributed by W-7984 {0255}.  ma:  Associated with Xcdo795-4B and Xbcd1262-4B {0255}.  

QPm.ipk-7D {0255}.  7DS {0255}.  v:  Opata/W-7984 (ITMI) RI mapping population {0255};  
Resistance was contributed by Opata {0255}.  ma:  Associated with Xwg834-7D and Xbcd1872-7D 
{0255}.  
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QPm-tut-4A {11154}.  4AL {11154}.  v:  DT4AL-TM Line 8.1 {11154}.  tv:  T. militinae (AAGG) 
{11154}.  
The 7G segment carrying this resistance likely replaces most of the 7BS segment known to be part of 
chromosome 4A {11154}. 

PmSE5785 {11084}.  Recessive  2DL {11084}.  v:  SE5785, Snipe/Yav79//Dack/Teal/3/Ae. squarrosa 
877 {11084};  NO7728-1 {11084};  NO7728-2{11084}.  ma:  Xbarc59-2D  – 3.6 cM – PmSe5785 –  4.6 
cM – Xwmc817-2 {11084}. Bainong 64(R) / Jingshuan 16(S). DH lines: Four QTL from Bainong 64: 
Qpm.caas.1A. 
Xbarc148-1A – Xgwmc550-1A interval. R2=0.074-0.099; QPm.caas-4DL proximal to Xwmc331-4D. 
R2=0.15-0.23; QPm.caas-6BS, proximal to Xbarc79-6BS, R2=0.09-0.13; and QPm.caas-7AL, proximal to 
Xbarc174-7AL, R2=0.067-0.071 {10680}.  

Additional temporarily named genes and QTL are listed in {11655}. 

3.5. Reaction to Cephalosporium gramineum 

Disease: Cephalosporium stripe QTL: Coda (more resistant)/Brundage (less resistant): RIL population: 7 
QTLs identified based on whiteheads; three from Coda - QCs.org-2D.1 (nearest marker C, R2=0.11), 
QCs.orp-2B (nearest marker Xwmc453-2B, R2=0.08), and QCs.orp-5B (nearest marker Xgwm639-5A, 
R2=0.12) and four from Brundage (QCs.orp-2D.2 (nearest marker Xbarc206-2D, R2=0.04), QCs.orp-48 
(nearest marker wpt-3908, R2=0.05), QCs.orp-5A.1 (nearest marker wpt-3563, R2=0.08), QCs.orp-5A.2 
(nearest marker B1, R2=0.05) {10836}. 

3.6. Reaction to Cephus spp. See also Stem solidness. 

Pest: Wheat stem sawfly. North American species C. cinctus; European species C. pygmeus. Resistance to 
wheat stem sawfly is associated with solid stem (see also: Stem solidness). 
Tetraploid wheat 

Qsf.spa-3B {10351}.  

3.7. Reaction to Cochliobolus sativus Ito & Kurib. 

Disease: Cochliobolus root rot.CRR 

Crr {764}.  Recessive.  5BL {764,765}.  v:  Apex {764};  Cadet {765}.  

3.8. Reaction to Colletotrichum cereale 

RCC1 

Rcc1 {10939}.  5AL {10939}.  v:  Chinese Spring {10939};  Norin 4 {10939};  Shinchunaga {10939}.  
ma:  Xbarc165-5A – 1.2 cM – Rcc1 – 12.8 cM; Xgwm671-5A – 0.7 cM – Xwmc415-5A {10939}.  
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rcc1.  v:  Hope {10939}.  

Susceptibility to this non-pathogen of common wheat is rare, with only one susceptible genotype being 
documented. A few susceptible tetraploid genotypes were identified {10939}. 

3.9. Reaction to Diuraphis noxia (Mordvilko) 

Insect pest: Russian aphid, Russian wheat aphid.  

DN1 

Dn1 {286}.  7DS {0211}.7D {1288}.  bin:  7DS-0.36-0.73 {11225}. i:  Betta-Dn1:PI 634768 {0211, 
0004, 10277};  Caledon {0004};  Gariep {0004};  Karee-Dn1 {0211};  Limpopo-Dn1 {0004};  Tugela-
Dn1:PI591932 {0211, 0004, 10277}.  v:  PI 137739 {286}.  ma: Xgwm111-7D210 – 3.20 +/- 0.20 cM – 
Dn1 {0211}. 
VIGS silencing of 5AL-B4 on chromosome 5A compromised resistance conferred by Dn1 suggesting a 
decoy role {11333}. 

Tests of allelism indicated that Dn1, Dn2, Dn5, Dn6, and Dnx and four uncharacterized lines were 
identical or closely linked {11225}.  

DN2 

Dn2 {286}.  7DL {863}.7DS {286}.  i:  Betta-Dn2:PI 634769 {286}, {10277};  Karee-Dn2:PI 663774 
{286}, {10277};  Tugela-Dn2: PI 634772 {286} ,{10277}.  v:  PI 262660 {286,863}.  ma:  XksuA1-7D – 
9.8 cM – Dn2 {863};  Myburg et al. {9968} identified two SCAR markers that mapped 3.3 cM proximal 
to Dn2 {9968}; Xgwm111-7D200 – 3.05 +/- 0.18 cM – Dn2{286}; XksuA1-7D – 9.9 cM – Dn2 – 2.8 cM – 
Xgwm437-7D {0353}.  
According to Saidi & Quick {1250}, Dn1 and Dn2 are probably allelic. Reference stocks with each gene 
showed allelism with a gene in PI 262605. 

DN3 

Dn3 {1086}.  Recessive.  v:  Ae. tauschii SQ24/T. turgidum TD65{1086}.  dv:  Ae. tauschii SQ24 
{1086}.  

DN4 

Dn4 {1250}.  1DL {863}, 1DS {11225}.  i:  Yumar {10397}.  v:  Ankor {10397};  CORWAI {260};  CI 
2401 {260};  Halt {0209};  PI 151918 {260};  PI 372129 {1250};  Prairie Red  {10397}.  ma:  Xabc156-
1D – 11.6 cM – Dn4 {863}; Xgwm106-1D – 7.4 cM – Dn4 – 12.9 cM – Xgwm337-1D{0352}; Xgwm106-
1D – 5.9 cM – Dn4 – 9.2 cM – Xgwm337-1D {10128}. 
Dn4 and an uncharacterized gene in PI 151918 were allelic or tightly linked {11225}.  

DN5 
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Dn5 {1249}.  7D {259}. 7DS {286}. 7DL {287}, {10396}, {10310}.  i:  Betta-DN5 {286};  Palmiet 
derivative 92RL28 {287};  Palmiet DN5 {0004}. v:  STARS - 9302W-sib {259};  PI 294994 {259}.  ma: 
A SCAR marker developed from the RAPD fragment OPF141083 mapped 5.5 cM proximal to Dn5 
{0172}; Xgwm111-7D220 – less than 3.20 cM – Dn5 {286}.  
Issues relating to the confused arm location and mapping of Dn5 is discussed in {10310}. Genetic 
mapping indicated that Dn5 is located in chromosome 7DS, but cytological analysis showed it was 
located in 7DL {10396}. It was also suggested {10396} that the Palmiet Dn5 line {0004} may not have 
Dn5 {10396}. 

DN6 

Dn6 {1250}.  7D.  bin:  2AL1-0.85-1.00.  v:  CI 6501 {260};  PI 243781 {1249,1250}.  ma:  Dn6 – 3.0 
cM – Xgwm111 {352}. Xgwm44-7D – 11.6 cM – Xgwm111-7D – 3.0 cM – Dn6 {11225}. 

DN7 

Dn7 {9918}.  Derived from S. secale cv. Turkey 77 {9918}  [Dn2414 {10478}].  1R {9918}. 1B = 
1BL.1RS {9918}.  v:  93M45-14 {9918};  94M370 {10188};  STARS 02RWA2414-11 {10474}.  ma:  
Xbcd1434-1R – 1.4 cM – Dn7 – 7.4 cM – Xksud14-1R {10188}; Xhor2-1R – 1.7 cM – Dn7 – 1.0 cM – 
Xscb241-1R {10474};  Marker Xrems1303320 was amplified only in genotypes resistant to biotype 3 and 
presumably possessing Dn7 {10474}.  

DN8 

Dn8 {286}.  7DS {286}.  i:  Karee-Dn8:PI 634775 {10277}.  v2:  PI 294994 Dn5Dn9 {286}.  ma:  
Xgwm635-7D100 – less than 3.20 cM – Dn8 {286}.  

DN9 

Dn9 {286}.  1DL{286}.  i:  Betta-DN9:PI 634770 {10277}.  v2:  PI 294994 Dn5Dn8 {286}.  ma:  
Xgwm642-7D180 – less than 3.20 cM – Dn9 {286}. 

Dn10 {11211}.  bin:  7DL-0.1-077.  v: PI 682675 {11211}.  ma:  Xcfd14-7D – 2.3 cM – Xgwm437-7D – 
9 cM – Dn10 – 29.1 cM – Xwmc488-7D {11211}; Xcfd14-7D – 3.6 cM – Xgwm437-7D – 11.3 cM – 
Dn10 – 35 cM – Xwmc488-7D {11211}; Dn626580 – 2.0 cM – Dn2401 – 8.4 cM – Dn624151 {11211}. 

Temporary designations 

Dnx {286}.  7DS {286}.  v:  PI 220127 {286}.  ma:  Xgwm111-7D210 – 1.52 +/- 0.15 cM – Dnx {286}.  
Dnx was considered to be located at a locus different from Dn1, Dn2 or Dn5 {286}, which were likely to 
be identical or allelic. 

Dn1881 {10145}.  7BS {10145}.  tv:  Line 1881  {10145}. ma:  Xgwm46-7BS – 10.1 cM – Dn1881 – 
12.8 cM – Xgwm333-7BL {10145}.  
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Dn2401 {11078}.  7DS  {11078}. v:  CI2401, PI97812 {11078}.  bin:  7DS-0.37-0.61 {11211}.  ma:  
Xbarc214-7D – 1.1 cM – Dn2401 – 1.8 cM – Xgwm473 -7D {11078}.  

Dn100695 {11226}.  7DS M19026}.  v:  IG 100695 {11226}.  ma:  Xgwm44-7D – 13 cM – Xcfd14-7D – 
15.7 cM – Dn100695. 

Dn626580 {10981}.  7DS {10981}.  v:  PI 626580 {10981}.  ma:  Dn626580 – 1.8 cM – Xbarc214-7D – 
3.2 cM – Xgwm473-7D – 3.2 cM – Xgwm473-7D {10981}.  

QTL: QTLs for antixenosis were associated with Xpsr687-7D (7DS) and Xgwm437-7D (7DL) in CS/CS 
(Synthetic 7D) {10136}. Separate antibiotic effects were demonstrated for the same chromosome 
{10136}. 
A QTL, QDn.unlp.6A, for antixenosis was associated with Xgwm1393-6AL and Xgwm1150-6AL in a 
CS/CS(Synthetic 6A) DH population {10216}. 

3.10. Reaction to Eurygaster Integriceps 
Sunn pest 
 
EI1 
Ei1 {11201}. 4BS {11201}.  bin:  4BS4-C-0.27.  ma:  IWB73001 – Ei1/BS00022785 – IWB9610 
{11201}. 

3.11. Reaction to Fusarium spp. 

3.11.1. Disease: Fusarium head scab, scab 

Type II resistance. Whereas much of the recent genetic work involved FHB caused by F. graminearum, 
according to {10514}, F. culmorum is more damaging than F. graminearum in terms of FHB severity, 
kernel damage, yield reduction and DON/NIV contamination. Mesterhazy et al. {0006} reported a strong 
genetic correlation in resistance to different species of Fusarium. 

FHB1 

Fhb1 {10403,10214}.  [QFhs.ndsu-3BS {9925}, {175}].  3BS {9925}.  i:  HC374/3*98B69-147 
{10214};  Sumai 3*5/Thatcher {10214}.  v:  HC-147-126 {10444};  Rollag {11071}.  v2:  Alsen 
Fhb5{11071, 11237}; BW278 Fhb2 {10225};  Carberry Fhb5 {11237 };  ND744 Fhb5 {11237};  
ND3085 Fhb5 {11237}; Sumai 5 Fhb2 Fhb5 {10314, 11237}.  ma:  XSTS3B-80 – 0.2 cM – Fhb1 – 1.1 
cM – XSTS3B-142{10214};  Placed in a 1.2 cM interval flanked by XSTS3B-189 and XSTS3B-206 
{10403}; Xgwm389-3B – 3.0 cM – Sr2/csr2 – 0.4 cM – Xgwm389-3B – 2.0 cM – Fhb1/UMN10/UMNv2 
(coupling) {11210}. Xgwm493-3B and Xgwm533-3B were confirmed as useful markers {11237}.  c: A 
pore-forming toxin-like gene product encodes a chimeric lectin with two agglutinin domains and an 
ETX/MTXZ toxin domain {11205}. 
The relationship of Fhb1 to Fhs1 or Fhsb2 {1096} is unknown. Lines combining Fhb1and Sr2 are 
reported in {11170}; Fhb1 is located about 2 cM proximal to Sr2. SYN1 / Ocoroni DH population: three 
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QTL from SYN1 were identified, QFhs.cim-2D (PVE 25%), QFhs.cim-7A (PVE 4.7%) and Qfhs.cim-7A 
(PVE 4.2%) {11165}. 
A marker study found that 14 of 66 wheats with putative FHB resistance shared markers indicative of the 
3BS QTL in Ning 7840, Sumai 3, Wangshuibai and possibly Wuhan 3, plus Japanese landraces 
Shinchunaga and Shirasu No 1 {10115}. The original source may be the landrace 'Taiwan Wheat' rather 
than Funo {10115}.   

FHB2 

Fhb2 {10225}.  6BS {10225}.   v:  pbE85{10444}.  v2:  BW278 Fhb1 {10225};  Sumai 3 Fhb1 
{10225}.  ma:  Xgwm133-6B – 4 cM – Fhb2 – 2 cM – Xgwm644-6B {10225}.  
The relationship of Fhb2 to Fhs1 or Fhs2 {1096} is unknown. 

FHB3 

Fhb3 {10529}.  7DS = T7AL.7Lr#1S{10529}.  v:  TA 5608{10529}.  al:  Leymus racemosus {10529}.  
ma:  Three PCR markers, Be586744-STS, BE404728-STS and BE586111-STS, were developed {10529}.  
The level of type 2 resistance conferred by Fhb3 was similar to that of Sumai 3 {10529}. 

FHB4 

Fhb4 {10884}. [Qfhi.nau-4B{10282}].  4BL {10883,10282}.  bin:  4BL5-0.86-1.00.  i:  Mianyang 99-
323*4/Nanda 2419/Wangshibai {10885}.  v2:  Wangshuibai Fhb5 {10884}.  ma:  Located in a 1.7 cM 
segment flanked by Xhbg226-4B and Xgwm149/Xmag4580-4B {10883}.  
Although plants with Fhb-4 were taller than the recurrent parent, the height difference was not associated 
with the Rht-B1 locus {10885}. 

Type I resistance (% infected plants) in this cross was attributed to 10 chromosome regions among which 
Qfhi.nau-4B (Xwmc349-4B – Xgwm149-4B - r2 = 0.75), XFhi.nau-5A (Xwmc96-5A – Xgwm304-5A - R2 = 
0.27) and Qfhi.nau-5B (Xgwm408-5B – Xbarc140-5B) from Wangshuibai were detected in at least 3 of 4 
years {10282}. A significant additive effect of QTL on 6D and 2A was also observed {10282}.  

FHB5 

Fhb5 {10896}.  [Qfhi.nau-5A {10282 }; Qfhs.ifa-5A {10076}].  5AS {10896}.  bin:  C-5AS3-0.75.  i:  
Mianyan 99-323 and PH691 backcross derivatives selected for Qfhi.nau-5A{10896}.  v2:  Alsen 
Fhb1{11237}; Carberry Fhb1 {11237}; ND744 Fhb1 {11237}; ND3085 Fhb1 {11237}; Sumai 5 Fhb1 
Fhb2 {10314, 11237}; Wangshuibai Fh4b {10896}.  ma:  Mapped to a 0.3 cM interval between 
Xbarc117/Xbarc358/Xgwm293/Xgwm304-5A and Xgwm415-5A {10896}.  
Closely linked in coupling with Qflw.nau-5A for narrow leaf width, but recombination is reported in 
{11041}.  
According to {11487} Fhb5 might be the same as Qfhs.ifa-5Ac but the issue remained ambivalent. 

FHB6 
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Fhb6 {11048}.  Derived from Elymus tsukushiensis syn. Roegneria kamoji  1AS {11048}.  
T1AL.1AS-1Ets#1S {11048}  v:  TA5660, KS14WRRC61 {11048}.  
T1AL.1AS-1Ets#1S {11048}  TA5093 {11048}.  ma: Three CAPS and one KASPar SNP (wg1S-snp1) 
markers were developed {11048}.  
TW.1Ets#1S{11048}  v:  TA5655 {11048}.  
TA5660 is in Chinese Spring background; TA5093 is in Everest background. 

FHB7 

Fhb7 {11060}.  Derived from Thinopyrum ponticum  [FhbLoP {11118}].  
T7DS.7D1-7e12L {11060}  v:  SDAU1881 {11060}.  
T7DS.7D1-7e12L {11060}  SDAU1886 {11060}.  ma:  Flanked by 7el2 markers Xcfa2240 and 
XsdauK66 in a 1.7 cM interval {11060}.  Located to a 245 kb region flanked by Xsdau86 and Xsdau88 
{11483}. 
T7DS.7el2 {657}  v:  KS24-2 {657}. 
c:  Gene Tel7E01T1020600.1 encodes a glutathione S-transferase that detoxifies trichothecene toxin 
{11483}. Sequence data can be found at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA540081.  

FHB8 
 
Fhb8 {11676}.  7D {11676}.  i:  Wangshuibai/4*PH691 7D-NIL1 {11676}; Wangshuibai/4*PH691 7D-
NIL2 {11676}.  v2:  Wangshuibai Fhb1 Fhb2 Fhb4 Fhb5{11676}.  ma:  Xwgrb1500 (93.9 Mb, RefSeq 
1.0) – Fbhb8/Xwgrb1587 – Xwgrb1559 (96.5 Mb) {11676}. 

FHB9 

Fhb9 {11727}.  QFhb-2DL {11719}.   2DL {11727}.  v:  Shi4185 / Shijiazhuang8 RIL92 (11727}; 
Ji5625 / Wheaton NILs {11719}.  v2:  Shi4185 + additional QTL in chr. 4A, 3D and 5D {11727}; Ji5625 
{11719}.  ma:  Located in an 8.0 Mb (2.21 cM) region (KASP-525 – KAS-12056, 525.9 – 533.8, Mb, CS 
RefSeq 2.1) {11727}; 524.9 – 531.0 Mb {11719}. 

Other names 

Fhs1 {1096}.  v:  Line A {1096}.  v2:  Ning 7840 Fhs2 {1096}.  

Fhs2 {1096}.  v:  Line B {1096}.  v2:  Ning 7840 Fhs1 {1096}.  
A major QTL was associated with several linked AFLP markers tentatively located in chromosome 7BL 
of Ning 7840 {0005}. 

QTL 
QTLs for resistance to Fusarium graminearum detected in the cross Renan/Recital {10069}. All 
resistance alleles, except QFhs.inra-3A, were contributed by Renan. LOD scores and percent of variation 
explained by the QT (R2) are average of three years of field tests. 

QFhs.inra-2A {10069}.  ma:  Associated with Xgwm382c-2A (LOD=6.3, R2=14.4%).  

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA540081
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QFhs.inra-2B {10069}.  ma:  Associated with Xgwm374-2B (LOD=7.6, R2=12%).  

QFhs.inra-3A {10069}.  ma:  Associated with Xbcd372-3A (LOD=3.7, R2=6.2%).  

QFhs.inra-3B {10069} . ma:  Associated with Xgwm383b-3B (LOD=5.4, R2=10.5%).  

QFhs.inra-5A.1 {10069}.  ma:  Associated with Xpsr170a-5A (LOD=3.8, R2=5%).  

QFhs.inra-5A.2 {10069}.  ma:  Associated with Xgwm639b-5A 8LOD=6.6, R2=14%).  

QFhs.inra-5A.3 {10069}.  ma:  Associated with B1 (LOD=6.3, R2=8.5%).  

QFhs.inra-5D {10069}.  ma:  Associated with Xcfd29-5D (LOD=4.4, R2=7%).  

QFhs.inra-6D {10069}.  ma:  Associated with Xcfd42-6D (LOD=2.7, R2=6.6%).  

QFhs.ndsu-2A {9925,175}.  2AL {9925}. v:  Sumai 3/Stoa RI mapping population; the QTL was 
contributed by Stoa {9925}.  ma:  Association with RFLP XksuH16-2A (LOD >3) {9925,175}.  

QFhs.ndsu-3AS {10482}.  3AS {372}.  tv: T. turgidum var. dicoccoides. Recombinant substitution lines 
LDN and LDN(Dic-3A). The resistant allele was contributed by T. dicoccoides{372}.  ma:  Associated 
with Xgwm2-3A (explained 37% of the phenotypic variation){372}; QFhs.ndsu-3AS was placed within a 
11.5 cM region flanked by TRAP marker loci Xfcp401-3A and Xfcp397.2-3A {10482};  This gene was 
transferred to durum cultivars using the closely linked marker Xgwm2-3A {11367}. This gene is unlikely 
to be a homoeologue of Qfhs.ndsu-3BS = Fhb1 {10482}.  

QFhs.ndsu-3B {9925,0175}.  3BS {9925}.  v:  Sumai 3/Stoa RI mapping population; the QTL was 
contributed by Sumai 3 {9925,0175}.  ma:  Association with Xbcd907-3B.2 (LOD >3) {9925} and 
microsatellite markers Xgwm1533-3B and Xgwm493-3B {0175}; QFhs.ndsu-3B from Sumai 3 was 
associated with microsatellite loci Xgwm533-3B and Xgwm274-3B in certain Sumai 3 derivatives 
{10062}. In Ning 894037 the QTL has the same location and similar SSR bands to Sumai 3 {10085}. 
STS marker SRST.3B1 was mapped between Xgwm533-3B and Xgwm389-3B and associated with 
QFhs.ndsu-3B {10072}. QFhs.ndsu.3B was associated with markers Xgwm533-3B, Xbard133-3B, 
Xbarc147-3B and Xgwm493-3B {10073}.  
This QTL explained 42% of the variation in Sumai 3/Stoa {0175}. 
Two additional QTL for resistance to Fusarium graminearum were identified in the croSumai3/Stoa 
{0175}. The QTL on 4BS was associated with Xwg909-4B and the QTL on 6BS was associated with 
Xbarc101-6B and Xbcd1383-6B {0175}. The QTL associated with markers Xgwm493-3B/Xgwm533-3B 
(explaining 24.8 % of the variation), and Xbarc101-6B/Xbcd1383-6B were also identified in a RIL 
population from the cross ND2603/Butte 86 {0175}. In addition, one QTL on chromosome 3AL 
associated with Xbcd941-3A and one on chromosome 6AS associated with XksuH4-6A were identified in 
RILs from the cross ND2603/Butte 86 {0175}.  

Remus / CM-82036 (a Sumai 3 derivative): DH population: Resistance QTL on chromosome 3BS 
associated with Xgwm493-3B and Xgwm533-3B {0240}. Additional QTL in this cross were detected on 
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chromosome 5A, associated with Xgwm293-5A and Xgwm304-5A, and possibly on 1B, associated with 
Glu-B1 {0240}.  
Two major genes with additive effects were reported in crosses between Sumai 3 (resistant) and two 
susceptible cultivars {0174}. One of the genes was assigned to 5AL based on linkage to the dominant 
awn suppressor B1 (RF 15.1-21.4%).  

Alve (S) / Line 685 R: DH population: QTL on chromosomes 4D (Rht-D1), 3BS, 5A and 2BL {10972}. 
Two resistance QTL were needed to counteract the negative effect of the Rht-D1b semi-dwarfing allele 
{10972}.  

Arina (R) / Forno (S): Three QTLs, QFhs.fal-6DL (R2=22%), QFhs.fal-5BL.1 (in Forno, R2=14%) and 
QFhs.fal.4AL (R2=10%) and 5 minor QTLs in 2AL, 3AL, 3BL, 3DS and 5DL were detected {10172}.  

Arina / Riband DH lines: QTL affecting ADUPC were identified in 1BL(2), 2B, 4DS, 6BL and 7AL 
(Arina), and 7AL and 7BL (Riband). The most effective was the 4DS QTL that appeared to be an effect 
of Rht-D1a rather than height per se {10464}. 

Baishanyuehuang (R) / Jagger (S): RIL population: Four genes/QTLs derived from the resistant parent 
included Fhd1 (R2=0.16), Qfhb.hwwg-3BS c(R2=0.09), Qfhb.hwwg-3A (R2=0.05-0.08) and Qfhd.hwwg-5A 
(R2=0.05 in one trial) {10950}.  

Cansas (moderately resistant) / Ritmo (susceptible): Map based analysis across environments revealed 
seven QTL, QFhs.whs-1BS (1RS), QFhs.whs-3B (not Fhb1), QFhs.whs-3DL, QFhs.whs-5BL '(renamed 
Qfhs.lfl-1BL in {10768})', QFhs.whs-7AL and QFhs.whs-7BL (cumultatively, R2 = 0.56). The 
chromosome 1D gene was primarily involved in resistance to fungal penetration and the others in 
resistance to spread {10503}. There were significant correlations of FHB response with height and 
heading date {10503}. Qfhs.lfl-1BL was verified in F4:7 lines and detected in Biscay, History and Pirat 
{10768}. The renamed Qfhs.lfl-1BL reduced FHB severity by 42% relative to lines lacking it {10698}. 
This gene was also present in Biscay, History and Pirat {10698}. 

CS / CS(Sumai 3 7A): QFhb7AC, nearest marker Xwmc17-7A, explained 22% of phenotypic variance for 
Type II and 24% of phenotypic variance for Type III resistance {10798}. 

Chris / Frontana: In a reciprocal backcross analysis of Chris monosomics/Frontana, Frontana 
chromosomes 3A, 6A and 4D reduced visibly diseased kernels, kernel weight and DON content, whereas 
Frontana chromosomes 2A, 2B, 4B and 7A increased the same traits {10398}. Further study of the 3A, 
6A and 4D reciprocal substitution lines indicated that chromosome 3A of Frontana had the largest effect 
on incidence, severity, spread and kernel damage, 4D less so and 6A possibly not at all {10900}. 

DH181(R)(Sumai 3 / HY 386 Seln.): QTL identified in 2DS, 3AS, 3BS, 3B Cent. region, 4DL, 5AS, 
6BS {10213}. 

Dream(R) / Lynx(S): RIL population: Following inoculation with F. culmorum 4 QTL for AUDPC were 
identified on chromosomes 6AL (R2=19%), 1B (12%), 2BL (11%) and 7BS (21%). The resistance allele 
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in 1B came from Lynx and was associated with T1BL.1RS {10260}. 
Dream*4 / Lynx lines were developed by selection of QTL on chromosomes 6AL, 7BS and 2BL. Lines 
carrying QFhs.lfl-6AL and QFhs.lfl-7BS were more resistant than lines lacking them; the 2BL QTL effect 
was not verified {10470}. 

Chokwang (R) / Clark (S): Qfhb.ksu-5DL.1 associated with Xbarc239-5D (R2=0.24) {10276}, Qfhb.ksu-
4BL.1 associated with Xbarc1096-4B (R2=0.13) {10276}, and Qfhs.ksu-3BS.1 marginally associated with 
the region of Fhb1 (R2=0.1) {10276}.Ernie (Res) / MO94-317 (Sus): 243 F8 RIL population. Four QTLs 
from Ernie detected as follows: Qfhs.umc-2B, linked to Xgwm278-2BS, R2 = 0.04 {10456}; Qfhs.umc-3B, 
linked to Xgwm285-3BS, R2 = 0.13 {10456}; Qfhs.umc-4B, linked to Xgwm495-4BL, R2 = 0.09 {10456}. 
Qfhs.umc-5A, linked to Xgwm165-5A, R2 = 0.17 {10456}. Evidence was provided to suggest the QTL 
acted additively {10456}.  

Frontana (R) / Remus (S): Major QTLs in chromosomes 3AL (Xgwm270-3AL – Xdupw227-3A region) 
and 5A (Xgwm129-5A – Xbarc-5A region) accounted for 16% and 9% of the phenotypic variation (mainly 
type 1 resistance) over 3 years {10174}. 

Frontana (MR) / Seri82 (S): F3 and F3:5 populations: QTLs were located in chromosomes 1BL 
(R2=7.9%), flanked by AFLP markers, 3AL (R2=7.7%), flanked by Xgwm720-3A and Xgwm121-3A, and 
7AS (R2=7.6%), flanked by anAFLP and Xgwm233-7A {10349}. 

G16-92 (R) / Hussar (S): Two QTL for resistance to F. culmorum were identified on chromosome 1A 
(resistance from Hussar) (R2 = 0.01) and 2B (resistance from G16-92) (R2 = 0.14) {10588}.  

Glenn (R) / MN00261-4 (S): RIL population: three of 15 QTL for FHB response and heading date were 
stable and explained >10% of the phenotypic variation; these were located on chromosome arms 5BL, 
6BS (possibly Fhb2) and 7AS {11568}. 

 
Grandin (S) / PI277012 (I): DH population: Two QTLs, Qfhb.rwg-5A.1 on 5AS (R20.06-0.2) and 
Qfhb.rwg-5A.2 on 5AL (R2=0.12-0.2) conferred type I and II resistance and reduced DON content 
{0147}. The new QTL on 5AL was closely but not completely linked with gene q which is present in 
PI277012 {10860}. 

Hobbit Sib / T. macha 4A: DH population: Type I resistance and DON accumulation:: Both traits were 
assigned to a small region distal to Xgwm601-4A and cosegregating with Xgwm165-4A {10254}. 

Huapei 57-2 /Patterson: Four QTL on chromosomes 3BS (associated with Xbarc133-3B), 3BL 
(Xgwm247-3B) and 3AS (Xgwm5-3A) from Huapei 57-2, and 5BL (Xbarc59-5B) from Patterson {10026}. 
Huapei 57-2, Ning 7840 and Sumai 3 carried common alleles in the Xgwm533-3B, Xgwm493-3B, 
Xbarc147-3B and Xbarc133-3B region {10026}.  

Luke (S) / AQ24788-83 (R): RIL population: QFhb.cau-7DL near marker Xgwm428-7DL was equally 
effective as Fhb1 {11358}. 
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Nanda2419 (S) / Wangshuibai (R): 8 QTLs were identified; those with large effects were associated 
with Xgwm533-3B.3 – Xgwm533-3B.1 (W), Xwmc539-6B (W) and Xs1021m-2B – Xgwm47-2B {10190}. 

Nanda 2419 / Wangshuibai: Backcross-derived NILs with Qfh.nau-2B, Qfhs.nau-3B, Qfhi.nau-4B (syn. 
Fhb4), and Qfhi.nau-5A were developed with Mianyang 99-323 as the recurrent parent {10884}. Type IV 
resistance (proportion of Fusarium-damaged kernels) was attributed to five QTLs, four from 
Wangshuibai. Those with the largest effects included QFdk.nau-2B (from Nanda 2419), QFdk.nau-3B 
and QFdk.nau-4B {10577} with each accounting for more than 20% of the phenotypic variation. 

Ning 7840 / Clark: QTLs were located in chr. 3BS, 2BL and 2AS. The most effective QTL was probably 
in the interval flanked by deletions 3BS-3 and -8 and was close to Xgwm533-3B and Xbarc147-3B 
{0328}. RIL population: Three resistance gene analogue (RGA) sequences putatively assigned to 
chromosome 1AL explained 3.37-12.73% of the phenotypic variation in FHB response among F7 and 
F10 populations {10364}. STS marker FHBSTS1A-160 was developed from one of the RGA. 

Patterson (mod sus) / Fundulea 201R RILS: QTLs accounting for 19% and 13% of phenotypic 
variation were found on chromosomes 1BL (Xbarc8-1BS – Xgwm131-1BL region) and 3AS (Xgwm674-
3A/Xbarc67-3A region) {10114}. Two weak QTLs were possibly associated with chromosomes 3D 
(Patterson allele) and 5AS {10114}. 

Patterson (open florets) / Goldfield (closed florets): RILs: narrow flower opening was correlated with 
FHB resistance. The major QTL effect associated with narrow flower opening and low FHB incidence 
occurred in map interval Xbarc200 – Xgwm210 (29% of variation in FHB incidence); these genes were 
probably located in chromosome 2BS {10243}. 

Pelikan (S) / G93010 (= Bussard / Ning 8026) (R): Qfhs.Ifl-7BS/5BL and Qfhs.Ifl-6BS (probably Fhb2) 
from Ning 8026 reduced disease severity by 30% and 24%, respectively, and by 46% when combined 
{10594}. Other resistance genes were located on chromosomes 1AS (Qfhs.Ifl-1AS from Pelikan), and 
2AL and 7AL (from Ning 8026) {10594}.  
 
PI 672538 (R) / L661 (S): F2:F3 population. QTL identified in chromosomes 2B and 3B. The latter was 
considered different from Fhb1 {11648}. 
 
Renan / Recital: Of the QTLs for resistance detected in the cross all alleles, except QFhs.inra-3A, were 
contributed by Renan. LOD scores and percentages of variation explained by the QTL (R2) were averages 
of three years of field tests {10069}. 

Spark (MR) / Rialto (S): DH population: Of nine QTLs identified across all environments, seven alleles 
for resistance came from Spark and two from Rialto. The largest effect on Type 1 resistance (Xfhs.jic-
4D.2) was associated with the Rht-D1b allele in Rialto which made lines more susceptible. Other QTLs 
occurred on chromosomes 1B (1B.1R), 4D (Qfhs.jic-4D.2), 2A,3A (each, 2 QTLs), 5A and 7A. Xfhs.jic-
4D.2 had little effect on Type 2 resistance {10603}. 
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Soissons (relative resistant) / Orvantis (susceptible): Increased susceptibility associated with the Rht-
D1b allele was further confirmed in crosses of semi-dwarf cultivars Apache, History and Romanus 
{10793}. 

Sumai3 (R) / Y1193-6 (S): RIL population: Three resistance QTL on chromosomes 3BS, 6BL and 2DS 
with R2 values of 0.26, 0.11 and 0.19, respectively; the last was derived from Y1193-6 {11001}.  

SYN1 / Ocoroni DH population: three QTL from SYN1 were identified, QFhs.cim-2D (PVE 25%), 
QFhs.cim-7A (PVE 4.7%) and Qfhs.cim-7A (PVE 4.2%) {11165}. 

Treho (S) / Heyne (MR): RIL population: Three QTLs from Heyne, viz Qfhb.hwwg-3AS (R2, up to 
0.18), Qfhb.hwwg-4DL (R2=0.14-0.23) and Qfhb.hwwg-4AL (R2, up to 0.18) {11005}.  

W14(R) / Pioneer 2684(S) population: QTL in 3BS and 5AS accounted for 33%, 35% and 31% of the 
phenotypic variation for disease spread, kernel infection and DON accumulation in greenhouse 
experiments, and 34% and 26% of variation for FHB incidence and severity in the field {10239}. 
Flanking markers were Xbarc133-3B & Xgwm493-3B and Xbarc117-5A & Xbarc56-5A {10239}. 

Wuhan-1 / Nyubai{10623}: Two QTLs were located on chromosomes 2DL and 3BS (distal) {10020}. A 
QTL for seedling resistance in the Wuhan/Nyubai population was associated with the Qwmc75-5B locus, 
R2 = 0.138. The relationship of this resistance to crown rot resistance was unknown {10624} (see 
Reaction to F. pseudograminearum). 

Wuhan-1 / Maringa:  Field resistance: QTLs were located on chromosomes 2DS, 3BS (proximal) and 
4B {10020}. Resistance to DON accumulation: QTLs were located on chromosomes 2DL and 5DS 
{10020}. 

VA00W-38 (mod. R) / Pioneer26R46 (S): RIL population: Consistent QTL from VA00W-38 detected 
on chromosomes 1BL, 2A, 2DL, 5B, 6A and 7A explained 6.5-21.3% of the phenotypic variation; one 
QTL from 24R46 was identified on chromosome 7A {11022}. Major QTL on 2DL, 6A and 5B decreased 
FHB index, Fusarium damaged kernels, and DON, respectively {11022}. Veery (S) / CJ9306 (R): Four 
QTLs, XQFhs.ndsu-3BS (Xgwm533b – Xgwm493), QFhs.nau-2DL (Xgwm157 – Xwmc-041), QFhs.nau-
1AS (– Xbarc148) and QFhs.nau-7BS (Xgwm400 – Xgwm573) accounted for 31, 16, 10 and 7%, 
respectively, of the average phenotypic variation over three years {10490} 

Wangshuibai / Alondra 'S': A stable QTL was associated with Xgwm533-3B in each of 3 years, QTLs in 
5B (Xgwm335-5B), 2D and 7A were detected in 2 years {10268}.  

Wangshuibai / Annong 8455: RIL population: CIM analysis over 2 years detected QTL for FHB 
response on chromosome 3B (R2=0.17) and 2A (R2=0.12) and for DON levels in 5A (R2=0.13), 2A 
(R2=0.85) and 3B (R2=0.06) {10447}. The regions involved were Xgwm533-3B – Xbarc133-3B, 
Xgwm425-2A, and Xgwm186-5A – Xgwm156-5A {10447}. 
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Wangshuibai / Seri 82: F3:F5 populations: QTL on chromosome 3BS (Xgwm533-3B – Xs18/m12-3B) 
and 2DL (Xgwm539-2D – Xs15/m24-2D) accounted for 17% and 11%, respectively, of the phenotypic 
variance {10264}. 

Wangshuibai (R) / Wheaton (S): QTLs located in chromosome 3BS (Xbarc147-3B, R2=37% & 
Xbarc344-3B, R2=7%), 7AL (Xwms1083-7A, R2=10%) and 1BL (Xwms759-1B, R2=12%) {10200}. 

Wheaton (I) / Haiyanzhong: RIL population: Four QTLs, Qfhb.uhgl-7D [syn. Qhb.hyz-7D], nearest 
marker Xwmc121-7D, R2=0.16-0.2), Qfhb.uhgl-6B.1 [Qhb.hyz-6B.1], R2=0.4), Qfhb.uhgl.6B.2 [Qhb.hyz-
6B.2], R2=0.07), Qfhb.uhgl-5A [Qhb.hyz-5A], R2=0.04-0.07) were from Haiyanzhong, and Qfhb.uhgl-1A 
[Qhb.hyz-1A], R2=0.05) was from Wheaton {10837}. 

Of 54 lines with reported FHB resistance, 6, including CM-82036, Ning 7840 and Wuhan 3, had the same 
5-marker haplotype as Sumai 3, and 4 lines possessed 4 of the markers. Twenty-nine lines, including 
Frontana, had no marker allele in common with Sumai 3, whereas 13 lines had 1 to 3 alleles in common 
with it {10113}. Qfhs.ndsu-3B and the 5 marker loci were placed in 3BS deletion bin 0.78-0.87 {10144}.  

Haplotype diversity among a large number of FHB resistant and susceptible (mainly Canadian) 
germplasms indicated similarities in Asian, Brazilian and other materials {10173}. Brazilian cv. Maringa 
was more similar to Asian types than to other Brazilian lines {10173}. 

For review see {0283}. A review of 52 mapping studies is provided in {10593 

Bobwhite plants transformed with AtNPR1, an Arabidopsis thaliana gene that regulates SAR activities, 
displayed a heritable type II response equal to that of Sumai 3 {10237}. 

Associations between response to FHB caused by F. culmorum and the semi-dwarfing locus Rht-D1 in 
crosses Apache / Biscay, Romanus / Pirat and History  /Rubens (Biscay, Pirat and Rubens carry Rht-D1b) 
were reported in {10574}. Genotypes with the semi-dwarf alleles tended to be more susceptible. }. 

Tetraploid wheat 

Ben*2 / Tunisian 108: BIL population: nine QTL for FHB resistance of which new QTL Qfhb.ndsu-2B 
and Qfhb.ndsu-3BL and Qfhb.ndsu-5A and Qfhb.ndsu-7BL were the most important {11382}. 

Langdon / Langdon (DIC-2A): RICL population: Increased susceptibility of the T. dicoccoides Israel A 
substitution line relative to Langdon was mapped to a 22 cM interval spanned by Xgwm558-2A and 
Xgwm445-2A {10613}. 

Strongfield  /T. carthlicum (Blackbird): Field resistance identified in chromosome 2BL (Xgwm55-2B), 
and 6BL (Xwmc397-6B) (coincident with Fhb2 {10225}. 

T. dicoccum line Td161 crossed to three durum parents: small effect QTL were detected on 
chromosomes 3B, 4B, 6A, 6B and 7B; all except the 6A QTL were located at previously known positions 
{10993}.  
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T. dicoccoides Mt. Gerizim#36 /*2 T. durum Helidur: F6 lines: two QTL for type2 resistance located on 
chromosome 3A (Xbarc45-3A - Xbarc67-3A and 6B (Xs13m22-2 - Xgwm626-6B {11088}. 

Qfhs.crc-2BL {10445}.  tv:  Strongfield {10445}.  ma:  Spanning 16 cM, this QTL peaking on Xgwm55-
2B explained 23% of the phenotypic variation {10445}.  

Qfhs.crc-6BS {10445}.  tv: T. turgidum var. carthlicum cv. Blackbird{10445}.  ma:  Spanning 23 cM 
and peaking on Xwmc397 this QTL accounted for 23% of the phenotypic variation {10445}. 

Qfhs.ifa-5A{10076}.  Associated mainly with resistance to fungal penetration {10073}.  5A {240, 
10076}.  v:  Remus/CM-82036 {10076}.  ma:  Associated with markers Xgwm293-5A, Xgwm304-5A, 
Xgwm1057-5A, Xbarc117-5A, Xbarc186-5A, Xbarc100-5A and Xbarc40-5A {10073}. Fine mapping 
divided this QTL into two components, Qfhs.ifa-5Ac located in the centromere region at 245.9 Mbp and a 
less effective Qfhs.ifa 5AS located at 290 Mbp. Both QTL were significantly associated with higher 
anther extrusion and plant height {11487}.  

Qfhs.fcu-7AL {10401}.  sutv:  LDN-DIC 7A {10401}.  tv:  T. turgidum var. dicoccoides PI 78742 
{10401}.  ma:  Located in an interval 39.6 cM thie QTL accounted for 19% of the phenotypic variation in 
a RIL population of Langdon/LDN-DIC 7A; nearest marker Xbarc121-7AL {10401}. 

Qfhs.ndsu-3AS {10402}.  sutv:  LDN-DIC3A  {10402}.  tv: T. dicoccoides{10402}.  ma:  Located in an 
interval spanning 29.3 cM this QTL accounted for 37% of the phenotypic variation; peak marker, 
Xgwm2-3A{10402}.  

QFhs.pur-2D {10085}.  v:  Alondra{10085}.  ma:  Located on 2DS between SSR markers Xgwm296- 
2D and Xgwm261-2D {10085}.  

QFhs.pur-7El {10489}.  7DS.7DL-7el2 {10489}.  7el2{10489}.  su:  K2630{10489}.  v:   K11695 = 
7DS.7DL-7el2 {10489}; KS10-2 = 7el2S.7el2L-7DL {10489}; KS24-1 and KS24-2 = 7DS.7el2 {10489}.  
ma:  Qfhs.pur-7el2 was flanked by BE445653 and Xcfa2270-7D{10489};  These markers were also 
present in KS10-2{10489}. See FHB7. 

3.11.2. Disease: Crown rot caused by Fusarium pseudograminearum, F. culmorum and 
other Fusarium speciesQTL 

2-49 / W21MMT70: DH lines: Three QTLs fo seedling resistance, viz. QCr.usq-1D.1, and a weaker QTL 
on chromosome 7A from 2-49 and QCr.usq-3B.1 (R2=0.41) from W22MMT70 {10883}. 

2-49 (partially resistant) / Janz (susceptible): DH population: Analysis of partial seedling resistance 
indicated major QTL in chromosomes 1D (R2=0.21) and 1A (R2=0.09) and minor QTL in 2A, 2B (from 
Janz), 4B and 7B {10132}.  
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W21NMT70 / Mendos: DH population: three consistent QTLs for seedling resistance were identified 
with CIM; these were located in chromosome 5D and 2D (resistance alleles from W21NMT70) and 2B 
(resistance allele from Mendos) {10358}.  

Kukri (R) / Janz (S): DH population: Simple interval mapping in the region Pst1 ACG.Mse1 CAC - 
Xgwm251-4B accounted for 48% of the variation in crown rot response {10034}. 

Lang (S) / T. spelta CSCR6 (R): RIL population: tested under controlled conditions with F. 
pseudograminearum and F. graminearum: Qcrs.cpi-3BL from CSCR6, R2=0.49 and Qcrs.cpi-4B from 
Lang R2=0.23 {10703}. Six of 9 NIL pairs made by MAS for Xgwm01081-3B earlier located near the 
3BL QTL {10703} in CSCR6 showed significant differences (P <0.01) in crown rot response 
{10891}.Qcrs.cpi-3BL from CSCR6 was flanked by wPt8438 and wPt9495; R2 up to 0.49, validated in 
other crosses {10723}. Qcrs.cpi-4B from Lang; R2 up to 0.23 {10723}.  Shishoumai (R) / Sanyuehuang 
(S): F2:3 population. Qfcr.sicau.1B-4 – 641.36 – 645.13 Mb – reduced the crown rot response by up to 
39.7% of the phenotypic variation {11674}. 
Sunco / 2-49: DH population: Three QTLs for seedling resistance, viz. QCr.usq-1D.1 and QCr.usq-4B.1 
(R2=0.19) from 2-49 and QCr.usq-2B.1 from Sunco {10883}.  

Sunco / Macon: RIL population: QTLs were located in chromosomes 2B, 3B, 4B and 4D. Qcrs.wsu-3BL 
from Macon and flanked by Xgwm299-3B was the most effective {10932}.  

Sunco / Otis: RIL population: QTLs were located in chromosomes 2B, 3B, 4B and 7A. Qcrs.wsu-3BL 
from Otis was the most effective {10932}. 

UC1110 / PI 610750: RIL population: Three QTL had an additive effect: QFCR.heau-6A (R2 = 0.078 – 
0.102) from UC1110; and QFCR.heau-2A (R2 = 0.052 – 0.070) and QFCR.heau-2D (R2 = 0.072 – 0.093) 
from PI 610750 {11548}. 

 
Wuhan / Nyubai: A QTL for seedling resistance to F. graminearum was associated with the Qwmc75-5B 
locus, R2 = 0.138. The relationship of this resistance to crown rot resistance is unknown {10624}Three 
crosses involving EGA Wylie: Qcrs.cpi-5Ds (R2 = 0.31) and Qcrs.cpi-2DL (R2 = 0.221). Two additional 
QTL on chromosome 4BS were associated with plant height {11243}.Nine NIL sets derived from three 
crosses of Australian wheat cultivars and T. spelta CSCR6: Qcrs.cpi was flanked by Xcfp1822-3B and 
Xgwm181-3B {11244}. 

3.12. Reaction to Heterodera avenae Woll.., H. filipjeva (Madzhidov) Stelter 

Cereal root eelworm; cereal cyst nematode. 

CRE1 

Cre1.  [Cre {1388}].  2BL {1579,1580}.  2B {1388}.  i:  AP = Prins*8/AUS10894 {1579}.  v:  AUS 
10894 {1056}; Beulah {10013}; Chara {10163}; Goldmark {10013}; Goroke {10013}; Kellalac 
{10013}; Loros CI 3779 {10013}; Mira {10163}; Mitre {10163}; Ouyen {10013};  RE8670 {10013}; 
Silverstar {10013}; VI252 {10013}; VI727 {10013}.  ma:  Xglk605-2B - 7.3 cM - Cre1 - 8.4 cM - 
Xcdo588-2B/Xabc451-2B{1579};  A PCR-based assay was developed from Xglk605-2B {1580};  Co-
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segregation with Xcsl107-2B. Four of 6 land varieties possessed Xcsl107-2B. A variant haplotype of 
Xcsl107-2B was present in AUS4930 {10013}; Xcdo36-2B – 7.5 cM – Xbcd1231-2B/XAtPPr5/Xcsl107-
2B/Cre1{10013}. 

CRE2 

Cre2 {238}.  Derived from Ae. ventricosa 10 {238}, {9991}.  6Mv {9991}.  v2:  H-93-8 Cre6 {238}. 
Although H-93-8 is a double Mv(5A), 7Mv(7D) substitution line, Cre2 was presumed to be located in a 
separate undetected translocated 6Mv segment {9991}. 

CRE3 

Cre3.  [CcnD1 {329},Ccn-D1 {328}].  2DL {328}.  v:  Synthetic hexaploids {329}.  dv:  Ae. tauschii 
accessions AUS 18912 {328}; AUS 18913 {328}; CPI 110809 {329}; CPI 110810 {328}.  ma:  Co-
linearity with 2BL for Xcdo-36-2D and XAtPPr5/Xbcd1231-2D/G4/G12/Cre3 (see Cre1) {10013}.  

CRE 

Cre4.  [Ccn-D2 {328},CcnD2 {329}].  2D {328}.  dv:  Ae. tauschii accessions AUS 18914 {329};  CPI 
110813 {328}.  

CRE5 

Cre5 {0107}.  Derived from Ae. ventricosa {0107, 0009}.  [CreX {9, 0183}, QCre-ma2A {11394}.].  
2AS {0107} = 2A-2Nv-6Nv. v: VPM1 {0107};  Many VPM1 derivatives {0107}.  v2:  Madsen Cre9 
{11102}.   
Notable exceptions of lines with Lr37, Sr38 and Yr17, but lacking Cre5 include Trident and Line L22 
{0107}; however a contribution of the Cre5 region was detected in Trident/Molineux {10343}.  su:  
Moisson 6Nv(6D){0183}.  dv: Ae. ventricosa 10 {0183}.  ma:  Associated with the Xgwm359-2A 
(R2=8%) – Xwmc177-2A (R2=7%) region in Trident/Molineux{10343}.  
Two resistance gene analogues similar to the candidate gene Cre3 were isolated from the Ae. ventricosa 
segment carrying Cre5.  
Cre5 conferred resistance to H. avenae but not to H. filipjevi {11394}. 

CRE6 

Cre6 {0138}.  Derived from Ae. ventricosa {0138}.  5Nv {0138}.  ad:  Moisson + 5Nv {0138}.  v:  H-93-
35 {0138}.  v2:  H-93-8 Cre2 {0138}.  

CRE7 

Cre7 {104}.  Derived from Ae. triuncialis {0105}.  [CreAet {0105}].  v:  TR353 derivatives {0105}.  

CRE8 
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Cre8 {220}.  [CreF {138}, {12}].  6BL {0220}, on basis of linkage with Xbcd1-6B and Xcdo347-6B 
{220}.  v:  Barunga {220};  Festiguay {220}, {12};  Frame {220}, {138};  Molineaux {220}.  ma:  
Linked to RFLP loci Xbcd1-6B and Xcdo347-6B. The 6B location of the Xcdo347 probe used in this study 
was confirmed by nulli-tetrasomic analysis{220};  Associated with the Xgwm147-6B (R2 = 24%) – 
Xcdo247-6B (R2 = 12%) region in Trident/Molineux {10343};  The map in {10343} was reversed: Cre9 
was located closer to the end of chromosome 6BL {11081}; Six markers that can be screened by KASPTM 
and wri15 developed from a SNP were reported {11081}. 

CRE9  

Cre9 {11394}.  [QCre-ma7D {11394}].  v:  VPM-1/Moisson 951{11394}.  v2  Madsen Cre5 {11394}; 
VPM-1 Cre5 {11394}.  ma:  Flanked by Xics7D-27-7D and BS00129645 {11394}. KASP markers 
BS00021745, BS00150072, and BS00154302 were developed {11394}.  
Cre9 conferred resistance to Chinese isolates of H. filipjevi but not to H. avenae.  

Temporay designations  

CreR {318}, {133}.  6RL {133}.  ad:  Wheat + 6R {318};  Wheat + 6RL {318};  Various deletion stocks 
{318}.  su:  CS + 6R(6D) {133}.  al:  Rye accession T701-4-6 {133};  Triticale T-701{318}.  ma:  
Cent......XksuF37 3.7 cM – CreR {133};  Deletion mapping indicated CreR was located near Got-R2 
{318}.  

CreX {10486}.  Derived from Ae. variabilis  2AS or 2DS {10486}.  ad:  Line M {10487}.  v:  Line D 
{10486}.  ma: RAPD markers OP021000, OpR41600, OpV3450 {10486}.  

CreY {10486}.  Derived from Ae. variabilis 3BL {590}.  v:  Line X {10487}.  ma:  Co-segregation with 
RAPD OpY161065 {0103} which was converted to SCAR16 {10486}.  
May be the same gene as Rkn-mn1 (see reaction to Meloidogyne naasi). 

QTL 

QCre.pau-1A {10749}.  1AS {10749}.  dv:  T. monococcum Tm 14087 QCre.pau-2A {10749}.  ma:  
QCre.pau-1A was mapped in a 3.6 cM interval in a T. boeoticum Tb 5088 / Tm 14087 RIL population 
and was flanked by Xcfa2153-1A and BE444890 {10749}; R2=0.26{10749}.  
QCre.pau-1A was transferred to tetraploid and hexaploid lines {10749}. 

QCre.pau-2A {10749}.  2AS {10749}.  dv:  T. monococcum Tm 14087 QCre.pau-1A {10749}.  ma:  
QCre.pau-2A was mapped in a 4.00 cM interval flanked by BE498358 and Xwmc358-2A {10749}; 
R2=0.13{10749}.  

Qcre.src-1B was located to the Xwmc719-1B (R2=12%) – Xgwm140-1B (R2=12%) region in 
Trident/Molineux {10343}. 

For review {11309}. 
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3.13. Reaction to Magnaporthe spp. 
3.13.1. Reaction to Magnaporthe grisea (Herbert) Barr: Syn. Pyricularia oryzae 

M. grisea is a pathogen of blast on many graminaceous species, the best known of which is rice. In Brazil 
a related form has become a pathogen of wheat. The wheat pathotype(s) (MoT) is different from those 
attacking other species such as rice, oat, millets and weeping lovegrass. 

RMG1 TraesJAG1D03G00423690; TraesCS1D02G058900; this locus is also named PM24 {11414, 
11632} 

Rmg1 {10461; 10462}.  [Rwt4 {0302}].  1D {10462}.  s:  CS (Cheyenne 1D) {10462}.  v1:  Cheyenne 
{10462}; Norin 26 {10462};  Shin-chunaga {10462}.  v2:  Norin 4 Rmg6 {0302, 11470}.  c  Candidate 
gene encodes a 916 amino acid protein with a wheat tandom kinase (WTK) domain {11632}. 
Rmg1 was present in 87% of surveyed genotypes {11470}.  

RMG2 

Rmg2 {10461}.  7A {10461}.  i:  CS (Thatcher 7A) {10461}.  v2:  Thatcher Rmg3 {10461}. 

RMG3  

Rmg3 {10461}.  6B {10461}.  i:  CS (Thatcher 6B) {10461}.  v2:  Thatcher Rmg2 {10461}.  

RMG4 

Rmg4 {10639}.  4A {10639}.  v:  Norin 4 {10639};  Norin 26 {10639};  Norin 29 {10639};  P168 
{10639};  Shin-chunaga {10639}; T. compactum No. 24 {10639}.  
Confers resistance to Digitaria isolate Dig41 at 26C {10639}. 

RMG5.  

Rmg5 {10639}.  6D {10639}.  s:  CS (Red Egyptian 6D) {10639}.  v:  Red Egyptian {10639}.  
Confers resistance to Digitaria isolate Dig41 at 26C {10639}. 

RMG6.  TraesCS1D02G029900.  

Rmg6 {10948 11504}.  [Rwt3 {11470, 11504}].  1DS {10948}.  v1:  Chinese Spring {10948}; Shin-
Chunaga {10948}, Transfed {11470}.  v2:  Chinese Spring Rmg9 {11504}, Norin 4 Rmg1 {10948, 
11470}.  ma:  Xwmc432-1D – 9.6 cM – RMG6 – 6.6 cM – Xwmc222-1D {10948}; 11.60 – 11.80 Mb 
{11632}.  c:  Candidate gene encodes an NRL with 1,069 amino acids (11632}. 
Rmg6 was present in 77% of surveyed genotypes 11470}. Xwmc432-1D – RMG9 – 5.0 cM – RMG6 – 
Xwmc222-1D {11504}. 
A second gene in chromosome 1D designated Rwt4 {0302} (TraesCS1D02G058900 {11632}) (was 
present in CS and Norin 4. c:  Rwt4 was identified as wheat tandom kinase {11632}.  
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Genes Rwt3 and Rwt4 were detected using hybrids of Triticum-virulent and Avena-virulent pathogen 
isolates.  
Rmg6 and a second gene with a weaker effect conferred resistance to a selected Triticum x Lolium isolate 
{10948}. 

RMG7 

Rmg7 {11046}.  2AL {11083}.  tv: T. dicoccum KU112 {11046};  KU120 {11046};  KU1222 {11046}.  
ma:  Xcfd50-2A – 5.6 cM – Rmg7 – 15.1 cM – Xhbg327-2A {11083}.  c:  The sequence of Rmg7 was 
identical to Pm4a {11735}. Rmg7 has the same specificity as Rmg8 {11735}.  
Rmg7 and Rmg8 recognise the same Avr-Rmg8 effector {11775}. 

RMG8  

Rmg8 {11083}.  2BL {11083}.  bin:  2BL6-0.89-1.00.  v:  S615 {11083}.  ma:  Xwmc317-2B – 12.1 cM 
– Rmg8 – 22.4 cM – Xbarc159-2B {11083}.  c:  The nucleotide sequence of Rmg8 was identical to Pm4f 
{11735}. Rmg8 has the same specificity as Rmg7 {11735}.  
According to {11083} markers linked to RMG8 were independent of those linked to RMG7.  The Pm4a 
allele in some accessions is located in chromosome 2B {11735}.  
Among PM4 alleles Pm4a, Pm4b and Pm4d conferred resistance to both MoT and Bgt; Pm5f conferred 
resistance to MoT but not Bgt, and Pm4f was ineffective against both pathogens {11735}. 

RMG9 

Rmg9 {11504}.  [Rwt6 {11504}.  1D {11504}.  v2  Chinese Spring Rmg6 {11504}.  ma:  Xwmc432-1D – 
RMG9 – 5.0 cM – RMG6 – Xwmc222-1D {11504}. 

RMG10 

Rmg10 {11736}.  2DS {11736}.  v:  Line 6051 (amphiploid Langdon / KU-2097) Permanent genbank 
accession number needed {11736}.  dv:  Ae. taushii KU-2097 {11736}.  ma:  Xbarc-2D – 7.8 cM – Ms-4 
– 7.8 cM – RMG10 – 8.3 cM – MS12 – 4.7 cM – Xwmc503-2D {11736}. 

RMG11 

Rmg11 {11755}.  7AS {11755}.  tv:  T. dicoccum St19, KU-114 {11755}.  ma  IMT_5 – 1.0 cM – 
RMG11 – IMT_6/IMT_7 – 1.1 cM – Xgwm635-7A{11755}. 
The Rmg11 resistance remained effective at 30ºC {11755}.  

Temporary desigations 

RmgGR119 {11652}.  v:  GR119 Rmg8 {11652}. 
 
RmgTd(t) {10949}.  7BL {10949}.  tv: T. dicoccoides KU109 {10949}.  ma: Xhbg338-7B – 10.5 cM – 
Rmg7 {10949}.  
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RmgTd(t) was detected with a white culture of an Avena pathogen isolate backcrossed to a wheat isolate. 
A virulence to RmgTd(t) was completely associated with white color of the pathgen isolate {10949}. The 
white color appeared as a mutant variant during backcrossing. 

The wheat blast pathogen became established on wheat cultivar Anahuac (rmg1 rmg6) in Brazil in the 
mid-1980s.  It was initially avirulent on cultivars such as IAC-5 with Rmg6 but later acquired virulence 
allowing it to attack most wheat genotypes {11470}. 
 

3.13.2. Reaction to Magnaporthe oryzae 

RMG8 

Rmg8.  Rmg8 also confers resistance to the wheat form of the pathogen. Its response is not sufficiently 
effective when present alone, but is enhanced in the presence of RmgGR119 {11263}. 
AVR-Rmg8 was isolated and shown to be a small protein with a putative signal peptide. This protein was 
recognized by both Rmg8 and Rmg7 {11272}.  

RmgGR119 {11263}.  v:  GR119 {11263}. 
RmgGR119 confers resistance to the wheat form of the pathogen and its response is enhanced in 
combination with Rmg8 {11263}. 

Near-isogenic lines with the T2A-2NS translocation from Ae. ventricosa displayed reduced levels of spike 
blast, but there was little effect on seedling leaf blast response {11265}:  v:  Milan; VPM1.  
Wheat cultivars carrying the 2NS translocation from Aegilops ventricosa had 50.4 to 72.3% less head 
blast than those without 2NS when inoculated with an older isolate (MoT) of Magnaporthe oryzae 
(Triticum pathotype) under growth chamber conditions. When inoculated with recently collected isolates 
from wheat, cultivars with 2NS had 64.0 to 80.5% less head blast {11127}. 
A review of wheat blast {11776}. 
 

3.14. Reaction to Mayetiola destructor (Say) (Phytophaga destructor) (Say) 

Insect pest: Hessian fly. 

H1 

H1 {1087}.  i:  Dawson/3*Poso, 6179 {1087}.  v2:  Big Club 43 H2 {1441};  Dawson H2 {166}, {1087};  
Poso 42 H2 {1441}.  

H2 

H2 {1087}.  i:  Dawson/3*Poso, 6232 {1087}.  v2:  Big Club 43 H1 {1441};  Dawson H1 {166}, {1087};  
Poso 42 H1 {1441}.  

H3 
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H3 {156}.  Recessive.  5A  {1105}, {425}.  Based on the location of H9 on chromosome 1AS, H3 may 
also be located on chromosome 1AS {10252, 10231}.  i:  Carol = Newton-207*5/Larned {1107}.  v:  Ace 
{426};  Arthur {426};  Becker {749};  Cardinal {750};  Dual {1273};  Frankenmuth {341};  Georgia 
1123 {426};  GR855 {751};  GR876 {753};  Ike {10252};  Ionia {426};  Larned {824};  Logan {426};  
Monon {157};  Norkan {904};  Ottawa {547};  Purdue B 36162 A13-12 {156};  PI 468960 {1439};  
Redcoat {1273};  Reed {1273};  Riley {1273};  Roland {148};  Russell {426};  Shawnee {547};  Titan 
{747};  Todd {426};  W38 {156}.  v2:  Clara Fay H6 {375}.  ma:  Cosegregation of H3 and a RAPD 
{296}.  
Allan et al. {019} considered that H3 and H4 might be allelic. Also suggested by Shands and Cartwright 
{1317}. Linkage of 10.5 +/- 2% involving H3 and Pm3a in PI 468960 was attributed to a chromosome 
1A/5A translocation {1437}. 

H4H4.  [h4 {1441}].  Recessive.  1AS {11634}.  H4 confered resistance to race A, but not to race B.  v:  
Dixon {1441};  Java {1441}.  ma:  Mapped to interval 6.64 – 728 Mb {11634}. KASP markers 
developed {11634}. 

H5  

H5 {1317}.  Temperature sensitive {1413}.  1AS {1222}.  v:  Abe {162};  Arthur 71 {162};  Beau 
{875};  Downy {1223};  Magnum {10252};  Oasis {1109};  Ribeiro {1317};  Sullivan {1110}.  tv:  
Giorgio 331-4 {1090};  PI 94567-6 {1317};  PI 94571-14 {1317}.  ma:  Cosegregation of H5 and two 
RAPDs {296}.  

H6 

H6 {19}.  Based on the location of H9 on chromosome 1AS, H6 may also be located on chromosome 
1AS {10252,10231}. 5A{425}.  i:  Erin = Newton-207*7/Arthur 71 {1107}; Flynn = Newton-207*7/Knox 
62 {1107}.  v:  Adder {1319};  Benhur {426};  Caldwell {1421};  Compton {1318};  CI 12855 {19};  
Excel {752};  Fillmore {1106};  Knox 62 {426};  Lathrop {426}.  v2:  Clara Fay H3 {375}.  tv:  Purdue 
4835 A4-6 {1105}.  tv2:  PI 94587 H11 H16 {19}.  ma:  Cosegregation with three RAPDs {296}. 

H7 and H8  

H7 & H8 {425}.  Duplicate factors. H7 is located in chromosome 5D  {026}.  v:  Adena {748};  Seneca 
{425,26}. 

H7.  6AS {11511}; 5D {026}.  ma:  Mapped as a major QTL (PVE 0.61 – 0.78) in a 6 Mb interval 
flanked by GBS6A205 and GBS6A215 {11511}.  
With relocation of H7 to chromosome arm 6AS there are issues of overlap with H31. 

H8.  2B {11511}.  ma:  Mapped as a minor QTL (PVE, 0.03 – 0.05) {11511}. 

The H7 and H8 genes were variously described as duplicate {026}, complementary and additive {11511}. 

H9  
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H9 {1420}.  1AS {10252,10231}.  5A {162}.  i:  Iris = Newton-207*7/Ella {1107}.  v:  Ella {875};  Line 
822-34 {162}.  v2:  Elva CI 17714 H10 {162};  Line 812-24 H10 {1421};  Line 817-2 H10 {1421};  
Stella H10 {875}.  ma:  Cosegregation with two RAPDs {296}; STS-Pm – 1.7 cM – SOP005909 – 0.6 cM 
– Xksu11/Xcnl76/Xgdm3 – 0.5 cM – Xgwm176/Xpsp2999/Xcfa2153-1A – 0.5 cM – Xbarc263-1A – 1.2 
cM – H9 - Xwmc24-1A {10231}; Xcfa2153-1A – 0.5 cM – H9 – 0.3 cM – Xbarc263-1A {10252}.  

H10 

H10 {1104}.  May be identical to H9 {10252}.  1AS {10252}. 5A  {162}.  i:  Joy = Newton-
207*3/IN76529A5-3-3 {1107}.  v:  IN76529 {875}.  v2:  Elva CI 17714 H9 {162}; Line 817-2H9 {162};  
Stella H9 {875}.  ma:  Cosegregation with one RAPD and close linkage to another RAPD {296}; 
Xcfa2153-1A – 0.5 cM – H10 – 1.3 cM – Xbarc263-1A {10252}; Xrapd9-2-1000/Xpsp2999-
1A/Xgps7072-1A – 2.2 cM – H10 {10252}. 

H11 

H11 {1422}.  1A {1222}. 1AS {10252}.  i:  Karen = Newton-207*4/IN916-1-3-1-47-1 {1107}.  v:  Kay 
{875,375};  Line 916 {1422};  Line 920 {1422};  Line 941 {1422}.  tv2: T. turgidum PI 94587 H6 H16 
{1422}.  ma:  Close linkage with two RAPDs{296}; Xcfa2153-1A – 0.3 cM – H11 1.7 cM – Xbarc363-
1A {10252}. 

H12  

H12 {1092}.  5A {1098}.  i:  Lola = Newton-207*4/Luso {1107}.  v:  Luso {1092}.  ma:  Cosegregation 
with one RAPD and close linkage of H12 to another RAPD {296}.  

H13 

H13 {1104}.  6DS {10251, 10388}. 6DL {441}.  i:  Molly = Newton-207*7/3/KU221-19/Eagle/ KS806 
{1107}.  v:  AGS 2010 {11008};  AGS 2026 PI 658065 {11008};  KS81H1640HF {441};  Oglethrope PI 
657986 {11008};  PI 562619 {10388}; SW34=Langdon/Ae. tauschii RL 5544 {10388}; T. turgidum var. 
durum cv. Gulab KU 134/Ae. tauschii KU 2076, KU 221-14 {525}; T. turgidum var. persicum 
straminium KU 138/Ae. tauschii KU 2076, KU221-19 {525}.  dv:  Ae. tauschii KU 2076 {525}.  ma:  
Cosegregation with a RAPD{296}; Xgdm36-6D – 2.7 cM – H13/Xcfd132-6D – 1.1 cM – Xcfd213-6D 
{10251}; Xcfd132-6D – 3.7 cM – H13 {10388}. 

H14  

H14 {875}.  5A {875}.  tv:  IN 81601A2-3-3 {875}.  tv2:  ELS 6404-160 H15 {875}.  ma:  
Cosegregation with a RAPD {296}.  

H15 

H15 {875}.  5A {875}.Based on the location of H9 on chromosome 1AS, H15 may also be located on 
chromosome 1AS {10231}.  tv:  IN81602C5-3-3 {875}.  tv2:  ELS 6404-160 H14 {875}. 
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H16  

H16 {1106}.  5A {1098}. 1AS {11058}.  bin:  1AS-3-0.86-1.00.  v:  P921682 {11058}.  tv:  IN 
80164H5-2-9 {1106};  N80164 {1097}.  tv2:  PI 94587 H6 H11 {1106}.  ma:  Cosegregation of H16 and 
a RAPD{296}; Xpsp2999-1A – 3.7 cM – H16 – 5.5 cM – Xbarc263/Xwem6B-1A {11058}.  

H17 

H17 {1090}.  5A {1090}. 1AS {11058}.  bin:  1AS-3-0.86-1.00.  v:  P921680 {11058}.  tv:  PI 428435 
{1090}.  ma:  Cosegregation of H17 and a RAPD {296}; Xpsp2999-1A – 6.27 cM – H17 – 5.1 cM – 
Xbard263/Xwem6B-1A {11058}.  

H18 

H18 {1090}.  v:  Marquillo {426,874};  Redlant {10715};  Shield {198}. 

H19 

H19 {1089}.  tv:  PI 422297 {1089};  This germplasm possesses a second gene which is allelic or closely 
linked with H16 {1089};  IN84702 {1097}.  tv2:  PI422297 H29 {1097}. 

H20 

H20 {25}.  2B {25}.  tv:  Jori {25}. 

H21 H21.  2B {383} = 2BS.2R#2L {389}.  v:  Hamlet = KS89WGRC8 {1312};  KSWR 69-2-4-3 {383};  
KS85HF 011-5 {383}.  ad:  KSWR 297h-1-1-9 {383}.  al:  Chaupon rye {383}.  ma:  A RAPD 
amplified by primer OPE-13 was shown to co-segregate with H21 {9938}; STS primer set SJ07 was 
developed to identify 2RL, and hence H21 {233}. 

H22  

H22 {1199}.  1D {1199}. 1DS {10381}.  v:  KS86WGRC1 {1199}; KS85WGRC01=Ae. tauschii 
TA1644/Newton//Wichita {1199};  PI 572542 {10388}.  ma:  Xgdm33-1D – 1.0 cM – H22 – 0.3 cM – 
Xhor2KV-1D – 0.5 cM – Xgpw7082-1D {10381}.  

H23 

H23 {1199}.  6DS {10251}. 6DL {1199}. 6D{442}.  v:  KS89WGRC03 = TA1642 / 2*Wichita 
{10251,442};  PI 535766 {10388}.  al:  Ae. tauschii TA1642 {10251}.  ma:  H23 – 6.9 cM – XksuH4-
6D{861};  Maps to same region as H13 {10262}. 

H24  

H24 {1199}.  6DL {861}. 3D {1199,442}.  v:  KS89WGRC6 {442};  PI 535769 {10388}.  ma:  H24 – 
5.9 cM – Xbcd451-6D/Xcdo482-6D {861}. 
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H25  

H25.  
6B{384} = T6BS.6BL-6R#1L {389}  v:  88HF16 = WGRC17 {384}.  
4B {384} = T4BS.4BL-6R#1L {389}  88HF79, 88HF80 = WGRC18, 88HF81, 88HF117 = WGRC19 
{384}.  
4A {384} = Ti4AS.4AL-6R#1L-4AL {389}  89HF17, 89HF18, 89HF25, 88HF32, 88HF51, 88HF89 = 
WGRC20 {384}.  
6R.  al:  Balbo rye {384}. 

H26  

H26.  4D {217}. 3DL {10388}.  bin:  3DL3-0.81-1.00.  v:  KS92WGRC26 {217}; SW8 = Langdon/Ae. 
tauschii CIae 25 {10388}.  dv:  Ae. tauschii TA2473 {217}.  ma:  Xcfd211-3D – 7.5 cM – H26 – 2.9 cM 
– Xwgc7330-3D – 4.0 cM – Xgwm3-3D {10388}. Xrwgs-3D – 3.2 cM – H26/Xrwgs11-3D – 1.0 cM – 
Xrwgs12-3D {10846}. 
H26 is very close to H32 {10846}. 

H27 

H27 {235}.  4Mv {235}.  su:  H-93-33 {235}.  al: Ae. ventricosa No. 10 {235}; Ae. ventricosa No. 11 
{235}. 

H28  

H28 {171}.  5A {171}.  tv:  PI 59190 {171}. 

H29  

H29 {1095}.  [H27 {171}].  5A {1097}.  tv:  PI422297 H19 {1097}. 

H30  

H30 {256}.  Derived from Ae. triuncialis {0256}.  v:  TR-3531 {256}.  al:  Ae. Triuncialis {256}. 

H31  

H31 {332}.  5BS {332}.  v:  P961696{332}.  tv:  CI 3984{332}.  ma:  STS marker Xupw4148-5B – 3 
cM – H31 {332}.  

H32 {10137}.  3DL {10137}.  bin:  3DL3-0.81-1.00.  v:  Synthetic W7984 {10137}.  ma:  Xgwm3-3D – 
1.7 cM – H32 – 1.7 cM – Xcfd-3D {10137}; Xrwgs10-3D – 0.5 cM – H32/Xrwgs11-3D – 0.5 cM – 
Xrwgs12-3D{10846}. KASP markers developed {11633}.  
H32 is very close to H26 {10846}. 

H33 
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H33 {10954}.  3AS {10954}.  v:  Line 97211 {10954}.  tv:  PI 134942 {10954}.  ma:  Xgwm218-3A – 
10 & 7 cM – H33 – 28 & 25 cM – Xhbg-3A {10954}. 

H34  

H34 {11018}. [Qhf.hwwg-6B {11018}].  6BS {11018}.  v:  Clark {11018}.  ma:  Flanked by Xsnp921-
6B and Xsnp2745-6B within a 4.5 cM region, R2 = 0.38-0.42 {11018}.  

Halotype analysis was used to postulate Ae. tauschii-derived genes H13, H22, H23, H26 and H32 in a set 
of synthetic wheat lines {10983}. 

H35 in chromosome arm 3BS and H36 in chromosome arm 7AS were named for one major and one 
minor QTL in common wheat line SD06165 {11512}. 

 

Temporary designations:  

Hdic {10262}.  1AS {10262}.  v:  KS99WGRC42 {10262}.  tv  T. dicoccum PI 94641 {10262}.  ma:  
Xcfa2153-1A – 1.4 cM – Hdic – 0.6 cM – Xgwm33-1A {10262}.  

HNC09MDD14.  [Hf-NC09MDD14 {10844}].  6DS {10843}.  v:  NC09MDD14 PI 656395 {10843}.  
dv: Ae. tauschii TA2492 and/or TA2377 {10843}.  ma: Xgdm36-6D – 1.5 cM – 
HNC09MDD14/Xcfd123-6D {10843}; HNC09MDD12 could be allelic to, but is different from, H13 
{10843}.  

HR61 {11008}.  6AL {11008}.  bin:  6AL8-0.90-1.00 {11008}.  v:  26R61 PI 612153 {11008}.  ma:  
Mapped as a QTL (R2=0.63) flanked by Xgwm427-6A and wPt-731936 {11008}. 

HWGRC4 {10251}.  6DS{10251}.  v:  KS89WGRC04 = TA 1695 / 3*Wichita {10251}.  ma:  Allelic with 
H13 {10251}.   

A recombination value of 12.0% between leaf-rust reaction {possibly Lr10} and Hessian-fly reaction in 
Selection 5240 was reported {018}.  

QTL:  

Qhf-hwwg-1A {11018}.  1AS {11018}.  v:  Clark H34 {11018}.  ma:  Closely linked to Xwgm33-1A 
{11018}; Located within a 6 cM region flanked by Xwgm33-1A and Xsnp5150-6B, R2=0.1 {11018}. 

QHf.hwwg-6BS {11635}.  6BS {11635}.  v:  Chokwang {11635}.  ma:  Located to interval 6BS 6.029 – 
10.779 Mb (CS RefSeq v2.0) {11635}. KASP markers developed {11635}. 
 
QHf.hwwg-6BS {11635}.  6BS {11635}.  v:  Chokwang {11635}.  ma:  Located to interval 6BS 6.029 – 
10.779 Mb (CS RefSeq v2.0) {11635}. KASP markers developed {11635}. 
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QH.icd-2A {11510}.  Putatively derived from T. dicoccum {11510}.  2AL.  ma:  Linked with Ax-
94980581I {11510}. 

QH.icd-5B {11510}.  5BS.  tv:  DWHF01 {11510}. 
Possible overlap with H31 {11510}. 

Qhara.icd-6B {11510}.  6BS.  tv:  T. timopheevii subsp. ameniacum derivatives: DWHF02 {11510}; 
Chaoui {11510}; Icamoram7d {11510; Marouane {11510}; Nassira {11510}.  ma:  Linked with Ax-
95181449 {11510}. 

 
Duster (R) / Billings: DH population: QHf.osu.1A.2 (Syn. QHf.osu-1Ad), R2 = 0.88, delimited to a 2.7 
cM region flanked by GBS07851 and GBS10205 {11324}. This was a distinct locus 11.2 cM proximal to 
QHf.osu.1A. 

 
Jagger (S) / 2174 9 (R): RIL population: QHf.osu-1A (Syn. Qhf.osu74 (R2 = 0.70) and QHf.osu-2A (R2 = 
0.18) {11325}. The QTL in chromosome 1A appeared to be co-linear with several previously named H 
genes in tetraploid wheat; the gene in 2A was in repulsion with the 2N segment present in Jagger 
{11325}. 

Mayetiola destructor-tolerance QTL 
 
QHft.nc-7D in chromosome arm 7DS conferring tolerance to Hessian fly in line LA03136E71 is reported 
in {11513}. 
 
Mayetiola-destructor susceptibility gene-1 

 
Mds-1A {112327}.  [Mds-1] {11327}.  3AS {11327}.  v:  No allelic variation demonstrated.  c:  EST 
CD453475, GenBank JN162442; Mds-1A encodes a 151 amino-acid protein with 96% identity with 
HSP16.9 {11327}. Homoeologues are present in chromosomes 3B and 3D. Silencing of Mds-1 
expression caused immunity in otherwise FHB-susceptible genotypes {11327}. 

3.15 Reaction to Meloidogyne spp. 

Root rot nematode, root knot eelworm 

RKN1 

Rkn1{632}.  [Rkn {632}].  6D {10799}.  dv:  Ae. tauschii G3489.  v:  Prosquare, a synthetic hexaploid of 
Produra/Ae. tauschii G3489 {632}.  

RKN2 

Rkn2 {1621}.  Derived from Ae. peregriina (variabilis) {1621}.  [Rkn-mn1 {1621}].  3B {590}.  v: X8 = 
CS/Ae. peregrina No. 1//Rescler/3/Lutin {1620};  X35 {1620, 1621}.  ma:  Co-segregation with RAPD 
OpY161065 and close linkage with several markers including Est-B5 {103};  converted to SCAR Y16 
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{10486};  May be the same as CreY (see reaction to Heterodera avenae) on chromosome 3SV from Ae. 
variabilis translocated to 3BL {10800}.  

RKN3 

Rkn3{10801, 11264}.  Derived from Ae. ventricosa  2NS translocation into 2AS {10801}.  v:  VPM1, 
Lassik (PI 653535) {10801}.  ma:  Resistances to M. javanica and M. incognita mapped to the 2NS 
translocation in BC6F3 near isogenic lines of Anza (PI 638742), Yecora Rojo, and Express with the 2NS 
translocation {10801}.  

3.16. Reaction to Mycosphaerella graminicola (Fuckel) Schroeter, Zymoseptoria tritici 

Disease: Septoria tritici blotch 

STB1 

Stb1.  [Slb1 {1586}].  5BL {10123}.  bin:  FL 5BL-11 - 5BL-14 {10123};  v:  Bulgaria 88 {1586};  
Oasis {1586};  P881072-75-1 {10123};  SO852 {10123};  Sullivan {1586}.  ma:  Close linkage with 2 
RAPD markers at >0.68 and 1.4 cM in P881072-75-1 {10123}; Cent.....Xbarc74-5B – 2.8 cM – Stb1 
{10123}.  

STB2 

Stb2.  [Slb2 {1586}].  1BS {10976}. 3BS {10105}.  v:  Nova Prata {1586};  Veranopolis {1586}.  ma:  
Xgwm389-3B/Xgwm533-3B  –  1.0 cM – Stb2 – 3.7 cM – Xgwm493-3B {10105}; Stb2 is neither on 3BS 
nor linked with Xgwm389-3B {10976}; Xwmc406-1B – 6.0 cM – Stb2 – 5.0 cM – Xbarc008-1B {10976}.  

STB3 

Stb3.  [Slb3 {1586}].  7AS {10556, 11191}. 6D, {10105} (according to {10556} this location is not 
correct.  v:  Israel 493{1586}.  ma:  Xcfa2028-7A – 12.4 cM – Stb3/Xwmc83-7A – 2.1 cM – Xbarc222-7A 
{11191}.  

STB4 

Stb4 {1410}.  7DS {10140}. 7D {326}.  v:  Cleo {1410};  Gene {10010};  Tadinia {10140,1410};  
Tadorna {1410}.  ma:  XAGG/CAT10 – 4.0 cM – Stb4 – 0.7 cM – Xgwm111-7D – 1.4 cM – 
XATCG/CAAA5 .......Cent {10140}; Stb4 – 0.7 cM – Xgwm111-7D {10140}.  
Stb4 segregated independently of Stb1 but its relationship with Stb2 and Stb3 is unknown. Genetic 
analysis of Tadinia indicated single gene segregation (assumed to be Stb4) with a Californian culture but a 
different single gene segregated with South American isolates {10140}. 

STB5 

Stb5 {0186}.  Identified using M. graminicola IPO94269 {0186}.  Derived from Ae. tauschii accession 
37-1 {0186}.  7DS {0186}.  v:  Baldus {11446}; Bezostaya {0187}; Chaucer {11446}; Hereward 
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{0187}; Israel 493 {11446}; Longbow {11446}; Olaf {11446}; Sears' Synthetic {0186}; Senat {11446}; 
Shafir {0}; Veranopolis {11446}; Vivant {0187}.  su:  CS*8/(Syn7D) {0186}.  dv: Ae. tauschii 37-1 
{0186}.  ma:  Rc3 – 6.6 cM – Stb5 – 7.2 cM – Xgwm44-7D – Centromere{186}; Stb6 – 2 cM – 
Xgwm369-3A {0187}.  

STB6 

Stb6 {0187}.  Confers resistance to M. graminicola isolate IPO323 but not to isolate IPO94269 {0187}.  
[TaWAKL4 {11434}].  3AS {0187}.  v:  Amigo {10448}; Arina {10448}; Amada {10448}; Atlas 66 
{10448}; Ble Seigle {10448}; Bon Fermier {10448}; Cadenza {11434}; Chinese Spring {10448}; 
Bezostaya 1 {10495}; Flame {187, 11434}; Gene {10448};  Heines Kolben {10448}; Hereward 
{10448}; Poros {10448}; Senat {10448}; Shafir {10448}; Tadinia {10448}.  v2:  Bulgaria 88 Stb1 
{10448}; Israel 493 Stb3 {10448}; Kavkaz-K4500 Stb7 Stb10 Stb12 {10011}; TE9111 Stb7 Stb11 
{10012}; Veranopolis Stb2 {10448}.  tv  Stb6 is common in T. dicoccum {11434}.  ma:  A resistance 
gene from Senat located at or near the Stb6 locus was mapped 5 cM from microsatellite Xgwm369-3A on 
chromosome arm 3AS {10067};  Xgwm369-3A – 4.3 cM – Stb6 – 3.8 cM – Xgwm132-3A {11434}.  c:  
Encodes a wall-associated receptor kinase (WAK)-like protein {11434}. 

STB7 

Stb7 {0311}.  4AL {0311}.  v:  ST6 = Estanzuela Federal.  v2:  Kavkaz-K4500 Stb6 Stb10 Stb12 
{10011};  TE9111 Stb6 Stb11 {10012}.  ma:  Xwmc219-4A – 0.8 cM – Xwmc-4A – 0.3 cM – Stb7 
{0311}; Stb7 was closer to Xwmc313-4A than to Xwmc219-4A {10011}.  

STB8 

Stb8 {0326}.  7BL {0326}.  v:  Synthetic hexaploid W7984 (parent of ITMI population) {0326}.  ma: 
Xgwm146-7B – 3.5 cM – Stb8 – 5.3 cM – Xgwm577-7B {0326}.  

STB9 

Stb9 {10027}.  Culture IPO89011  2BL{10027}.  v:  Courtot {10027};  Tonic {10027}.  ma:  Xfbb226-
2B – 3 cM – Stb9 – 9 cM – XksuF1b-2B {10027}. 

STB10 

Stb10 {10011}.  Confers resistance to cultures IPO94269 and ISR8036, but not to IPO87019 {10011}.  
1D {10011}.  v2:  Gene Stb5 {11446}; Frontana Stb5 {11446}; Kavkaz-K4500 L.6.A.4 Stb6 Stb7 Stb12 
= JIC.W9995 {10011};  Mentana Stb5 {11446}.  ma:  Associated with Xgwm848-1D {10011}. 

STB11  

Stb11 {10012}.  Confers resistance to isolate IPO90012 {10012}.  1BS{10012}.  v:  JIC W 9996;  
TE9111.  v2:  TE9111 Stb6 Stb7 {10012}.  ma:  Distal to Xbarc008-1B {10012}. 
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STB12 

Stb12 {10011}.  Confers resistance to cultures ISR398, ISR8036 and IPO87019 {10011}.  4AL {10011}.  
v2:  Kavkaz-K4500 Stb6 Stb7 Stb10 {10011}.  ma:  Stb12 was closer to Xwmc219-4A than to Xwmc313-
4A {10011}.  

STB13 

Stb13 {10347}.  Confers resistance to Canadian cultures MG96-13 and MG2 {10347}  7BL {10347}.  v:  
DH line 90S05B*01 {10347};  DH line 98S08C*03 {10347}.  v2:  Salamouni Stb14 {10347}.  ma:  
Xwmc396-7B – 9 cM – Stb13{10347}; Xwmc396-7B – 7 cM – Stb13 {10347}.  

STB14 

Stb14 {10348}.  Confers resistance to Canadian isolate MG2 but not to MG96-13 {10347}  3BS 
{10348}.  v:  DH line 98S08A*09 {10348}.  v2:  Salamouni Stb13 {10347}.  ma:  Xwmc500-3B – 2 cM 
– Stb14 – 5 cM – Xwmc623-3B {10348}.  

STB15 

Stb15 {10341}.  Confers resistance to Ethiopian culture IPO88004 {10341}  6AS {10341}.  v:  Riband 
{10341}.  v2:  Arina Stb6 {10341}.  ma:  Stb15 – 14 cM – Xpsr904-6A {10341}.  

STB16 

Stb16 {10879}.  Seedling and adult plant resistance  [Stb16q {10879}].  3DL {10879}.  v2:  Synthetic W-
7976 Stb17 {10879}.  ma:  Associated with Xgwm494-3D and mapped as a QTL, R2=0.4-0.7 in seedling 
tests and 0.28-0.31 in mature plants {10879}.  

STB17 

Stb17 {10879}.  Adult plant resistance  5AL {10879}.  v2:  Synthetic W-7976 Stb16 {10879}.  ma:  
Associated with Xhbg247-5A and mapped as a QTL, R2=0.12-0.32 {10879}.  

STB18 

Stb18 {10827}.  Confers resistance to IPO0323, IPO98022, IPO98046 {10827}  6DS {10827}.  v2:  
Balance Stb6 Stb11 {10827}.  ma:  Mapped as a QTL located in a 8.8 cM region spanned by Xgpw3087-
6D and Xgpw5176-6D {10827}. 

STB19 

Stb19 {11360}.  Derived from synthetic wheat.  1DS {11360}.  v:  Lorikeet {11360}.  ma:  KASP 
markers snp_4909967 and snp_1218021 {11360}. 

See {11332, 11361} for reviews. 
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Temporary designation 

TmStb1 {11446}.  Resistance to IPO323.  dv:  T. monococcum MDR043 {11446}. 

QTL 

Four QTLs for resistance to Mycosphaerella graminicola were identified in replicated field experiments 
in a double haploid population from Savannah (susceptible)/Senat (resistant). Senat contributed all the 
alleles providing resistance {10067}. 

QStb.riso-2B was mapped on chromosome arm 2BL linked to SSR marker Xwmc175-2B (LOD>5, 
R2>17%) {10067}. 

QStb.riso-3A.2 was mapped on chromosome arm 3AS linked to SSR markers Xwmc489-3A, Xwmc388-
3A and Xwmc505-3A (LOD >4, R2 >18%). Also detected at the seedling stage {10067}. Xgwm369-3A is 
present on chromosome arm 3AS {0187}. A resistance gene from Senat located at or near the STB6 was 
mapped 5 cM from Xgwm369-3A on chromosome arm 3AS {10067}. 

QStb.riso-6B was mapped on the centromeric region between SSR markers Xwmc494-6B and Xwmc341-
6B (LOD >16, R2  >68%). Also detected at the seedling stage {10067}. 

QStb.riso-7B was mapped on chromosome 7B close to SSR marker Xwmc517-7B (LOD>4, R2 >11%) 
{10067}. 

ITMI Population: Three QTL, QStb.ipk-1DS, QStb.ipk-2DS and QStb.ipk-6DS conferred seedling-stage 
resistance to 2 isolates, whereas 2 QTL QStb.ipk-3DL and QStb.ipk-7BL conferred separate adult-stage 
resistances to each isolate {10151}. 

A weak QTL, QStb.psr-7D.1, giving partial resistance to Portuguese isolate IPO92006, was detected in 
the Xcdo475b-7B - Xswm5-7B region in chromosome 7DS {10341}.  

Apache / Balance: Analyses with a panel of M. graminicola cultures identified QTLs on chromosomes 
1BS (Apache, considered to be Stb11), 3AS (Balance, considered to be Stb6), 6DS (Balance, named as 
Stb18), 7DS (Apache, considered to be Stb4) and 7DL (Apache) {10827}. 

Florett / Biscay (S): RIL population: two QTLs for APR were located on chromosomes 3B and 6D 
{10901}. 

Solitar (R) / Mazurka (S): DH population: Resistance under field conditions was associated with QTL 
on chromosomes 5A, 6D and 7D which accounted for 20% of the genotypic variation; all three were 
derived from Solitar, but there was no evidence that Stb6 and Stb11, also present in Solitar, were involved 
{10984}. 

Spelt HRTI1410 (R) / three wheat parents: 135 DH lines: mapped using SNP polymorphisms common 
to all three S parents: four QTL identified on chromosome 5AL (74.2 – 82.4 cM; r2 = 0.18); 4B (52.9 – 
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56.9 cm, r2 = 0.09) contributed by the susceptible parents; and 7B.1 (41.2 – 57.0 cM, r2 = 0.09), and 7B.2 
(58.2 – 67.4 cM, r2 = 0.15) contributed by the susceptible parents {11430}. 

Steele-ND (R) / ND735 (S): RIL population: A consistent QTL (R2=0.1) for seedling resistance flanked 
by DArT markers XwPt-7101 and X377410 was mapped to chromosome 5BL in the region of Stb1 
{10992}. Two other QTLs on chromosomes 1D and 7A were detected in single experiments {10992}.  

Tuareg / Biscay (S): RIL population: two QTLs for APR were located on chromosomes 4B and 6B 
{10901}. 

For a review of qualitative and quantitative resistance {11439}. 
 
3.17. Reaction to Phaeosphaeria nodorum (E. Muller) Hedjaroude (anamorph: 
Stagonospora nodorum (Berk.) Castellani & E.G. Germano); Parastagonospora 
nodorum 

Disease: Septoria nodorum blotch, Stagonospora nodorum blotch. 

3.17.1. Genes for resistance 

SNB1 

Snb1 {856}.  3AL {856}.  v:  Red Chief {856}.  v2:  EE8 Snb2 {856}. 

SNB2 

Snb2 {856}.  2AL {856}.  v2:  EE8 Snb1 {856}.  

SNB3 

Snb3 {1594}.  5DL {1594}.  s:  CS*/Synthetic 5D {1594}.  v:  Synthetic {1594}.  dv:  Ae. Tauschii 
{1594}. 

Temporay names  

SnbTM {856} ,{857}.  3A {857}. 3AL {856}.  v:  Cooker {10210};  Hadden {10210};  Missouri 
{10210};  Red Chief {10210};  811WWMN 2095 {10210};  86ISMN 2137 {10210}.  tv:  T. 
timopheevii/2*Wakooma {856}; T. timopheevii PI 290518. T. timopheevii derivatives: S3-6 {857};  S9-10 
{857};  S12-1 {857}.  ma:  UBC521650 – 15 cM – SnbTM – 13.1 cM – RC37510{212}.  
UBC521650 was converted to a SCAR marker {0212}. 
Allelism of the hexaploid wheat gene and the T. timopheevii SnbTM was suspected but not confirmed. 

QTL 
A QTL analysis of SNB response in the ITMI population found significant effects associated with 
chromosome 1B (probably Snn1) and 4BL, with an interactive effect involving the 1BS region and a 
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marker on chromosome 2B {10009}. An additional QTL on 7BL was effective at a later stage of disease 
development {10009}. 

Arina / Forno: RIL population {10065}. Two QTLs for glume blotch resistance under natural infection 
were identified on chromosomes 3BS and 4BL in. QSng.sfr-3BL was associated with marker Xgwm389-
3B and explained 31.2% of the variation with resistance contributed by Arina {10065}. The 4BL QTL, 
QSng.sfr-4BL, was associated with Xgwm251-4B and explained 19.1% of the variation. Resistance was 
contributed by Forno {10065}. A QTL on 5BL, QSng.sfr-5BL, overlapped with QTLs for plant height and 
heading time {10065}. QSng.sfr-3BS peaked 0.6 cm proximal to Xsun2-3B {10465}. Association 
mapping involving 44 modern European cultivars indicated that the association was retained in a 
significant proportion of genotypes {10465}.  

Br34 / Grandin: Three QTLs with resistance effects from BR34; Qsnb.fcu-5BL.1 (Tsn1), R2 = 0.63, 
Qsnb.fcu5BL.2, R2 = 0.06, and Qsnb.fcu-1BS (vicinity of Snn1), R2 = 0.10 {10458}. QTL analysis of the 
RIL population with Culture Sn6 revealed four QTLs, Qsnb.fcu-2DS (R2 = 0.3 - 0.49) associated with 
Snn2, Qsnb.fcu-5BL (R2 = 0.14 - 0.2) associated with Tsn1, Qsnb.fcu-5AL (R2 = 0 - 0.13) associated with 
Xfcp13-5A, and Qsnb.fcu-1BS (R2 = 0 - 0.11) associated with Xgdm125-1BS {10507}. 

Forno (S) / Oberkulmer spelt (R): Among 204 RILs leaf and glume response were genetically different 
but correlated (R2=0.52). Ten QTLs for glume blotch (SNG) resistance were detected, 6 from Forno. A 
major QTL (R2=35.8%) was associated with q. Eleven QTLs (4 from Forno) affected leaf blotch; 3 of 
these (chromosome 3D, 4B and 7B) with R2>13% were considered potential candidates for MAS 
{10250}. 

HRWSN125 (R) / WAWHT2074 (S): Constant detection of QSnl.daw-2DL for flag leaf resistance, and 
QSng.daw-4BL for glume resistance over two years {10584}.  

ITMI population: A major QTL, coinciding with Snn1, was located in chromosome 1BS (R2 = 0.58, 5 
days after inoculation), minor QTL were found in 3AS, 3DL, 4AL, 4BL, 5DL, 6AL and 7BL {10009}. 
 P91193D1 (partially resistant) / P92201D5 (partially resistant) RIL populations were tested in Indiana 
and Western Australia for glume resistance. Two QTL were identified: Qng.pur-2DL.1 from P91193D1 
(R2 = 12.3 in Indiana and 38.1% in WA, respectively; Xgwm526.1-2D - Xcfd50.2-2D) and QSng.pur-
2DL.2 from P99201D5 (R2 = 6.9% and 11.2%, respectively; Xcfd50.3-2D - wPT9848) {10471}. 

Liwilla / Begra: DH population: Four QTLs, on chromosomes 2B (proximal part of long arm), 3B (distal 
part of short arm), 5B and 5D. A longer incubation period and lower disease intensity were contributed by 
Liwilla {10045}. A QTL, QSnl.ihar-6AL, identified in DH lines of Alba (R) / Begra (S) accounted for 
36% of the phenotypic variance in disease severity and 14% of the variance in incubation period {10143}. 

Salamouni/Katepwa: RIL population: Two QTLs. QSnb.fcu-1A (Snn4) (R2=0.24) and QSnb.fcu-7A 
(R2=0.16) were associated with SNB response to isolate Sn99CH 1A7a {10867}. 
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Tetraploid wheat  
Langdon / Langdon (T. turgidum ssp. dicoccoides Israel-A 5B): QSnb.ndsu-5B located 8.3 cM 
proximal to tsn1 for tan spot resistance; R2 = 0.38 {10597}. 

A summary of QTL analyses is provided in {10726}.  

3.17.2. Sensitivity to SNB toxins (necrotrophic effectors) 

A discussion on the origin and role of host-specific toxins is provided in {10726}. 

TSN1 

Tsn1.  Sensitive to SnToxA, which is functionally identical to Ptr ToxA {10459}.  v:  Cheyenne {7};  
Forno {10725};  Hope {7};  Jagger {7};  Kulm {10458, 10030, 346};  ND495 {7};  Timstein {7};  
Trenton {315}.  dv:  Two Ae. speltoides accessions {10756}.  tv:  Langdon {10458};  Some T. 
dicoccoides accessions {10756}.  c:  Tsn1 has 8 exons and a S/TPK-NBS-LRR structure; all three 
domains are required for function and TSN1 protein does not interact directly with ToxA {10756}.  
See reaction to Pyrenophora tritici repentis {10458}. 

tsn1 {10207}, {346}.  Insensitivity (disease resistance) is recessive {346}.  5BL {346}.  v:  AC Barrie 
{10153};  AC Cadillac {10153};  AC Elsa {10153};  BR34 {7};  CEP17 {7};  Chinese Spring {7};  Erik 
{10030, 7};  Hadden {10155};  Laura {10153};  Line 6B-365 {10155};  Red Chief {10155};  1A807 {7};  
1A905 {7}; Synthetic W-7976 = Cando/R143/Mexicali 'S'/3/Ae. squarrosa C122.  v2:  Grandin  Snn2 
Snn3 {10507}.  tv:  Altar 84 {7};  D87450 {7}; T. dicoccoides Israel A {10506}.  ma: Xbcd1030-5B – 
5.7 cM – tsn1 – 16.5 cM – Xwg583-5B{346};  – 3.7 cM – Xbcd1030-5B{7}; Xfgcg7-5B – 0.4 cM – 
Tsn1/Xfcg17-5B – 0.2 cM – Xfcg9-5B{10207}; Xfcg17-5B – 0.2 cM – Tsn1 – 0.6 cM – Xfcg9-5B{10207}; 
Xfcp1-5B and Xfcp2-5B delineated Tsn1 to an interval of about 1 cM {10337}. Tsn1 was placed in a 2.1 
cM region spanned by XBF483506 and XBF138151.1/XBE425878/Xfcc1/XBE443610 {10413};  This 
interval was reduced to 0.07 cM between Xfcp620-5B and Xfcp394-5B {10724}.  
Australian cultivars with Tsn1 and tsn1 are listed in {10540}. 
Tetraploid wheat 
In a reevaluation study Faris and Friesen {10688} attributed all of the variation in SNB response to the 
presence or absence of SnTox1. 

Genotype list in {10724}. 

snn1tsn1.  Atlas 66 {10458}; BR34 {10458}; Erik {10458}; Opata 85 {10458}; ND688 {10458}.  

SNN1 

Snn1 {10008}.  TaWAK {11341}.  Sensitivity to SnTox1 is dominant {10008}  1BS {10008}.  bin:  
1BS.sat.18.  s:  CS-DIC 1B {10008}.  v:  CS {10008};  Grandin {10008};  Kulm {10008};  M-6 
{10960};  ND495 {10008}.  ma:  Snn1 – 4.7 cM – XksuD14-1B {10008}; XksuD14.2-1BS – 0.4 cM – 
Snn1/XBE498831/XBF474204 – 0.4 cM Xpsp3000-1BS/XBE422980/XBE637568/ZBE605202 {10727}; 
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XksuD14.2 – 0.34 cM – Snn1/XBE498831/XBF474204 – 0.12 cM – XBF29322 – 0.04 cM – Xpsp3000-
1BS/XBE422980/XBE637568/XBF605202 {10727};  Xfcp618-1B – 1.9. cM – Snn1 – 0.16 cM – Xfcp624-
1B {11433}  KASP marker Bs00093078_51 was developed at Wang map position 8.361 in the UK 
MAGIC population {11133}.  c:  Snn1 encodes a wall-associated kinase (WAK) {11341}. GenBank: 
KP091701.  
Lebsock durum carried an intact Snn1 but it was not expressed {11433}. 
Snn1 was present in some T. dicoccum accessions, 73% of durum accessions and 16% of common wheat 
accessions {11341}.  

snn1.  i:  CS*/T. dicoccoides 1B {10008}.  su:  CS/Hope 1B {11341}.  v:  Br34 {10008};  Erik {10008};  
Opata 85 {10008}.  

SNN2 

Snn2 {10507}.  Sensitivity to SnTox2 is dominant {10507}.  2DS {10507}.  v:  BG223 {10507}.  v2:  
Grandin Tsn1 Snn3 {10507}.  ma:  Xgwm614-2D – 7.6 cM – Snn2 – 5.9 cM – Xbarc95-2D {10507}; 
XTC253803 – 3.6 cM – Snn2 – 0.4 cM – Xcfd-2D {10724}.  

snn2.  v:  Atlas 66 {10724};  Br34 {10507};  Cheyenne {10724};  Chinese Spring {10724};  Jagger 
{10724};  Opata 85 {10724};  Salamouni {10724};  TAM 105 {10724}.  

SNN3 

Snn3-B1.  Snn3 {10507, 10728}.  Sensitivity to SnTox3 is dominant {10728}  5BS {10507, 10728, 
11637}.  bin:  5BS-6{10507}.  v:  BG220 {10960}; Hope {11637}; Katepwa {11637}; Opata 85 
{11637}; Timstein {11637}; Sumai 3 {11637}. 39% of a panel of wheat accessions {11637}.  dv:  2.4% 
of a panel of Ae. speltoides accessions {11637}.  v2:  Grandin Tsn1 Snn2 {10507, 10728}.  ma:  Snn3 – 
1.4 cM – Xcfd20-5BS {10507}.  

Snn3-D1 (11637}.  5DS {116373}.  dv:  Ae. tauschii TA2377 {11637}. 12% of a panel of Ae. tauschii 
accessions {11637}.  ma:  Xbarc130-5D – 1.3 cm – SNN3-B3/Xcfd18/Xhbg-5D – 1.3 cM – XBE446811 – 
1.6 cM – Xgwm190-5D {11637}. 
These likely homoeologous genes (Snn3-B1 and Snn3-D1) recognize the same pathogen effector (toxin) 
{11637}. 
 

snn3. v:  BR34 {10507}.  

SNN4 

Snn4 {10725}.  Sensitivity to SnTox4 is dominant {10725}  1AS {10725}.  bin:  1AS3-0.86-1.00 
{10725}.  v:  Arina {10725};  Katepwa {10867};  Salamouni {10867}.  ma:  XBG262267/ – 0.9 cM – 
Snn4 – 1.6 cM – Xcfd58.1-1AS {10725}.  

snn4.  v:  Forno {10725}.  
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SNN5 

Snn5 {10925}.  4BL {10925,11205}.  bin:  4BL5-0.85-1.00.  tv:  T. carthlicum PI 94749  {10925}.  tv2:  
Lebsock Tsn1 Snn3-B1 {11203}.  ma:  Xbarc163/Xcfd-4B – 13.3 cM – Snn5 – 2.8 cM – Xwmc349-4B 
{10925}.  

snn5.  tv:  LP749-29 {10925}; PI 94749 {10925}. 

SNN6  

Snn6 {11206}.  6AL {11206}.  v:  Opata 85 {11206}; RIL ITMI137 {11206}.  ma:  Flanked by 
XBE424987 and XBE403326 {11206}. 

snn6.  v:  Synthetic W-7984 {11206}.   

SNN7  

Snn7 {11292}. Sensitive to SnTox7.  2DL {11292}.  bin:  2DL-9-0.75-1.00.  v:  Timstein {11292}. ma:  
Xcdf267-2D – 2.3 cM – Xgdm6-2D – 0.9 cM – Snn7/Xcfd44-2D – 1.8 cM – Xgwm349-2D – 11.3 cM – 
Xgwm311-2D {11292}. 

QTL  

QSnn.niab-5A.1 {11133}.  v:  Identified in the UK MAGIC population {11133}.  

ITMI population: A major QTL, coinciding with Snn1, was located in chromosome 1BS (R2 = 0.58, 5 
days after inoculation), minor QTLs were found in 3AS, 3DL, 4AL, 4BL, 5DL, 6AL and 7BL {10009}. 

P91193D1 / P92201D5: RIL population: tested in USA and Australia: QSng.pur-2DL.1 from P91103D1, 
R2=0.123 (Indiana) and 0.381 (South Perth); and QSng.pur-2DL.2 from P92201D5, R2=0.069 (Indiana) 
and 0.112 (South Perth) {10776}. 

Host sensitivity genes in US southern winter wheats are listed in {1241}. 

3.18. Reaction to Pratylenchus spp. 

Root lesion nematode; prats 

3.18.1. Reaction to Pratylenchus neglectus 

RLNN1 

Rlnn1 {0121, 0374}.  7AL {0121}.  v:  Excalibur {0121};  Krickauff {0121}.  ma:  Mapped between 
markers Xpsr121-7A and Xgwm344-7A and 9 cM proximal to Lr20 {0374}.  

3.18.2. Reaction to Pratylenchus thornei 
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QTLs were located on chromosomes 2BS and 6DS {0122, 11501}. These QTL were fine mapped in a 
Sokoll (MR) / Krichauff DH population and further crosses: QRlny.sk-2B was mapped to a 1.4 cM/2.19 
Mbp region; QRLnt.sk-6D was mapped to a 3.5 cM/1.77 Mbp region {11501, 11502}. 

3.19. Reaction to Puccinia coronata var. hordei. 

CR1 

Cr1 {10956}.  5DL {10956}.  v:  Chris CItr 14108 {10956}.  ma:  Xwmc41.2-5D – 11.3 cM – Cr1 – 16.8 
cM – Xgdm63-5DL {10956}.  

3.20. Reaction to Puccinia graminis Pers. 

Disease: Black rust; black stem rust; stem rust. 
Note: Some near-isogenic lines are based on Marquis. The genes present in the Marquis background are 
not listed for those NILs. 

SR1.  Deleted - see Sr9d.  

SR2 

Sr2 {677}.  Recessive allele. Adult plant response.  3BS {499}.  s:  CS*6/Hope 3B {499}.  v2:  HD2009 
Sr30 {10632};  Warigo Sr7b Sr17 {499};  Suneca Sr8a Sr17 {485};  Hopps Sr9d {499};  Lancer Sr9d 
Sr17 {679};  Scout Sr9d Sr17 {679};  See also {1040,499}.  ma:  Xgwm389-3B – 2.7 cM – Sr2 – 1.1 cM 
– Xglk683-3B{358}; .....Xglk683(STS Xsun2-3B) – 0.5 cM – Xgwm533-3B {358};  These SSR loci were 
located within FL 0.87 - 0.75 {0358};  All 27 lines with Sr2 carried a 120 bp allele at Xgwm533-3B;  A 
120 bp allele in 4 cultivars lacking Sr2 differed from the Sr2 associated allele at 4 base positions {0358};  
STMs for the Xgwm533-3B locus had increased specificity as markers for Sr2 {10142};  Tightly linked 
CAPS marker csSr2 based on a SNP proved superior to Xgwm533-3B as a marker for Sr2 {10786}; 
Xgwm389-3B – 3.0 cM – Sr2/csr2 – 0.4 cM – Xgwm389-3B – 2.0 cM – Fhb1/UMN10/UMNv2 (coupling) 
{11210};  Bs0006276 – 0.3 cM – Yr57 – 1.3 cm – Xgwm389-3B – 6.1 cM – csSr2 – 2.6 cM – Xgwm533-
3B {11480}.  
Sr2 is associated with pseudo-black chaff {742, 1102} and seedling chlorosis (see {149}) and occurs very 
frequently in commercial wheats, especially in germplasm produced and distributed by CIMMYT. Sr2 
has probably remained effective since the 1920s.  
Lines combining Sr2 and Fhb1 are reported in {11170}; Sr2 was located about 2 cM distal to Fhb1.  

SR3 & SR4 

Sr3 & Sr4 {47}.  v:  Marquillo - based on early data. No stocks for the individual genes available.  

SR5 

Sr5 {47}.  6D {1308}, {939}, {1626}. 6DS {939}.  i:  I Sr5-Ra {828};  I Sr5-Rb {828}; Sr5/7*LMPG 
{685}; Thatcher/10*Marquis {686}. s: CS*6/Thatcher 6D {1308}.  v:  Admonter Fruh {72};  Dacia 
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{979};  Dong-Fang-Hong 2 {564};  Dong-Fang-Hong 6 {564};  Feng-Kong {563};  Hochzucht {46};  
Hybrid 80-3 {72};  Jubilejna {68};  Juna {76};  Kanred {1308};  Ke-Fang 1 {564};  Stabil {72};  Viginta 
{71};  Vrakunski {72}.  v2:  Amika Sr31 {76};  An-Hewi II Sr8a {564};  Beijing 10 SrTmp {564};  
Dong-Xie 3 Sr31 {563};  Dong-Xie 4 Sr31 {563};  Erythrospermum 974 Sr8a {72};  Glenlea Sr6 Sr9b 
{327};  Istra Sr31 {76};  Jing-Hong Sr17 {564};  Jing-Hong 2 Sr17 {564};  N.P.789 Sr11 {1555};  Qing-
Chung 5 Sr6 Sr11 {564};  Solaris Sr31 {76};  Victor Sr6 Sr8a {979}.  ma:  Flanked by Xbarc183-6D and 
wPt3879 {11232}. 

SR6 

Sr6 {687}.  [SrKa1 {1167}].  2D {1577, 1293, 1308}. 2DS {942}.  bin:  2DS5 - 0.47 - 1.00 {10714}. i:  
I Sr6-Ra {828}; Kenya 58/10*Marquis {675, 468}; Sr6/9*LMPG {685}.  s: CS*5/Red Egyptian 2D 
{1308}.  v:  Africa 43 {669};  Eureka {468, 844};  Kenya stocks {1167, 669, 1557, 687, 673, 670, 689};  
McMurachy {679};  Shield {198}.  v2:  Bowie Sr8a {1553};  Eurga Sr11 {1553};  Fortuna Sr7a {679};  
Gamut Sr9b Sr11 {1555};  Glenlea (heterogeneous) Sr5 Sr9b {327};  Kentana 52 Sr7a {1577, 678};  
Kiric 66 Sr7b {979};  Lerma Rojo 64 Sr7b Sr9a {979};  No. 466 Sr9b Sr10 {689};  Red Egyptian Sr8a 
Sr9a {1308}, {687};  Siete Cerros Sr11 {33};  Victor I Sr5 Sr8a {979}.  ma:  Sr6 – 1.1 cM – Xwmc453-
2D – 0.4 cM – Xcfd43-2D {10714}; Xgwm102-2D – 0.9 cM – Xgpw94049-2D – 5.6 cM – Sr6z –  1.5 cM 
– Xwmc453/Xcfd43-2D {10870}. See also {1553}. 

SR7 [Sr7 {830}].  4AL {1308}, {939}. 4A {1293}, {830}, {671}. 

Sr7a {830}.  [Sr7 {687}].  i:  Egypt Na101/6*Marquis {468}; Kenya 117A/6*Marquis {468}; 
Sr7a/9*LMPG {685}.  s:  CS*7/Kenya Farmer 4B {830}; CS*8/Sapporo 4B {830}.  v:  Egypt Na101 
{669};  Jagger Sr38 {11420};  Kenya stocks{669}, {687}, {673}, {670}, {689};  Sapporo Haru Komugi 
Ichigo {689}.  v2:  Egypt Na95 Sr9b Sr10 {687};  Fortuna Sr6 {679};  French Peace Sr9a Sr13 {680};  
Kentana 52 Sr6 {689};  Khapstein Sr13 Sr14 {674};  W3746 Sr12 {1371}.  ma:  Xwmc313-4A – 
SNP1067 – 0.8 cM – Sr7a – 2.7 cM – Xbarc78-4A – 2.7 cM – SNP7126 {11420}. 

Sr7b {830}.  i:  I Sr7b-Ra {828}.  v2:  Warigo Sr2 Sr17 {499};  Kiric 66 Sr6 {979};  Roussalka Sr8a 
{979};  Red Bobs Sr10 {308};  Nell Sr17 {1565};  PI 177906 Sr28 SrTmp {11419};  Spica Sr17 {939};  
Marquis Sr18 Sr19 Sr20 {675}, {830}.  ma  Located at 147-164 Mb in the Wang et al. (2014) consensus 
map {11419}. 

SR8  6A {1293, 1308}. 6AS{929}, {1368}. 

Sr8a {1368}.  [Sr8 {687}].  i:  I Sr8a-Ra {828}; Red Egyptian/10*Marquis {686}; Sr8a/9*LMPG {685}.  
s:  CS*5/Red Egyptian 6A {1308}.  v:  Harvest {11418};  Marimp 3 {979};  Mentana {844};  Strampelli 
{979}.  v2:  An-Hewi II Sr5 {564};  E-Gan-Zao Sr17 {564};  Erythrospermum 974 Sr5 {72};  Frontana  
b {689};  Golden Valley Sr17 {979};  Hartog Sr2 Sr12 {127};  Magnif G Sr9b {689};  Pitic 62 Sr9b 
{33};  PI 177906 Sr7b SrTmp {11419};  Red Egyptian Sr6 Sr9a {687};  Rio Negro Sr9b {689};  
Roussalka Sr7b {979};  SD4297 Sr28 {11418};  Suneca Sr2 Sr17 {485};  Victor 1 Sr5 Sr6 {979}.  ma:  
Terminally located; SNP markers within 2 cM {11416}. Sr8a – 2.2 cM – Xgwm459-6A {11418}. 
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Sr8b {1368}.  [SrBB].  v:  Barleta Benvenuto {1368};  Klein Titan {1368}.  v2:  Bezostaya Sr5 {979};  
Klein Cometa Sr30 {1368}.  tv:  According to Luig {841} one of the genes in Leeds is Sr8b.  tv2:  
Arrivato Sr9e Sr13 {10607}.  ma:  Sr8b – 4.6 cM – Xgwm334-6A {10607}.  
This could be the gene located on chromosome 6A in ST464-A1 {10473} and one of the genes present in 
ST464, a parent of Leeds. 

Sr8155B was also reported to be located at locus {11758}. 

SR9 [Sr9 {676}].  2B {1308}, {671}, {677}, {828}. 2BL{946}, {1582}, {1307}, {944}, {951}}.  
TraesCS2B03G1225900.  c: Encodes an NB-LRR immune receptor containing a long LRR domain 
{11747}. Ortholog of Sr21 with about 85% identity {11747}. 

Sr9a {676}.  [Sr9 {687}].  i:  ISr9a-Ra {828}; Red Egyptian/10*Marquis {686}; Sr9a/9*LMPG {685}.  s: 
CS*4/Red Egyptian 2B {1308}.  v2:  Red Egyptian Sr6 Sr8a {687};  French Peace Sr7a Sr13 {680};  
Excel Sr8a Sr17 {752}.  ma:  Xbarc101-2B/Xgwm12-2B – 2.7 cM – Xgwm47-2B – 0.9 cM – 
Sr9a/Xwmc175-2B {10472}.  

Sr9b {468}.  [SrKb1 {468}, Sr9 {687}].  i:  Kenya 117A/10*Marquis {686}; Sr9b/10*LMPG {685}.  s: 
CS*7/Kenya Farmer 2B {939}.  v:  Gamenya {844};  Kenya stocks {669}, {1557}, {687}, {673}, {67}, 
{689}.  v2:  Egypt Na95 Sr7a Sr10 {636};  Festival Sr15 {1553};  Frontana Sr8a {689};  Gamut Sr6 
Sr11 {1555};  Glenlea Sr5 Sr6 heterogeneous {327};  Kenora Sr15 {1553};  Magnif G Sr8a {689};  No. 
466 Sr6 Sr10 {689};  Pitic 62 Sr8a {33};  Rio Negro Sr8a {689};  Robin Sr11 {879};  Veadeira Sr10 
{687}. See also {1553}.  c:  SR9B differs from SR9H and SR9G by different single amino acids 
{11747}.  

Sr9c.  Originally reserved for Sr36, but later deleted.  

Sr9d {678}, {831}.  [Sr1 {676}, {47}, {677}].  i:  Hope/10*Marquis {677}; H-44/10*Marquis {677};  I 
Hope 2B-Ra {828}; Sr9d/8*LMPG {685}.  v:  Hopps Sr2 {1040}.  v2:  Lancer Sr2 Sr17 {679};  Scout 
Sr2 Sr17 {679}.  tv:  Arnautka {939};  Mindum {939};  Spelmar {939}.  

Sr9e {951}.  Srv {1391}, Srd1v {642}, SrKn {11590}.  TRITD2Bv1G223210.  v:  Line Td31-5R 
PI700734 {11514, 11590};  SST 16 {1324};  SST 33 {785};  SST 66 {785};  SST 3R {1324};  Vernstein 
{845}.  v2:  Combination III Sr36 {841};  Sunstar Sr8a Sr12 {939}.  tv:  ST464-A2 {10473};  Svevo 
{11590};  Vernal emmer {1391};  CI 7778 {845}; Sr9e occurs in many tetraploid wheats {1378, 939}.  
tv2:  Arrivato Sr8b Sr13 {10607};  Kronos Sr13 {11590};  ST464 Sr13 {10473}.  ma: Xgwm191-2B – 
5.5 cM – Sr9e – 0.7 cM – Xgwm47-2B {10607}.  SrKn was mapped to a 0.29 cM region flanked by 
pku4856F2R2 and pku4917F3R3 {11590}. 

Sr9e_h1.  v:  Vernstein {11747}.  tv:  CI 7778 {11747}. 
Sr9e_h2.  tv:  Kronos and other lines with Sr9e {11747}. 
Haplotypes _h1 and _h2 code for proteins with several amino acid differences {11747}.  
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Sr9f {826}.  v:  Chinese Spring {826};  Not present in the near-isogenic ISr9a-Ra {826}. Deleted 
{11747}. The Sr9f homolog protein in CS is non-functional indicating that the gene named Sr9f in CS is 
not an Sr9 allele {11747}. 

Sr9g {965}.  s:  CS*7/Marquis 2B Sr16 {965}; CS*4/Thatcher 2B Sr16 {965}.  v2:  Celebration Sr12 
Sr16 {965};  Eagle Sr26 {842};  Hochzucht Sr5 Sr12 {965};  Lee Sr11 Sr16 {965}.  tv:  Acme {965};  
Iumillo {965};  Kubanka {965}. See also {504}.  c:  SR9G differs from SR9H by a single amino acid 
{11747}. 

Sr9h {11010}.  [SrWeb {10858}, SrWLR {11485}.].  2BL {10858, 11010}.  v:  Matlabas {10058, 
11486};  RL6203 {11010}.  v2:  Gabo 56 CI 14035 Sr11 {11010};  Gabo CI 12795 Sr11 {11010};  
Timstein CI 12347 Sr11 {11010};  Webster RL6201 Sr30 {10858}.  ma:  Xgwm47-2B – 1.4 cM – SrWeb 
– 12.5 cM – Xwmc332-2B{10858}; wPt-3132 - 1.9 cM - Sr9h - 1.9 cM - wPt-8460{11010}; Sr9h - 20.7 
cM - Sr28 {11010};  Xgwm47-2B – 1.8 cM – Sr9h (SrWLR) – 7.0 cM – Xwmc332-2B {11485}; AWA543-
HRM – Sr9h – Xgwm47-2B.  
Although {11149} concluded that Sr28 was present in VL404 and Janz it is more likely that the gene 
described is the linked gene Sr9h. Sr9h was frequently present in landraces with field resistance to early 
isolates of the Pgt race Ug99 group {11147}. 

SR10 

Sr10 {687}.  2B {686}, {939}.  i: Egypt Na95/4*Marquis {468}.  v:  Federation {939};  Geneva {1412};  
Hazen {49};  Kenya stocks {669}, {687}, {673}, {670}.  v2:  Egypt Na95Sr7a Sr9b {687};  No. 466 Sr6 
Sr9b {689};  Red Bobs Sr7b {308}.  

SR11 

Sr11 {468}.  [Sr11 {687}, Sr12 {687}]. 6BL {1297}. 6B {1309, 1293, 671, 1143}.  i:  I Sr11-Ra {828}; 
Lee/10*Marquis {686}.  s:  CS*7/Kenya Farmer 6B {830}; CS*9/Timstein 6B {1308}.  v:  Charter {844};  
Flevina {72};  Gabo {687};  Kenya stocks {1557, 673, 670, 844};  Sonora 64 {33};  Sylvia {71};  
Timstein {1308, 687};  Tobari 66 {33};  Yalta {844}.  v2:  Charter Sr9h {11177};  Eurga Sr6{1553};  
Gamut Sr6 Sr9b {1555};  Lee Sr9g Sr16 {687};  N.P.790 Sr5 {1555};  Qing-Chung 5 Sr5 Sr6 {564};  
Robin Sr9b {879};  Prospect SrWld {197};  Trident Sr38 {11177};  See also {1553}.  ma:  
KASP_6BL_IWB46893 – 0.3 cM – Sr11/KASP_6BL_IWB10724 – 0.3 cM – KASP_6BL_IWB72471 
{11177}.  
A resistance gene allelic with Sr11 was found in Chinese Spring {938}, but the P. graminis culture for its 
detection was lost. 

SR12 

Sr12 {1332}.  Recessive.  3BS or centromeric region {11103}, {682}, {968}, {1332}. 3BL {11104}.  s: 
CS*7/Marquis Selection 3B Sr16 {1332}; CS*5/Thatcher 3B Sr16 {1332}.  v:  Marquillo {682};  
Tincurrin {939};  Windebri {939}.  v2:  Condor Sr8a {11105};  Celebration Sr9gSr16 {939};  Condor 
Thatcher Sr5Sr9gSr16 {939};  RL6058 (a Thatcher derivative) {11104};  W3746 Sr7a {1371}.  tv:  
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Postulated for several durums {1378}.  ma:  IWA6086 – Sr12 – IWA4613 {11104}.  
Sr12 is more widespread and probably more effective in conferring resistance than is usually 
acknowledged {939}. Although the association of field resistance and Sr12 was not definitive allelism or 
close linkage is clearly involved {11104}. 

SR13   

Sr13 {674.  ma:  Xwmc59-6A – 5.7 cM – Sr13 {10607}; CD926040 – Sr13 – BE471213{10777}; 
CD926040 – SR13 – BE471213 {10777}; Markers Xgwm427-6A and AFSr13S (proximal) and Xdupw-6A 
(distal) showed variable but close (<10 cM) linkage with SR13 in six durum crosses – these markers were 
variously applicable across durum backgrounds, but only Xgwm427-6A was variable in a range of 
hexaploid derivatives with Sr13 likely originating from a single source {11146}.  c:  Sr13 was identified 
as a CC-NBS-LRR gene with three resistance haplotypes in two specificities {11217}; later, four 
resistance haplotypes and four specificities {11584}.   

Sr13a {674}, {11217}, {11584}.  6AL {929}.  bin:  6AL-8.  i:  Khapstein /9*LMPG {685}, {11217}; 
Khapstein / 10*Marquis Sr7b {686}; Sr13/9*LMPG {685}.  v2:  Khapstein Sr7a Sr14 {674}; Machete 
Sr2 {10607}.  itv:  Rusty-KL-B {11584}; Rusty-KL-C {11584}.  tv:  Cando {11584}; Durox {11584}; 
Grenora {11584}; Kronos PI 576168 {11217}; Lakoto {11584}; Maier {11217}; Mountrail {11584}; 
Renville {11217}; Strongfield {11584}; Transend {11584}; Wells {11584}.  tv2:  Khapli Sr7a Sr14 
{674}.  c: KY825225 (Resistance haplotype R1) {11217}. 

Sr13b {11217, 11584}.  itv:  Im-C2 {11584}; Im-7B {11584}; Rusty-14803 {11584}. tv:  Ben {11584}; 
Botno {11584}; Calvin {11584}; Carpio {11584}; D99656 {11217}; D15143 {11584}; Joppa {11584}; 
Kofa PI 584336{10777; 11217}; Lebsock {11584}; Leeds Sr92 Sr8b {11584}; Lloyd {11584}; Medora 
PI 496260 {10777, 11217}, CItr 7777 {11584}; Munich {11584}; ND Grano {11584}; ND Riveland 
{11584}; Pierce {11584}; Rugby {11584}; Sceptre {10777, 11584}; Svevo {11584}; T. carthlicum PI 
387696 {11584}; T. polonicum CItr 14803 {11584}; Tioga {11584}; Vic {11584}; Ward {11584}.  c:  
GenBank KY225226 (Resistance haplotype R2) {11217}. 

Sr13c {11584}.  itv:  8155-B2 {11584}; 8155-C2 {11584}; Rusty-SR464-C1 {11584}; ST464-C1 
{10473, 11584}.  tv:  Alkabo {11584}; Altar 84 {11584}; CItr 7771 {11584}; D101073 {11584}; 
Langdon {11217, 11584}; PI 352548 {11584}; ST464 Sr9e {10473, 11584}.  c:  GenBank KY924305 
(Resistance haplotype R3 {11217).  

Sr13d {11584}.  itv:  CAT-A1 {11584}.  tv:  Camadi Abdu Tipo #103 {11584}.  c:  MW033594 
(Resistance haplotype R4 {11584}. 

Alleles of many of the Sr13 genotypes listed under tv:  were identified by sequence markers; those entries 
are likely to carry additional resistance genes. 

Haplotypes of other germplasm previously listed are unknown: v2:  French Peace Sr7a Sr9a{680}.  tv2:  
Arrivato Sr8b Sr9e {10607}. 
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Unspecified allele.  tv:  {11280}. 

A resistance gene in Khapstein/9*LMPG and believed to be Sr13 was mapped in chromosome 6AL by 
Admassu et al. {10778}. However, the map location was more than 50 cM proximal to that reported in 
{10777}. It was resolved in {10779} that the resistance locus mapped in {10778} could not be SR13. 

SR14 

Sr14 {674}.  1BL {933}.  i:  Khapstein/10*Marquis {686}.  v:  Line A {933}.  v2:  Khapstein Sr7a Sr13 
{674}.  tv2:  Khapli Sr13 {674}.  

SR15 

Sr15 {1554}.  7AL {1305}. 7A {1293, 1554}.  v:  Present in stocks possessing Pm1 and Lr20 {931}, 
{1554};  See Reaction to Blumeria graminis and Reaction to P. triticina.  ma:  Associated with clustered 
markers {323}.  

SR16 

Sr16 {830}.  [Srrl2 {1238}].  2B {1308}, {830}. 2BL {1307}.  i:  I Sr16-Ra {828};  I Th3B-Ra {832}.  
s: CS*7/Marquis 2B Sr9g {1581}; CS*4/Thatcher 2B Sr9g {1308}; CS*5/Thatcher 3B Sr12 {832}.  v2:  
Thatcher Sr5 Sr9g Sr12 {939};  Lee Sr9g Sr11 {939}. Sr16 is allelic with a gene in Kota (SrKt2 {932}) 
{939}. 

SR17 

Sr17.  Recessive.  [sr17 {964}].  7B {771}. 7BL {964}, {10565}.  s: CS*6/Hope 7B {964}.  v:  Forno 
{10511, 10565}.  v2:  E-Gan Zeo Sr8a {564};  Golden Valley Sr8a {979};  Jing-Hong 1 Sr5 {564};  
Jing-Hong 2 Sr5 {564};  Lancer Sr2 Sr9d {679};  Nell Sr7b {1565};  Scout Sr2 Sr9d {679};  Suneca Sr2 
Sr8a {485};  Present in many stocks possessing Pm5{964};  See Reaction to Blumeria graminis.  ma:  
Xwmc273-7B – 15.3 cM – Sr17 {10565}.  

SR18 

Sr18 {54}.  [SrMn1 {1263}, Srmq1 {99}, SrPs1 {1263}, SrG2 {844}, Srrl1 {1238}].  1D {1582, 1308, 
54}.  i:  I Hope 1D-Ra {828}; Sr18/8*LMPG {685}.  s:  CS*6/Hope 1D {1308}. v:  Present in the 
majority of wheat stocks{828}. 
Stocks not possessing Sr18: Brevit {54};  Chinese Spring {828};  Eureka {54};  Federation {54};  Gular 
{54};  Kenya C6042 {54};  Koala {54};  Little Club {828};  Morocco {54};  Norka {54};  Prelude 
{828};  Yalta {54}.  

SR19 

Sr19 {29}. [Srmq2 {99}]. 2B {29}. 2BS {1582}.  v:  Mq-B {29}.  v2:  Marquis Sr7b Sr18 Sr20 {29}.  

SR20 
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Sr20 {29}.  [Srmq3 {1238}, Srrl3 {1238}].  2B {29}.  v:  Mq-C {29};  Rl-C {29}.  v2:  Reliance Sr5 
Sr16 Sr18 {29};  Marquis Sr7b Sr18 Sr19 {29}.  

SR21 

Sr21 {1460}.  2AL {1460, 1464}.  i: Sr21/8*LMPG {685}.  v:  CSSr21 {M10115}; Hexaploid 
derivatives of T. monococcum{939}.  tv:  Tetraploid derivatives of T. monococcum{939}.  dv:  Einkorn 
CI2433 {1460, 11110};  Dv92 Sr35 {10876};  G2919 Sr35 {10876};  Various monococcum accessions. 
See also Sr45 which has similar specificity to Sr21.  ma:  FD52726 – 0.25 cM – Sr21 – 0.05 cM –
EX594406 {11110}.  madv:  CJ961291 – 0.02 cM – Sr21 – 0.04 cM – NLR pseudo-gene cluster 
{11315}; A diagnostic marker was developed from the cloned gene {11315}.  c:  Sr21 is a CC-NBS-LRR 
gene of 4,872 bp; 44 diploid accessions with Sr21 were classified as five haplotypes – viz. Haplotype R1, 
MG582649, 28 accessions including DV92 (and CSSr21); Hap R2, GenBank MG601519, six accessions; 
Hap R3, MG601520, one accession; Hap R4, MG601521); and six accessions, Hap R5, MG601522, three 
accessions {11315}.  

SR22   

The stem rust resistance Sr22 from T. monococcum was cloned and was shown to encode a CC-NBS-
LRR gene {11404}. The gene model for the allele in susceptible CS is Ref Seq v1.1 
TraesCS7A02G499600. 

Sr22a {11514}.  Sr22 {1460}.  7A {649}. 7AL {1460}.  bin:  7AL-0.74-0.86; 7AL-13 0.83-0.89 
{10869}.  i:  Marquis*4//Stewart*3/T. monococcum {649, 1460};  Sr22/9*LMPG {685};  Others {1112}.  
v:  CS/3/Steinwedel*2//Spelmar/T. boeoticum {1460};  Schomburgk {880}; Steinwedel*2//Spelmar/T. 
boeoticum {1460};  Others {1112};  Recombinant line reported in {10772, 10773}.  tv:  Spelmar/T. 
boeoticum {1460};  Stewart*6/T. monococcum RL 5244 {649}.  dv:  Various T. monococcum accessions 
{649, 1460}.  ma:  Hexaploid derivatives with Sr22a carried 'alien' segments of varying lengths; the 
shortest segment was distal to Xpsr129-7A {1112}; See also{158}; Xcfa2123-7A – 6 cM – Sr22 – 5.9 cM 
– Xcfa2019-7A {10263}; Multiplex marker cssu22 based on STS markers derived from cloned fragment 
csIH81 was developed in {10772}; This marker gave positive results for Sr22 in all recombinant lines 
including those reported in {10773};  Recombined lines with shortened introgressions from diploid wheat 
are reported in {10869};  the shortest was U5616020-154 {10869}.  c:  Sr22 encodes a CC-NBS-LRR 
protein with 941 aa {11213}. EBI LN883743, GenBank CUM44200.1.  

Sr22b {11514}. SrTm5 {11208}.  7AmL {11208}.  dv:  T. monococcum ssp. monococcum  PI 277131-2 
Sr21 Sr22b Sr60 {11208, 11385}; PI 306540 Sr21 Sr22b Sr60 SrTm4 {11208, 11385}.  i: PI 306540 
(2x)/Kronos (4x)//Clear White (6x)///*3 Fielder {11514};  PI 700735 {11514}.  ma:  
SrTm5/IWB25012/IWB44281/IWB405527/Sr22GMF/GMR – 0.8 cM – IWB6942 {11208};  pkw4995 
(RefSeq v1.1 TraesCS7A02G499500) - 0.04 cM – SrTm5 – 0.04 cM- pkw4999 (RefSeq v1.1 
TraesCS7A02G499900) {11514}.  c:  Sr22b has an insertion of a large (13.8-kb) retrotransposon in its 
second intron {11514}.The predicted Sr22b NLR protein is 95.7 to 96.7% identical to proteins translated 
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from six Sr22a resistant haplotypes {11514}.  
Allelism of Sr22a and Sr22b was based on more than 2,200 gametes {11514}.  

SR23 

Sr23 {950}.  The following chromosome locations are consistant with the finding that the first location 
was based on Rescue monosomics. Rescue differs from CS by a 2B-4B reciprocal translocation {939}.  
2BS {939}. 4B {950}.  v:  Exchange {950};  Warden {950}; Sr23 is always associated with Lr16 {950}.  
v2:  Etoile de Choisy Sr29 {950}.  

SR24 

Sr24 {956}.  Derived from Thin. elongatum. 
3DL = T3DS.3DL-3Ae#1L {389, 956}.  i:  Sr24/9*LMPG {685}; Sears' 3D/Ag translocations {1300, 
956}.  v:  Agent {956};  Blueboy II {956};  Collin {901};  Cloud {956};  Cody {1284};  Ernest {10845};  
Fox {956};  Gamka {785};  Karee {785};  Keene {10845};  Kinko {785};  Palmiet {785};  Sage {825, 
1024};  SST 23 {1324};  SST 25 {785};  SST 44 = T4R {785, 1324};  SST 102 {785};  Torres {128};  
Wilga {785}.  v2:  Siouxland Sr31 {1283};  List of Australian genotypes {340}.  
1BS {185} = T1BS = 1BS-3Ae#1L{389, 600}.  tr:  Amigo {1463, 389, 600};  Millenium {10845};  
Teewon {389, 600}. Note: Amigo and some derivatives also carry a 1AL.1RS translocation with 
resistance from rye {1463}. 
3Ae#1 su:  Chinese Spring 3Ag {3D} {1304};  TAP48 {389}.  ma: Xbarc71-3Ag was considered a better 
marker for Sr24 than STS Sr24#12 {10845}.  
SR24 is completely linked in coupling with LR24 {956} and often with red grain colour. See Reaction to 
P. triticina. 

SR25 

Sr25 {956}.  Derived from Thin. elongatum.  7DL = T7DS.7DL-7Ae#1L {388, 657, 291, 956}.  i:  Sears' 
CS 7D/7Ag translocations {1300}, {956}; Sr25/9*LMPG {685}.  v:  Agatha Sr5 Sr9g Sr12 Sr16 {956} = 
T4 {1323};  Mutant 28 {388}; Misr 1 (Oasis/Skauz//4*BCN/3/2*Pastor) {11260}.  
7AL = T7A-7Ae#1L {330}  Sears' 7A/7Ae#1L No. 12 {1304}, {330};  Sears' 7D/7Ag#11 carries neither 
Sr25 nor Lr19 {939}.  
7Ae#1L.  su:  Chinese Spring + 7Ae#1L(7D) {1304}.  
See Lr19, reaction to Puccinia triticina. 
Sr25/Lr19 often show complete linkage in wheat {956}. 
Knott {681} obtained two mutants (28 and 235) of Agatha with reduced levels of yellow pigment in the 
flour. One of these mutants lacked Sr25. Marais {890} reported that a gene very similar to Sr25 was 
present in the putative Inia 66 x Thin. distichum derivative, Indis. Marais {890}, {892} also obtained 
mutants with reduced yellow pigment in Indis derivatives and some of these lacked Sr25. 

SR26 
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Sr26 {956}.  Derived from Thin. elongatum.  6AL {364} = T6AS.6AL-6Ae#1L {389}, {388}.  i:  
Sr26/9*LMPG {685}.  v:  Avocet {364};  Flinders {1449};  Harrier {939};  Jabiru {956};  King {1451};  
Kite {956};  Knott's 6A-6Ae#1L translocation to Thatcher {672};  Takari {253}.  v2:  Bass Sr36 {1450};  
Eagle Sr9g {956}.  ma:  Detected with several RFLP probes {138};  A PCR marker, Sr26#43 was 
reported in {10257}. Four KASP markers were developed for the original translocation (FL 0.85). WA-1 
(AUS91435) a derivative with a shortened 6Ae#1 segment (FL 0.32), amplified only sunKASP_224 and 
sunKASP_225 {11336}. The latter was diagnostic for accession AGG91586WHEA SrB, a derivative of 
line WA-5 (AUS91436) {11338}. PCR markers based on NLR genes in homoeologous group 6 
chromosomes were used to confirm that WA-2 Type 1 was the smallest secondary translocation carrying 
Sr26 {11357}. 
Secondary recombinants with shortened 6AL#1L segments involving chromosomes 6A and 6D are 
reported in {11141}; five 6A recombinants were accessioned in the Australian Winter Cereals Collection.  
c:  Encodes an NLR protein; GenBank MN531843 {11528}. 

SR27 

Sr27.  Derived from S. cereale.  3A (T3A-3R) = T3AS.3R#1S {389}, {10162}, {896}, {3}.  i: 
Sr27/9*LMPG {10162}, {685}.  v:  WRT wheat-rye translocation, available in CS, Thatcher and Pembina 
backgrounds. Translocated from Imperial rye to Chinese Spring by Acosta {10162}, {3};  Widespread in 
triticales{1384}, {10162}, {966}.  
3A = T3AL.3RS {896}.  v:  W964 = 3RS.3AL.1/4* Inia 66 {896}; W968 = 3RS.3AL.1/5* Condor {896}; 
W970 = 3RS.3AL.88/5*SST3 {896}.  
3B = T3BL.3R#1S {896}.  v:  W966 = 3RS.3BL.26/4*Inia 66 {896}. 

c:  Sr27 encodes an NLR with closest similarity to Sr13 among cloned wheat Sr alleles {11561}. 

SR28 

Sr28 {932}.  2BL {932}.  i:  Line AD {932}.  v:  SD 1691, CI 12499 {11148}.  v2:  Kota Sr7b Sr18 
{932};  SD4297 Sr8a {11419}.  ma:  Xwmc332 – 1.4 cM – Sr28 – 6.0 cM – wPt-7007{11148};  Sr28 – 
1.6 cM – wPt-7004 {11148};  Sr28 – 0.6 cM – wPt-7004 {11148}.  
Although {11149} concluded that Sr28 was present in VL404 and Janz it is more likely that the gene 
described is the linked gene Sr9h.  
The Sr28 allele in SD4297 was originally reported as Sr9h {11418}. 

SR29 

Sr29 {313}.  [SrEC {955}].  6DL {313}. 6DS {1626}.  i:  Prelude/8*Marquis//Etoile de Choisy {313}.  
v:  Hana {71};  Hela {76};  Mara {68};  Slavia {76};  Vala {76}.  v2:  Etoile de Choisy Sr23 {955}.  

SR30 

Sr30 {688}.  [SrW].  5DL {688}.  i:  Sr30/7*LMPG - Lines 1, 2, and 3 {685}.  v:  Festiguay {688};  
Mediterranean W1728 {1369};  Webster {688}.  v2:  HD2009 Sr2 {10632};  Klein Cometa Sr8b {1368};  
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Relatively common in Australian and Mexican wheats. Various unnamed accessions {208}, {1321}.  ma:  
Xcfd12-5D – 9.0 cM – Sr30 – 16.6 cM – Xgwm292-5D {10858}.  
According to {10858} Webster RL6201 carries a second gene SrW that confers resistance to the race 
Ug99 group. 

SR31 

Sr31.  Derived from S. cereale cv. Petkus. See also Reaction to P. striiformis, Yr9: Reaction to P. 
triticina, Lr26 
1B = T1BL.1RS = T1BL.1R#1S {389} or 1R(1B). i:  MA1 and MA2 four-breakpoint double 
translocation lines 1RS-1BS-1RS.1BL in Pavon {84}.  v:  Amika {heterogeneous} Sr5 {76};  Cougar 
{267};  Feng-Kang 2 {563};  Feng-Kang 8 {563};  Gamtoos {785};  GR876 {753};  Jing-Dan 106 
{563};  Jan 7770-4 {563};  Lu-Mai 1 {563};  Rawhide (heterogenous) {267};  Yi 78-4078 {563}.  v2:  
Dong Xie 3 Sr5 {563};  Dong Xie 4 Sr5 {563};  Istra Sr5 {76};  Solaris Sr5 {76};  Siouxland Sr24 
{1283}.  tv: Cando*2/Veery = KS91WGRC14 {381}.  ma:  1BS/1RS recombinants 4.4 cM proximal to 
Gli-B1/Glu-B3 {84};  Several markers tightly linked with Sr31 were indentified in {377}; A SCAR 
marker, SCSS30.2576 was developed{10359}; Xscm09-1R208 {10845}.  
Sr31 seems to be different from the rye-derived gene in Amigo and related materials {10270}. 

SR32 

Sr32.  Derived from Ae. speltoides.  
2A {939}, {1304} = T2AL.2S#1L-2S#1S {389}.  v:  C95.24 {389}.  
2B {1304 } = T2BL-2S#1S {389}.  v:  C82.1 = P80-14.1-2{389}.  
2D {1304} = T2DL-2S#1L.2S#1S {389}.  v:  C82.2 = P80-139.1-4 {389}, {1304};  C82.3 = P80-132.2-2 
{1304}, {939};  C82.4 = P80-153.1-2 {1304}, {939};  Deben {10283}.  

C82.2 was shown to have two resistance genes – Sr32 in the short arm isolated as 70type1 (AUS91442) 
and SrAe1t in the long arm isolated as 70typeII (AUS91441), 122typeII (AUS91444), and line 247 
(AUS91446) {11779}. 

SR33 

Sr33.  [SrSQ {650}].  1DS {620}. 1DL {650}.  v:  RL 5405 = Tetra Canthatch/Aegilops squarrosa RL 
5288 {650}.  dv:  Ae. tauschii PI 603225 {11012}; TOWWC0153 = TA2466 {11685}.  ma:  linked with 
Gli-D1; Xmwg60-1D – 5.8 cM – Sr33 – 2.2 cM – Xwmg2083-1 {360}; Xwmc432-1D – 0.3 cM – 
Xwmc336-1D – 1.0 cM – Sr33 – 4.2 cM – Xwmc222/Xcfa2158-1D {11012};  Flanked by BE405778 and 
BE499711 within a 1 cM region {10987}.  c:  Sr33 encodes a CC-NBS-LRR protein and is orthologous to 
Sr31, Sr50 and the barley powdery mildew locus Mla {10987}. GenBank KF031291, 4,639 bp; protein 
CUM44200.1. Sr33 is a paralogue of Sr66 {11685} with 83% homology {11405}. 

SR34 
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Sr34 {967}.  Derived from Ae. comosa.  
2A {967} = T2AS-2M#1L.2M#1S {389}  v:  CS 2A-2M 4/2 {967}.  
2D {967} = T2DS-2M#1L.2M#1S {389}  i:  Sr34/6*LMPG {685}.  v:  Compair {967};  CS 2D-2M 3/8 
{967};  Various addition, substitution and translocation lines with Yr8 {967}.  
2M {967}.  su:  Chinese Spring 2M(2A) {967}.  

SR35 

Sr35 {957}.  [SrTm1 {1522}].  3AL {957}.  bin:  3AL8 0.85-1.00.  i:  Marquis*5/G2919 {10876}. v,tv:  
Tetraploid and hexaploid derivatives of T. monococcum {957}.  dv:  DV92 Sr21 {10876};  G2919 Sr21 
{10876}; T. monococcum C69. 69 Selection {957};  G2919 {957}.  ma:  Sr35 was mapped to a 5.1 cM 
interval between XBF483299 and XCJ656351 in diploid wheat{10712};  Mapped in diploid wheat to a 
2.2-3.1 cM region between Xbf483299 and XCJ656351 and corresponding to a 174 bp region in 
Brachypodium{10876}.  c:  Sr35 is a CC-NBS-LRR gene {10988}. 
Sr35 was postulated in 21 accessions of T. monococcum subsp. monococcum {11288}. 

SR36 

Sr36 {939}.  [SrTt1 {949}].  2BS {939}.  i:  Sr36/8*LMPG {685}.  v:  Arthur {939};  Arthur 71 {1324};  
Flemink {1324};  GK Kincso {235};  Gouritz {1324};  Idaed  59;  Maris Fundin {70};  Mengavi {949};  
SST 101 {1324};  SST 107{785};  Timvera {949}; T. timopheevii derivatives {949};  Zaragoza{785};  
Others {572, 10609}.  v2:  Bass Sr26 {1450};  Combination III Sr9e {939};  Timson Sr5 Sr6 {939}.  tv: 
T. Timopheevii {949}.  ma:  Xgwm42 – 0.8 cM – Sr36/Xstm773-2-2B/Xgwm31-2B/Xwmc477-2B 
{10609}; Xgwm319-2B – 0.9 cM – Sr36/Xstm773-2-2B/Xwmc477-2B {10609}; Xgwm429-2B – 0.8 cM – 
Sr36/Xstm773-2/Xgwm319/Xwmc477-2B{10824}; Xgwm319-2B – 0.9 cM – Sr36/Xstm773-2/Xwmc477-
2B {10824};  Of four markers Xwmc477-2B was the best, but it is not a perfect marker {10845}.  

Sr37 

Sr37 {939}.  [SrTt2 {949}].  4BL {939}. v,tv: T. timopheevii and derivatives {949}, {484};  Line W 
{949}.  

SR38 

Sr38 {62}.  Derived from Ae. ventricosa.  2AS {62}. 6Mv = 2MS-6MS.6ML or 2MS-6ML.6MS {0009}.  
i:  RL 6081 = Thatcher + Lr37. This line will carry additional genes from Thatcher.  v:  CDS Stanley 
{11579};  Mace {11579};  Moisson derivatives Mx12 and Mx22 {0213};  VPM1 {62};  SY Mattis 
{11579}.  v2  Jagger Sr7a {11420}.  ma:  The 2NS translocated segment carrying Sr38 replaced the 
distal half of chromosome 2A (25-38 cM) from Xcmwg682 to XksuH9;  PCR markers were developed for 
the 2NS and 2AS alleles of Xcmwg682 {10073}.  
Sr38 is linked with Lr37 and Yr17. See Reaction to P. triticina Lr37 and P. striiformis tritici Yr17. SCAR 
markers SC-372 and SC-385 were developed in {10796}. 

SR39 
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Sr39 {646}.  Derived from Ae. speltoides. = 2SL-2SS#2.2SL#2 {11037}. 2B {651}.  v:  RL 5711 {651}, 
{646}.  tv:  Amphiploid RL 5347 = Ae. speltoides/T. monococcum {651}.  ma:  Sr39 is closely linked 
with Lr35 {651};  A SCAR marker was developed {9923}.  
Lines with shortened alien segments are reported in {10741}. Although Sr39 produces similar responses 
to Sr32, also derived from Ae. speltoides, recombination studies based on three crosses showed 
independent inheritance {646}. Sr39 segregated independently of Lr13 {651}. Sr39 may be present in 
DAS15 in combination with Sr47. A Ti2BL.2BS-2SS-2BS translocation {10872} separated from Sr47 in 
DAS15 could contain Sr39 - see SrAEs7t. 
Further lines with shortened segments are described in {11037} along with tightly linked co-dominant 
STS markers. 

SR40 

Sr40 {302}.  Derived from T. araraticum.  2BS {302} = T2BL/2G#2S{389}.  i:  RL 6087 = RL 
6071*7/PGR 6126; RL 6088 = RL 6071*7/PGR 6195 {302}.  tv:  T. araraticum PGR 6126 {302};  PGR 
6195 {302}.  ma:  Xwmc661-2B – 6.4 cM – Sr40 – 0.7 cM – Xwmc344-2B – 2.0 cM – Xwmc477-2B 
{10825}; Xwmc661-2B – 7.8 cM – Sr40 – 2.5 cM – Xwmc474-2B – 1.0 cM – Xwmc477-2B {10825}.  

SR41 

Sr41 {1215}.  4D {1215}.  v:  WDR-B1 {1214}.  v2:  Waldron Sr5 (heterogeneous) Sr11 
(heterogeneous) {1215}.  

SR42 

Sr42 {938}.  6DS {938}.  v:  PI595667 {11087}.  v2:  Norin 40 Sr54 {938};  PI410954 Sr24 {11087}. 
ma: Xcfd49-6D – 5.5 cM – Xbarc183-6D – 0.5 cM – Sr42/FSD_RSA – 11.8 cM – Xbarc301-6D; Xcfd6D 
– 5.9 cM – Sr42 – 46.9 cM – Xcfd13-6D {10952}; Xcfa49-6D – Sr42/IBW31561/IBW30767 – FSDRSA 
{11087}.  
The likelihood that Sr42 is the same as SrTmp and SrSha7 (see below) is discussed in {11035} where 
Blouk#1, Coni#1, Niini#1, Phunye#1, Ripper and Tinkio1 were shown to carry a gene, or closely linked 
genes, on chromosome 6DS. If they are the same, this list would be enlarged to include Digalu, Gambo, 
Koshan 09 and Morvarid {11035}. Nearest markers Xbarc183-6D and Xcfd49-6D but not in consistent 
order {11035}. Sr42 co-locates with SrCad, SrNini, SrSh7 and SrTmp. Three haplotypes were identified 
in {11087}: C-C-T, AC Cadillac, Peace, PI595667; T*-C-T, Norin 40, Eagle 10, Ember, Guard, Ripper, 
Shield; T-C-T, Triumph 64, CnSSrTMP64, Blouk, Digalu, Pfunye, Robin, PI410954. A genetic analysis 
of six lines, Blouk, Coni, Niini, Pfuneye, Ripper and Tinkio, is reported in {11132}. All had single genes 
with linkage to Xcfd49-6D ranging from 3.9 – 12.5 cM and the genes were not clearly distinguished from 
Sr42 or SrTmp {11132}. 

A resistance allele at the SR42 locus, possibly SrTmp or a new allele, was identified in South African 
cultivars Komati, Koonop, Limpopo and SST387 {11725}. This gene was likely derived from Betta 
{11725}. 
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SR43 

Sr43.  Derived from Th. elongatum.  7DS-7el2S.7el2L {11076}. 7D.  
7DL = T7DL-7Ae#2L.7Ae#2S {389}, {657}.  tr:  KS10-2 {653}.  
7D = T7DS.7Ae#2L {389}, {657}.  v:  KS23-9 {653};  KS24-1 {653};  KS24-2 {653}.  
Derivatives RWG33 and RWG34 with shortened alien segments were reported in {11076}.  c:  Sr43 
isolated from RWG34 encoded a protein kinase fused to 2 domains of unknown function {11631}. 
Sr43 confers higher resistance at low temperature {11631}. 

SR44 

Sr44{389}.  Derived from Th. intermedium.  
T7DS-7J#1L.7J#S 7J#1L {389}.  v:  Line 86.187 TA5657 {939};  Several 7A-7Ji#1L translocations 
{89}.  
T7DL.7J#1S {11011}  v:  TA5657 {11011}.  
7J#2, 7J#2S su:  Group 7 alien substitution lines with 7J#1 and 7J#1S{939}.  ad:  TAF2 = L1{169}.  

SR45 

Sr45 {894}.  [SrD {934}, SrX].  1D {897}. 1DS {894}.  v:  87M66-2-1 {894};  87M66-5- 6 {897};  
Thatcher + Lr21, RL5406 {894}, {934};  Various backcross derivatives developed at PBI 
Cobbitty{1461}.  dv:  Ae. tauschii RL5289 {894, 934}.  su:  CS1D5406 {11134}.  ma: Xgwm106-
1D/BE44426 – 1.82 cM – Sr45 – 0.39 cM –csssu45/Af45 {11134}.  c:. Sr45 encodes a 1,230 aa CC-NBS-
LRR protein {11213}. NCBI LN883757. 
Tests of natural and induced mutants of P. graminis f. sp. tritici indicated that Sr45 had identical 
specificity to Sr21 {934}. One race distinguishing Sr45 and Sr21 is reported in {11134}. Cloning of both 
SR45 and SR21 showed that the genes were different. 

SR46 

Sr46 {10538}.  2DS {10538}.  bin:  2DS5-0.47-1.00. v:  L-18913 / Meering selections R9.3 {10538};  
R11.4 {10538};  R14.2 {10538}.  v2:  L-18913 = Synthetic Langdon / Ae. tauschii var. meyeri AUS 
18913 Sr9e {10538}.  dv:  Ae. tauschii var. meyeri AUS18913 {10538} = CIae 25 {11268}; Ae. tauschii 
TA1703 {11268}.  ma:  Co-segregation with RFLP Xpsr649-2DS at both the diploid and hexaploid levels 
{10538};  A PCR-based marker, csSC46 was developed from a BAC clone containing Xpsr649 {10538}. 
Xgwm210-2D – 3.9 cM – Sr46 – 5.6 cM – Xcfd36-2D – 0.3 cM – Xwmc111-2D {11268}.  madv:  
Flanked by Xgwm1099-2D and Xbarc297-2D {11405}.  c:  Cloned by AgRenSeq and map-based 
methods Sr46 has a CC-NBS-LRR structure {11405}. GenBank MG851023. 
Sr46 was more effective at higher temperatures in laboratory tests {11268}. 
 

SR47 
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Sr47 {10549}.  Derived from Ae. speltoides.  2BS {10872}. 2B = 2BL-2SL-2BL.2BS {10549}.  tv:  
DAS15 {10549}.  tv:  RWG35 {10872}; RWG36 {10872}; RWG37 {10872}. 
2B=2BL-2SL-2BL.2BS.  v:  RWG35 {10872}. Further markers were used to identify the introgressions 
in RWG25, RWG26, and RWG27 {10872}. STS marker Xrwgs38 was diagnostic for the Sr47 segment in 
DAS35 and DAS36 {11319}. 

2B=2BL-2SL-2BL.2BS  v:  RWG36 {10872}.  
al:  Ae. speltoides PI 369590 {10549}.  ma:  Located in the interval Xgwm47-2B – Xgpw4165-2B 
{10872}. Further markers were used to identify the introgressions in RWG25, RWG26, and RWG27 
{10872}. STS marker Xrwgs38 was diagnostic for the Sr47 segment in DAS35 and DAS36 {11319}. 
Further chromosome engineering on DAS15 showed that the alien segment carried two resistance genes. 
The gene on 2BL was considered to be Sr47 based on low infection type. The second gene located in 2BS 
produced a low infection type similar to Sr39 and was located in a similar position to that gene {10872}. 

SR48 

Sr48 {10564}.  [SrAn1 {10565}].  2DS {11653}.  2AL{10564, 10565}.  bin:  2AL1-0.85-1.00 {10564}.  
v:  Arina {10564, 10511, 10565}.  v2:  Arina Sr56 AUS 91457 {10851}.  ma:  Xgwm382-2AL – 0.6 cM – 
Xgwm311-2AL – 2.6 cM – Xfba8a-2AL – 1.3 cM – Xstm673acag – 1.1 cM – Yr1 – 16.5 cM – Sr48 
{10564}; Sr48 is considerably distal to the most distal of published markers, all of which are proximal to 
Yr1; sun_KASP239 – 0.9 cm – SR48 – 3.5 cM – Xxib59-2D {11653}. 
The revised chromosome location was attributed to a chromosome 2A-2D translocation that explained the 
earlier reported linkage between SR48 and YR1. 

SR49 
Sr49 {10704}.  5BL {10704}.  v:  Mahmoudi AUS 28011 {10704}.  ma:  sun479 – 0.9 cM – Sr49 – 1.5 
cM – sun209 – 0.5 cM – Xwmc471-5BL {10704}.  

SR50 

Sr50 {10745}.  [SrR {377}].  1DS {10745}.  ad:  CS + Imperial 1R {377}.  v:  Line T6-1 AUS 91434 
{10745}. T1DL.1RS-DR.A1 {11316}.  al:  S. cereale cv. Imperial.  ma:  Line T6-1 retains the rye 
marker AW2-5 {10745}.  c:  GenBank KT725812, 3,508 bp. Sr50 encodes a CC-NBS-LRR protein 
homologous to the barley Mla gene {11316}. GenBank KT725812. 
In rye Sr50 may be allelic with Sr31; however in wheat they can be regarded as separate loci Sr50 is 
located in a small interstitial segment not detected by GISH. Line T6-1 lacks the Sec-1 allele from rye 
{10745}. 

Sr51 

Sr51 {10803}. Homoeologous group 3 {10803}; 3SSS {10803}  
3A (3AL.3SSS {10803}.  v:  TA5619{10803}.  
3B (3BL.3SSS) {10803}.  v:  TA5620{10803}.  
3D (3DL.3SSS) {10803}.  v:  TA5621{10803}.  
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3D (3DS-3SSS.3SSL) {10803}.  v:  TA5622{10803}.  al:  Ae. searsii TA2355 {10803}.   ma: 3SS-
specific markers are provided in {10803}.  

SR52 

Sr52 {10774}.  6A (6AS.6V#3L) {10774}.  v:  TA5617 {10775}.  ma:  6V3-specific EST-STSmarkers 
are given in {10775}.  
The seedling response conferred by Sr52 is temperature-sensitive. 

SR53 

Sr53 {10789}.  Derived from Ae. geniculata  5D {10789}.  
T5DS5DL-5MgL-5DL {10789}.  v:  TA5630 (U6154-124) {10789}.  
T5DL-5MgL-5MgS {10789}.  v:  TA5625 (U6200-64) {10789}.  
T5DL-5MgL-5MgS {10789}.  v:  TA5643 (U6200-117) {10789}.  al: Ae. geniculata TA10437 {10789}.  
ma:  Closest markers: BE443102/Mbo1 and BE442600/Mse1 {10789}.  
The three translocation lines are re-engineered derivatives of TA5599 (5DL-5MgL.5MgS {10789}). 

SR54 

Sr54 {10816}.  2DL {10816}.  v2:  Norin 40 Sr42 {10816}.  ma:  Xcfd-283-2D – 8.1 cM – Sr54/linkage 
block of 18 markers – 15.8 cM – Xwmc167-2D {10816}.  
The possibility of a large alien linkage block was supported by the fact that many of the associated 
markers were null {10816}. 

SR55 

Sr55 {10847}.  Adult plant resistance  4DL {10847, 10678}.  bin:  Distal to break point 0.56 FL{10678}.  
i:  RL6077=Thatcher*6/PI 250413 {10847, 10678}.  v:  Chapingo 48 {11070}.  ma:  Pleiotropic of 
closely linked with Lr67 and Yr46 and associated with Xgwm165-4D and Xgwm192-4DL{10847,10678}.  
c:  This multiple disease resistance locus was identified as a hexose transporter most similar to the STP13 
family and containing 12 predicted transmembrane helices {11070}. 
Sr55 is pleiotropic or closely linked with Lr67, Yr46, Pm46 and Ltn3.  

SR56 

Sr56 {10851}.  Adult plant resistance  [QSr.sun-5BL {10565}].  5BL {10851, 10565}.  bin:  5BL160-
0.79-1.00.  v:  AF533 {10851}.  v2:  Arina Sr48 AUS 91457 {138}.  ma:  Xsun209 (SSR) – 2.6 cM – 
Sr56 – 1.2 cM – Xsun320 (STS from wPt-7665) {10851}.  
In the earlier QTL analysis of an Arina/Forno population QSr.sun-5BL accounted for 12% of the PVE 
{10565}. In the present study of an Arina/Yitpi RIL population stem rust response segregated as a single 
gene. The response phenotype was 40-50 MS-S. 

SR57 
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Sr57 {10861}.  Adult plant resistance.  7DS {10861}.  bin:  7DS4.  su:  Lalbahadur(Perula7D) GID 
5348503 and GID 5348496 {10648, 10861}.  v:  Chinese Spring {10861};  Wheat accessions with 
Pm38/Lr34/Yr18, see Reaction to Blumeria graminis, Reaction to Puccinia striiformis, Reaction to 
Puccinia triticina, Leaf tip necrosis.  ma:  See Reaction to Puccinia triticina.  c:  Putative ABC 
transporter{10648}.  
Further evidence for the effects of this gene on stem rust response can be found in {299}, {10565}, 
{10733}, {10863}, {10864}, {10865}, {10866}. 

SR58 

Sr58 {10965}.  1BL {10965}.  v:  Lr46 Deletion Mutant 109 (GID 5349718) {10965}; Lr46 Deletion 
Mutant 111 (GID 5349716) {10965}.  su:  Lalbahadur(Pavon 1B) (GID 519245) {10965}.  

SR59 

Sr59 {11066}.  Derived from Scale cereale  2D (T2DS.2RL) {11066}.  v:  TA5094 {11066}.  su:  
SLU238 (2R(2D)) {11066}.  al:  VT828041 (6X triticale) {11066}.  ma:  Three rye-based KASP 
markers identified lines with Sr59 {11066}.  

SR60 

Sr60 {11208}.  5AmS {11208}.  dv:  PI 277130 {11385}; PI 277131-2 {11385}; PI 277135 {11385}; PI 
306540 {11385}; PI 306545 {11385}; PI 306547 {11385}; PI 428158 {11385}; PI 435001 {11385}.  
dv2:  PI 306540 Sr21 SrTm4 SrTm5 {11208}.  v:  PI 689563, PI 306540/Kronos/2/UC1361/4UC12014-
36 {11385}.  ma:  Pinb-5AmS……GH724575/DK22976/CA5012332 – 0.25 cM – Sr60/LRRK123.1 – 0.19 
cM – CJ942731/CJ884584 {11208}; GH724575 – 1.56 cM – Sr60/ LRRK123.1 – 0.52 cM – FD475316 
{11208}. Sr60F2R2 {11385}.  c:  Sr60 from T. monococcum PI 306540 encodes a 724 amino acid protein 
with two putative kinase domains designated Wheat Tandem Kinase 2 (WTK2) {11208,11385}. GenBank 
MK629715 {11385}. The gene is orthologous to T. aestivum gene TraesCS5A02G005400 {11385}.  
Sr60 in UC12014-36+Sr60 (PI 689563) is linked with puroindoline genes for grain softness that were also 
introgressed from the diploid parent {11385}. 

SR61 

Sr61 {11397}.  SrB {11337}.  Derived from Th. ponticum 11397}.  6A = T6AS.6AL-6Ae#1-6Ae#3 
{19018}; 6Ae#3 {11338}.  v:  AGG91586WHEA Sr26 {11397}.  su:  W3757 = SA8123 {11337}, a 
(6Ae#3(6D) line {11338}.  ma:  SrB was recombined with a 6Ae#1 segment possessing Sr26. Marker 
sunKASP_225 {11336} was diagnostic for the recombined line AGG91586WHEA {11338}.  v2:  
AGG91586WHEA Sr26 {11397}.  c:  Encodes a 880 amino acid NLR protein; GenBank MN531844 
{11528}. 
The recombinant AGG91586WHEA was produced after crossing the shortened 6Ae#1 recombinant WA-
5 (AUS91436) carrying Sr26 with SA8123. A separate line carrying Sr61 alone is currently being selected 
for Ph1 homozygosity. 
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SR62   

Sr62 {11524}.  Sr1644-1Sh {11519}.  1BS = T1SShS.1SShL-1BL {11524}.  v:  Zahir*4 / Ae. sharonensis 
AS_1644, JIC DPRM0081 {11524}.  ma:  Mapped in Ae sharonensis to a 480 kb interval on chr arm 
1ShS {11519}.  c:  Cloned from Ae. sharonensis and validated in transformed wheat. Sr62 is tandom 
kinase with both domains required for function {11524}. Sr62 has a kinase-pseudokinse (tandom kinase) 
structure with both components required for resistance function, 740 amino acids {11524}. GenBank 
MZ826707. 

1DS (T1SShS.1SShL-1DL).  v:  JIC DPRM0092 {11524}.  al:  Ae. sharonensis AS_1644 {11519}. 

SR63 

Sr63 {11554}.  Adult plant resistance.  QSrGH.cs-2AL {11554}.  2AL {11554}.  tv:  GH/M14 RIL49 
XXXXX {11554}; GH/M14 RIL188 AUSXXXX {11554}.  tv2:  Glossy Huguenot Sr58 (syn QSrGH.cs-
1BL) AUS2499 {11554}.  ma:  IWA200-KASP_32429 – 2.7 cM – Sr63 – 3.0 cM – IWB4881-2AL 
{11554}. 

SR64 
 
SR64 {11644}.Derived from Thinopyrum.   
4D = T4DL·4JSS {10788}.  v:  KS93WGRC27 {404}; Mace (PI 651043) {11681}. 
4D = T4DL·4DS-4JSS {11644}.  i:  Line E*6/rec213 (Sr64, Wsm1) = GSTR 527 {11644, 
https://npgsweb.ars-grin.gov/gringlobal/accessiondetail?id=2158211}.  v:  KS08WGGRC50 {11644, 
10788}.  ma:  KASP markers developed in {11643}. 
 
SR65 

Sr65 {11682}.  SrH2 {11682}.  1AS {11682}.  v:  Hango-2 FLW6-Selection AGG95499WHEA 
{11682}.  ma:  KASP_7944/ KASP_11804 (2,3 Mb, CS REfSeq 2,1) – 2.6 cM – SR65 – 2.0 cM – 
KASP_12147 / KASP21832 / sunCS_265 {11682}. CHS21_002378110 bp, respectively. 

SR66 

Sr66 {11685}.  SrTA1662 {11012}.  1DS {11012}.  v:  KS05HW14 {11405}.  dv:  Ae. tauschii TA1662 
{11012}; TOWWC0017 = TA11134 11685}; TOWWC0033 = TA1582 {11685}; TOWWC0104 = 
TA1658 {11685}.  ma:  Xwmc432-1D – 4.4 cM – SrTA1662 – 4.4 cM – Xwmc222-1D {11012}.  c:  An 
SrTA1662 candidate identified by AgRenSeq encoded a CC-NBS-LRR candidate gene (GenBank 
MG763911) with 83% homology to Sr33 {11405}. GenBank MW526949 {11612}. Sr66 is a paralogue 
of Sr33 {11685}.  

SR67 

Sr67.  v2:  KU168-2 Sr57 = XXXXXX {11687; 11688}.  6AL {11688}.  ma:  Mapping data indicates 
that Sr67 (61.80 – 61.80 Mb) is distal to Sr13 {61.6437} (CS REFSeq v2) {11688}. 

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fnpgsweb.ars-grin.gov%2Fgringlobal%2Faccessiondetail%3Fid%3D2158211&data=05%7C01%7C%7C3850ae5f8f26495a057c08db878eada2%7Ced5b36e701ee4ebc867ee03cfa0d4697%7C0%7C0%7C638252819094075784%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=%2FAU3NXpcCy3PqbcYPGwNznBE9vtNmFEN7db%2Bwkl7UPA%3D&reserved=0
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Consensus maps of many reported genes and QTL for stem rust resistance are provided in {11202}. 

Temporay designations  

SrA {323}.  v:  SW55-1 {323};  SW56-1 {323}.  v2:  SW33-5 Sr9a Sr13 {323};  SW54-3 Sr9d Sr13 
{323}.  

SrAes7t {10872}.  2BS = T2B.2BS-2SS-2BS {10872}.  v:  Line 0797 {10872}.  ma:  Sr39#50s {10741, 
10872}.  
SrAes7t may be identical to Sr39 {10872}. 

SrCad {10733}.  6DS {10733}.  v:  AC Cadillac {10733};  AC Crystal {10733};  AC Foremost {10733};  
AC Karma {10733};  AC Taber {10733};  AC2000 {10733};  Peace {10733};  5700 {10733}.  ma:  
Lines with Bt10 {10733}; Xcfd49-6D – 7.7 cM – SrCad – 1.5 cM – FSD_RSA/Bt10 – 14.1 cM – 
Xbarc301-6D – 0.8 cM – Xbarc173-6D {10733}; Xcfd49-6D – 7.2 cM – SrCad – 1.8 cM – FSD-
RSA/Bt10 – 14 cM – Xcfd75-6D {10733}.  

SrND643 {11092}.  4AL {11092}.  bin:  4AL4-0.8-1.00.  v:  Kenya Sunbird {11092};  Kenya Tai 
{11092};  ND643/2*Weebill1 GID6302736 {11092}.  tv:  ND643 {11092}.  ma: Xwmc776-4A – 2.9 cM 
– Xgwm350-4A – 0.5 cM – SrND643 – 4.1 cM – Xwmc219-4A {11092}.  

SrPan3161 {11722}.  4DS {11722}.  v:  Tugela {11722}.  v2:  PAN 3161 Sr57/Lr34 {11722}.  ma:  
RHT-D1 – 12.8 cM – Xwmc-720-4D 1.8 cM – SRPan3161 – 1.8 cM – 
Xgpc8038Xwmc52/Xgpc7414/Xcfd23/Xpsp3103-4D {11722}. 
 
SrPI94701 {11780}.  5BL {11780}.  tv:  PI 94701 {11780}.  ma:  Mapped to a 0.17 cM region flanked 
by pku69124 and pku69228 and corresponding to 1.04 and 2.15 Mb in the Svevo REfSeq 1.0 and 
CSRefSeq 2 genomes {11780}. 
 
SrPI410966 {11180.  2BS {11180}. v:  PI 410966 {11180}.  
The marker profile for this gene was very similar to that of a line with Sr36 {11180, 10825}. Specificity 
tests were not reported. 

SrTA10276-2V {11395}.  2V {11395}.  ad:  TA7753 {11395}.  al:  D. villosum TA10276 {11395}. 

SrTm4 {11111}.  Reccessive.  2AmL {11111}.  dv: Monogenic line TmS4-260 {11673}.  dv2:  T. 
monococcum PI306540 Sr21 Sr22b Sr60 {11111, 11673}.  bin/contig:  IWGS_2AL_contig6401556.  
ma:  BQ461276 – 1.6 cM – SrTm4 – 0.5 cM – DR732348/Xgwm526/Xgdm93-2A {11111}.  Mapped to a 
0.06 cM interval – 763.67 – 763.67 Mb in CS RefSeq 2.1 {11673}. A 593 kb inversion within the 
candidate region was completely associated with resistance {11673}. 
SrTm4 was postulated in several T. monococcum accessions originating from the Balkans region – all had 
the inversion {11673}.   

SrTm5 (11208}.  7AmL {M11208}.  dv:  T. monococcum PI 277131-2 {11208}.  dv2:  T. monococcum 
PI 306540 Sr21 Sr60 SrTm4 {11208}; A further 10 T. monococcum accessions, all with the same 
inversion {11754}.  ma:  SrTm5/IWB25012/IWB44281/IWB405527/Sr22GMF/GMR – 0.8 cM – 
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IWB6942 {11208}. Located in a 0.37 cM interval flanked by CD903048 (762.56 Mb) and 
DK65885/Xgwm526-2A (763.83 Mb, CS RefSeq 2.1) {11754}; reduced to a 593 kb 0.06 cM (762.67 – 
763.67 Mb) region in PI 206540 relative to CS with an inversion breakpoint located in the promoter of a 
candidate gene {11754}. 
May be allelic with Sr22 {112308}. 

SrTmp {1230}.  SrSha7 {11057}; SrA2K {11691}; QSr.nc.6D {11691}.  6DS.  v:  AGS2000 {11691}; 
Bai-Yu-Bao {564};  Beijing 9 {564};  Beijing 11 {564};  Digalu {11132, 11057};  Ember {11152};  
Fertodi 293 {977};  Guard-1 {11152};  Kenya Robin {11152, 11057};  KS91WGRC11 {M22059}.  
Martonvasari 5 {977};  Mironovska = Mironovskaya 808 {68, 977};  Morvarid {11132};  Nung-Ta 139 
{564};  Overland {11152};  Parker {977};  Ripper {11132};  Shield {11152};  Trison {1230};  Triumph 
64 {1230, 841, 977};  Xuzhou 14 {564};  Yen-An 15 {564}.  v2:  Beijing 10 Sr5 {564};  PI 177906 Sr7b 
Sr28 {11419}; MD01W28-08-11 Sr31 {11691}.  ma:  SrTmp – 3.1 cM – IWB49086 {11419}. 
The possibility of this gene being present in a number of South African cultivars, including Betta = Klein 
Impacto, is discussed in {10941}. 

SrWld {1230}.  v2:  Prospect Sr11 {197}.  

SrZdar {67}.  1B {67}.  v:  Zdar {67}.  

Sr1RSAmigo {10845}.  1AS (T1AL.1RS) {389}, {1624}.  v2:  Amigo Sr24 {10845, 1464}.  ma:  Xscm09-
1R224 {10845}.  
This alien segment also carries Pm17 - see Pm17 

Sr8155B1 {11580}.  Recessive.  6AS {11580}.  v:  Choteau / Mountrail Der. SXD 43 PI 681713 
{11580}; Marruecos*2/CItr 8155 {11580}.  tv:  Alkabo 11580}; Renville {11580}.  tv2:  Grenora Sr13 
{11580}; Munich Sr13 {11580}.  ma:  Co-segregation with KASP_6AS_IWB10558 {11580}. 
Also predicted in durum accessions Belzer, Dilse, Lloyd, Divide and Montrail {11580}. 

Sr10171 {10936}.  7DS {10936}.  v:  Genetic stock to be designated {10936}.  dv: Ae. tauschii 
TA10171 {10936}.  ma:  Sr10171 – 0.9 cM – Xgdm88/Xwmc827-7D – 1.9 cM – Xcfd30-7D {10936}.   

Sr10187 {10936}.  [SrTA10187 {11181}].  6DS {10936}.  v:  Genetic stock to be designated {10936}.  
dv:  Ae. tauschii TA10187 {10936}.  ma:  Xcfd49-6D – 1.9 cM – Sr10187 – 13.6 cM – Xbarc173-
6D{10936}; 6DS0027 – 0.2 cM – Sr10187 – 0.2 cM – 6DS00273 {11181}; Sr10187 – 0.2 cM – 6DS0039 
{11181}. 

Sr10526 {11249}. 6DS {11249}.  v:  CItr 105026 {11249}.  ma:  IWB36391/IWB34477 – 2.9 cM – 
Sr15026 – 3.0 cM – IWA4000 {11249}; IWB36391 – 0.4 cM – IWB262 – 2.6 cM – Sr15026 – 1.3 cM – 
IWB49086 {11249}. 
Sr10526 was detected with races QFCSC and TTTTF. When the same DH and RIL populations were 
tested with race TRTTF there was evidence for complementary resistance genes on chromosomes 6DS 
and 6AS, one of which was Sr10526. When the populations were tested in the field in Kenya with Ug99 
races QSr.abr-6AS.1 (R2 = 0.1 – 0.3) was detected {11249}. 
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Th. ponticum-derived, stem rust resistant line WTT34 with a T5DS.5DL-Th chromosome pair is reported 
in {11783}. 

Additional temporary designations are listed in {1230}. 
Genotype lists: {323}, {970}, {10270}, {10511}, {10697}. 
 
Complex genotypes: 
AC Taber: Sr2, Sr9b, Sr11, Sr12 {9905}. 
Centurk: Sr5 {979}, Sr6 {979}, Sr8a, Sr9a {979}, Sr17 {979}. 
Chris: Sr5 {679}, {1371}, Sr7a {1371}, Sr9g {1371}, Sr12 {1371}. 
Egret: Sr5 {939}, Sr8a {939}, Sr9b {939}, Sr12 {939}. 
FKN: Sr2, Sr6, Sr7a, Sr8a {791}, Sr9b {791}. 
H-44: Sr2, Sr7b {677}, Sr9d {677}, Sr17. 
Hartog: Sr2 {127}, Sr8a, Sr9g, Sr12 {939}. 
Hope: Sr2 {677}, Sr7b {677}, Sr9d {677}, Sr17. 
Kenya Plume: Sr2 {1370}, Sr5 {1370}, Sr6 {1370}, Sr7a {1370}, Sr9b {1370}, Sr12 {1370} Sr17 
{1370}. 
Khapstein: Sr2, Sr7a, Sr13 {674}, Sr14 {674}. 
Lawrence: Sr2, Sr7b {939}, Sr9d, Sr17. 
Lerma Rojo 64: Sr2, Sr6, Sr7b {979}, Sr9a {979}. 
Madden: Sr2, Sr9b, Sr11, Sr13 {842}. 
Manitou: Sr5 {679}, Sr6 {679}, Sr7a, Sr9g {965}, Sr12 {939}. 
Mendos: Sr7a {939}, Sr11 {879}, Sr17, Sr36. 
Pasqua: Sr5, Sr6, Sr7a, Sr9b, Sr12. Gene Lr34 acted as an enhancer of APR {9905}. 
PI 362698: Sr5, Sr8a, Sr12, Sr15?, Sr16 {11347}. 
PI 362698: Sr5, Sr8a, Sr12, Sr15?, Sr16 {11347}. 
PI 60599: Sr7a {689}, Sr8a, Sr9b, Sr10. 
Redman: Sr2, Sr7b {939}, Sr9d {939}, Sr17. 
Reliance: Sr5 {1308}, Sr16 {1238}, Sr18, Sr20. 
Renown: Sr2, Sr7b {939}, Sr9d {939}, Sr17. 
Roblin: Sr5, Sr7a? Sr11, Sr12. 
Selkirk: Sr2 {499}, Sr6 {468}, Sr7b {499}, Sr17, Sr23 {950}. 
Thatcher: Sr5 {1308}, Sr9g {965}, Sr12 {939}, Sr16 {1308}.  
Timgalen: Sr5 (heterogeneous) {1555}, Sr6 {1555}, Sr8a, Sr36. 
WW15 = Anza = Karamu = T4: Sr5 {939}, Sr8a {939}, Sr9b {939}, Sr12 {939}.  
 
QTL: 

Arina / Forno: Qsr.sun-5BL {10565}; resistance contributed by Arina, associated with Xglk356-5B, R2 = 
11-12% {10565}. Qsr.sun-7DS {10565}; resistance contributed by Forno, associated with markers 
XcsLV34 and Xswm10 diagnostic for Lr34/Yr18 {10565}.  

Avocet S / Pavon 76: RIL population of lines lacking Sr26:Five QTLs, QSr.cim-3B(Sr2), QSr.cim-
1B(Lr46/Yr29/Pm39 region) and QSr.cim-3D (R2=0.2) from Pavon 76; QSr.cim-4B and QSr.cim-5A from 
Avocet S {10975}. 



 

84   PATHOGENIC DISEASE/PEST REACTION  

 

Carberry (Resistant in Canada) / AC Cadillac (Resistant in Canada and Kenya): DH population: 
QTLs effective in Kenya were located in chromosomes 2B, 5B, 7B and 7D, those effective in Canada 
were on 3B (Sr2), 5A and 5B; those effective in Kenya and Canada were on 4B and 6D (Sr2); both 
parents had Lr34/Sr51 {11040} 

HD2009 / WL711: RILs: Three of several QTLs gave consistent effects across environments, viz. 
QSr.sun-3BS, R2 = 0.09-0.15, probably Sr2, QSr.sun-5DL, R2 = 0.2-0.44, probably Sr30, and QSr.sun-7A, 
R2 = 0.07-0.13, nearest marker wPT-4515 {10632}.  

PBW343 (S) / Muu (I): RIL population:4 consistent QTLs were identified, QSr.cim-2BS, QSr.cim-
3BS(Sr2) and Sr.cim-7AS from Muu, and QSr.cim-5BL from PBW343 {11019}. 

RL6071 / RL6058(R): RIL population: RL6058, a Tc backcross line with Lr34/Sr57 is more resistant 
than Tc. Enhancement of resistance in both Kenya and North America was attributed to a QTL in the 
region wPt5044 – Xgwm-2B in chromosome 2BL {10902}. 

Spark / Rialto: DH population: Sr5 and Sr31 were derived from Rialto and QDr.sun-3BS (Xgwm1034-
3B – BS00010945 region and QSR.sun-5A (Xgwm445-5A – Xgwm205-5A region) were derived from 
Spark {11231}.  

 

Suppressor of Stem Rust Resistance 1 
 
A suppressor of stem rust resistance in cv. Canthatch was known from the 1980s based on the response of 
an extracted tetraploid and aneuploid derivatives of Canthach as well as mutation analysis ({11410, 
11411}) and references therein. 

SuSr-D1 {11411}.  7DL {11412, 11417}.  v:  Canthatch CTH-K RL5451 {11411}; Columbus {11417}; 
Katepwa {11417}. Other Canadian Thatcher derivatives {11417}.  ma:  Localised to a 1.3 cM genetic 
interval flanked by Xkwh239 and Xkwh281 {11412}.  c:  TraesCS7D01G526100. Encodes a mutant form 
of TaMed15b.D, a subunit of the Medicator complex {11412}. 
 
3.21. Reaction to Puccinia striiformis Westend. 
Disease: Stripe rust, yellow rust. 

3.21.1. Designated genes for resistance to stripe rust 

YR1 

Yr1 {851}.  [L {1622}].  2AL {940}. 2A {1610}, {877}.  bin:  2AL1-0.85-1.00 {10564}.  i:  AVS+Yr1 
{970}.  v:  Chinese 166 {851};  Corin {230};  Dalee {83};  Durin {1459};  E2025 {1267};  E7700 
{1267};  E8594 {1267};  Feng-Kang 13 {1610};  Heines 110 {604};  Maris Ranger {1459};  Maris 
Templar {1459};  Odra {73};  Ritmo {10038}.  v2:  Argent Yr3a Yr4a Yr6 {1067}; Avocet (UK) Yr2 Yr6 
{1459};  Bounty Yr13 {1459};  Fenman Yr2 {1459};  Galahad Yr2 {heterogeneous} Yr14 {1459};  
Galahad Yr14 {83};  Kraka Yr32 {10038};  Ibis Yr2 {604};  Longbow Yr2 Yr6 {83};  Mardler Yr2 Yr3a 
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Yr4a Yr13 {1459}, {604};  Maris Templar Yr3a Yr4a {604};  Marksman {heterogeneous} Yr2 Yr13 
{1459};  Mithras Yr2 Yr6 {1459};  Nudif TP1 Yr3a {1431};  Nudif TP3 Yr3c {1431};  Nudif TP250 Yr6 
{1431};  Regina Yr2 {73};  Rothwell Perdix Yr2 {604};  Savannah Yr2 Yr3 Yr9 Yr32 {10032};  
Sportsman Yr13 {1459};  Stetson Yr9 {83};  Sylvia Yr2 {1430};  Tadorna Yr2 {1431};  Virtue Yr13 
{1459,83}.  ma:  Xgwm382-2AL – 0.6 cM – Xgwm311-2AL – 2.6 cM – Xfba8a-2AL – 1.3 cM – 
Xstm673acag – 1.1 cM – Yr1 – 16.5 cM – Sr48 {10564}.  
A report {1267} that Kalyansona and Nadadores carried Yr1 is not correct. 

YR2 

Yr2 {851}.  Recessive {1351}.  [U {1622}].  7B {184}, {746}, {186}.  v:  Derius {230};  Flevina 
{1431};  Hana;  HD2329 {1352};  Kalyansona {1352, 1351};  Laketch {50};  Leda {1430};  Manella 
{1431};  Merlin {1622};  Odra {71};  PBW54 {1352};  PBW120 {1352};  Slavia {71,73};  Soissonais 
Desprez {851};  WG377 {1352};  WH147 {1352};  WL711 {1352};  WL1562 {1352}.  v2:  Avocet 
(U.K.) Yr1 Yr6 {1459};  Brigand Yr14 {83};  Cleo Yr3c {1457};  Cleo Yr3c Yr14 {1431};  Fenman Yr1 
{1459};  Flamingo Yr6 {1430};  Flevina Yr7 {1430};  Galahad (heterogeneous) Yr1 Yr14 {1459};  
Garant Yr7 {230};  Hardi Yr7 {230};  Heines Kolben Yr6 {611};  Heines Peko Yr6 Yr25 {746};  Heines 
VII Yr25 {851};  Ibis Yr1 {604};  Lely Yr7 {1430};  Liberator Yr3c {1431};  Longbow Yr1 Yr6 {83};  
Mardler Yr1 Yr3a Yr4a Yr13 {1459};  Maris Beacon Yr3b Yr4b {1459};  Maris Huntsman Yr3a Yr4a 
Yr13 {604};  Maris Nimrod Yr13 {1459};  Marksman Yr1 (heterogeneous) Yr13 {1459};  Mithras Yr1 
Yr6 {1459};  Nautica Yr9 {1430};  Norman Yr6 {83};  Rapier Yr4 {83};  Rothwell Perdix Yr1 {604};  
Sonalika YrA {1352};  Stella Yr3 {1430};  Sylvia Yr1 {1430};  Tadorna Yr1 {1431};  Viginta Yr3a Yr4a 
{71,73};  Wizard (heterogeneous) Yr14 {1459};  Yamhill Yr3a Yr4a;  Zdar Yr4a {73}.  
Yr2 originally referred to a gene in Heines VII conferring resistance to European pathotypes. However, 
Heines VII possesses at least additional resistance gene, Yr25 {1351} that can be detected with a 
geographically wider range of pathogen isolates. Yr2 is present in Kalyansona {1351} and a range of 
spring wheats distributed by CIMMYT. 

YR3 

Yr3a {851}.  1B {184}, {185}. 2B {10370}. 5BL {11235}.  i:  Taichung 29*6/Vilmorin 23 {10370}.  v:  
Bon Fermier {1431};  Nudif TP1 {1431};  Stephens {184,182};  Vilmorin 23 {10370}.  v2:  Argent Yr1 
Yr4a Yr6 {1067};  Cappelle-Desprez Yr4a {851};  Druchamp Yr4a;  Hobbit Yr4a Yr14 {604};  Kinsman 
Yr4a Yr6 {604};  Mardler Yr1 Yr2 Yr4a Yr13 {1459};  Maris Huntsman Yr2 Yr4a Yr13 {604};  Maris 
Freeman Yr4a Yr6 {604};  Maris Ranger Yr4a Yr6 {604};  Nord Desprez Yr4a {184}, {182};  Top Yr4a 
{230};  Viginta Yr2 Yr4a;  Yamhill Yr2 Yr4a {182};  Zdar Yr4a{71, 73}. ma: Yr3 (YrV23) – Xwmc356-
2B, 9.4 cM {10370}.  

Yr3b {851}.  Chen and Line {182} found that a second gene in Hybrid 46 - presumably this gene was not 
located at the Yr3 locus.  v2:  Hybrid 46 Yr4b {851}. 

Yr3c {851}.  1B {184}.  v:  Minister {184}, {182}, {851}.  v2:  Cleo Yr2 {1430};  Maris Beacon Yr2 
Yr4b {1459}.  
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Undesignated allele.  v:  Enkoy {50};  Vilmorin 23; Staring {1430}.  v2:  Minister Yr2 {1430};  
Savannah Yr1 Yr2 Yr9 Yr32 {10016};  Senat Yr32 {10016};  Stella Yr2 {1430}. 

YR4 

Yr4.   

Yr4a {851}.  6B {184}, {185}. v:  Vilmorin 23 {184}.  v2:  Argent Yr1 Yr3a Yr6 {1067};  Cappelle-
Desprez Yr3a {851};  Druchamp Yr3a {182};  Hobbit Yr3a Yr14 {604};  Huntsman Yr2 Yr3a Yr13 
{604};  Kinsman Yr3a Yr6 {604};  Maris Ranger Yr3a Yr6 {604};  Maris Freeman Yr3a Yr6 {604};  
Mardler Yr1 Yr2 Yr3a Yr13 {1459};  Nord Desprez Yr3a {182};  Top Yr3a {230};  Viginta Yr2 Yr3a 
{71,73};  Yamhill Yr2 Yr3a;  Zdar Yr3a {71}, {73}.  

Yr4b {851}.  6B {184}.  v:  Avalon {1160};  Opal {1431};  Staring {1430}.  v2:  Hybrid 46 Yr3b;  Maris 
Beacon Yr2 Yr3b {1459, 1160};  Nudif TP12 Yr3c {1431};  Stella Yr2 {1430}. Undesignated allele.  
[YrRub {10720}].  3BS {10720}. 

bin:  3BS3-0.87-1.00 {10720}.  v:  Avalon {10720};  Bolac;  Emu S {10720};  Kenya Kubangu {50};  
Rubric AUS33333 {10720}.  v2:  Avalon Yr14 {83};  Rapier Yr2 Yr14 {83}.  ma:  Yr4 – 2.9 cM – 
Xcfb3530-3B – 2.4 cM – Xbarc75-3B {10720}.  
The conclusion that YrRub is Yr4 is based on specificity similarities and the presence of the Xcfb3530150 
and Xbarc75132 alleles in the five genotypes listed above. The 3BS location is not consistent with that 
listed for Yr4a and Yr4b. 

YR5 

Allelism with YR7 and YRSP (Sr5b) is reported in {10759} but cloning indicated that YR5 and YrSP are  
not allelic with Yr7 {11351}. 

Yr5a [{11351}].  [Yr5 {877}.]  Allelic with Yr7 and YrSp {10759}  2BL {34}.  i:  AVS+Yr5 {970};  
Lemhi+Yr5 {11153}.  v:  By 33 {3102};  E5557 {1267};  E8510 {1267}; T. spelta album {877};  Seven 
spelt accessions from Europe and Iran {640}.  ma:  Yr5 – 10.5 & 13.3 cM – Xgwm501-2B {3102};  
Completely linked to Resistance Gene-Analog Polymorphism (GRAP) markers Xwgp17-2B, Xwgp19-2B 
and Xwgp26-2B {10096}; Xwgp17-2B was later converted into a simpler Cleaved Amplified Polymorphic 
Sequence (CAPS) PCR marker {10097};  Co-segregation with AFLP marker S19N93-140 and 0.7 cM 
with S23M41-310 {10435}; Xwmc175-2B – 1.1 cM – YrSTS-7/8 – 0.3 cM – Yr5 – 0.4 cM – Xbarc349-
2B{10826}; Xwmc175-2B – 4.6 cM – YR5/ TaAffrx.65234.1.S2-at/Ta.28038 – 0.7 cM – S23M41-
310/STS:S23M41-275 {11153}. Accurate prediction of Yr5a was achieved with markers IWA4096, IWA 
6121 and IWA7850 for which primer sequences are available in Cereals DB {11286}.  c:  Yr5a (Genbank 
MN273772) along with Yr7 and Yr5b has a BED-LRR structure lacking a CC-domain {11351}. 

Yr5b [{11351}].  [YrSP{10018}, YrSp {10352}, YrSp].  2B {10018, 10352}.  bin:  2BL-C-0.5.  i:  Cx1 = 
Avocet S*4/Spaldings Prolific {10018};  Taichung*6/Spaldings Prolific {10352}.  v2:  Spaldings Prolific 
Yr25 {10018, 10352}.  ma:  YrSp – Xwmc-2B, 12.1 cM{10352};  IWA638 – 0.6 cM – YrSP – 1.5 cM – 
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dp269-2 – 1.9 cM – Xwmc332-2B {11091}.  c:  (Genbank MN273773) along with Yr5 and Yr7 has a 
BED-LRR structure lacking a CC-domain {11351}. Yr5b is a truncated form of Yr5 but confers a 
different specificity {11351}. 

YR6 

Yr6 {877}.  [B {1622}].  7B {746}. 7BS {331}.  i:  AVS+Yr6 {970}.  v:  Austerlitz {230};  Fielder 
{181};  Heines Kolben {1622};  Koga II {746};  Maris Dove {604};  Recital {230};  Takari {368}.  v2:  
Argent Yr1 Yr3a Yr4a {1067};  Avocet (UK) Yr1 Yr2 {1459};  Cadenza Yr7 {11187};  Flamingo Yr2 
{1430};  Heines Peko Yr2{746, 877};  Kinsman Yr3a Yr4a {604};  Kolben Yr2 {611};  Longbow Yr1 Yr2 
{1459, 83};  Maris Freeman Yr3a Yr4a {604};  Maris Ranger Yr3a Yr4a {604};  Mithras Yr1 Yr2 {1459};  
Norman Yr2 {1459, 83};  Nudif TP241 Yr7 {1431};  Nudif TP250 Yr1 {1431};  Orca Yr3c {1431};  
Pavon 76 Yr7 {284};  Penjamo 62 (heterogeneous) Yr18 {1562}.  tv:  Duilio {192};  Latino {192};  
Norba {192};  Quadruro {192};  Rodeo (heterogeneous) {192}.  ma:  Xgwm577-7B – Yr6 , <0.4 cM 
{11187};  Narrowed to an ~60 kb region including Xgwm577 {11188};  Given the location of Xgwm577 
the gene location should be 7BL.  

YR7 TraesCS2B01G488000 

Allelism with YR5a and YRSP is reported in {10759} but cloning indicated that YR7 is not allelic with 
YR5a and YrSP (Sr5b) {11351}. 

Yr7 {877}.  Allelic with Yr5a and YrSp {10759}  2B {1429}, {612}. 2BL {965}.  i:  AVS+Yr7 {970};  
Taichung 29*6/Lee {10371}.  v:  Present in many hexaploid wheats with Sr9g – see {965};  Brock {83};  
Lee {877};  Nudif TP257 {1431};  PBW12 {1352};  Paragon {11351}.  Prinqual {230};  Renard {83};  
Talent {230};  Tango {230};  Tommy {83};  WL2265 {1352}.  v2:  Cadenza Yr6 {11187};  Donata Yr9 
{1430};  Flevina Yr2 {1431};  Garant Yr2 {230};  Hardi Yr2 {230};  Lely Yr2 {1430};  Nudif TP241 Yr6 
{1431};  Pakistan 81 = Veery#5 Yr9 {284};  Pavon 76 Yr6 {284};  Reichersberg 42 Yr25 {10};  Thatcher 
{965}.  tv:  Iumillo {965};  but not present Acme and Kubanka which also carry Sr9g {965}.  ma: Yr7 – 
Xgwm526-2B, 5.3 cM {10371}; Xwmc175A-2B – Yr7, <0.4 cM {11187}.  c:  Yr7 (Genbank MN273771) 
along with Yr5a and YrSP has a BED-LRR structure lacking a CC-domain {11351}. 

YR8 

Yr8 {1217, 1218}.  Derived from Ae. comosa.  2D = T2D-2M {1218} = T2DS-2M#1L.2M#1S {389}. i:  
AVS+Yr8 {970}.  tr:  Chromosome 2D-2M translocations in Hobbit Sib and Maris Widgeon {1016};  
Compair {1217, 1218};  CS 3D/2M 3/8 {967};  See also Sr34 and {967}.  
2A = 2A-2M = T2AS-2M#1L.2M#1S {389}  CS 2A/2M 4/2 {967}.  
2M-1.  su:  CS 2M#1(2A) {967}.  

YR9 

Yr9 {878}.  Derived from S. cereale. See also Reaction to P. graminis, Sr31: Reaction to P. triticina Lr26 
1B=1BL.1RS.  i:  AVS+Yr9 {970}.  v:  Almus {998};  Aurora {1623}.  
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Chromosome status not specified  Baron {83};  Benno {998};  Bezostaya II {998};  Branka {71};  
Clement {1532, 1430};  Cougar {0267};  Danubia {68};  GR876 {753};  Hammer {83};  Iris {68};  
Kavkaz {1623};  Kromerzhizhskaya {1149};  Lyutestsens 15 {1149};  Lovrin 10 {998};  Lovrin 13 
{998};  Mildress {1027};  Perseus {998};  Predgornaya {998};  Rawhide (heterogeneous) {0267};  
Riebesel 47/51{878, 1623};  Roxana {68};  Sabina {68};  Salmon {998};  Sarhad 82 {284};  Selekta 
{68};  Shtorm {1149};  Skorospelka 35 {998};  Sleipner {10038};  Solaris {68};  St 2153/63 {997};  
Stuart {83};  Veery {986};  Weique {1627};  Winnetou {998};  Weihenstephan 1007/53 {1623}.  v2:  
Agra Yr3 {71,68};  Brigadier Yr17 {10785};  Donata Yr7 {1430};  Haven Yr6 {10038};  Kauz and 
derivatives, Bakhtawar 94, WH542, Memof, Basribey 95, Seyhan 95 Yr18 Yr27 {10160};  Lynx Yr6 Yr17 
{10038};  Nautica Yr2 {1430};  Pakistan 81 = Veery#5 Yr7 {284};  Savannah Yr1 Yr2 Yr3 Yr17 {10016};  
Stetson Yr1 {83};  Sparta Yr3 {71}.  tv: Cando*2/Veery, KS91WGRC14 {381}.  
1R(1B) {1623, 997}  su:  Burgas 2 {998};  Clement {1160};  Lovrin 13 {998};  Mildress {998};  
Mironovskaja 10 {998};  Neuzucht {1623};  Orlando {1623};  Roseana {68};  Saladin {997};  
Salzmunder Bartweizen {1623};  St 14/44 {998};  Weique {1627};  Wentzel W {1623};  Winnetou 
{1027};  Zorba {998};  See also {50}.  ma:  Several markers tightly linked with Yr9 were identified in 
{377}; Yr9 – 3.7 cM – Xgwm582-1BL {10365}.  
Stripe rust resistant wheat - S. africanum derivatives G17 (substitution line with 1Ra), L9-15 (1BL, 1RSa 
and L2-20 (putative cryptic translocations) are reported in {10596}. 

YR10  TraesCS1B03G0003500, TraesCS1B03G0003600 (CS RefSeq 2.1) 

Yr10 {878}.  [YrVav {0262}].  1BS {1002}. 1B {641}.  i:  AVS+Yr10 {970}.  v:   AC Radiant {11167};   
Crest {11304}; Jacmar {11145};  Moro {878};  PI 178383 {878}; QLD709 = Janz*2/T. vavilovii {0262}; 
T. spelta 415 {641}; T. vavilovii AUS 22498 {0262};  10 Chinese cultivars {11304}.  ma:  A SCAR 
marker was described in {0261};  QLD709 and T. spelta 415, both with white glumes, failed to amplify 
the SCAR sequence, but both carried unique alleles at the Gli-B1 and Xpsp3000-1B loci {0262}. These 
differed from the Moro source of Yr10. Yr10 – 1.5 cM – Gli-B1 – 1.1 cM – Xpsp3000-1B {0261}; Yr10 – 
1.2 cM – Xpsp3000 – 4.0 cM – Gli-B1{321};  Cosegregation between a RGA marker RgaYr10a and Yr10 
was reported in {0376}.  Yr10/Xsdauw79 – 0.2 cM – Xsdauw78 – 1.0 cM – Yr10CG – 2.1 cM – Xsdauw75 
– 0.5 cM – Xpsp3000-1B {11304}.  c:  Yr10 has a CC-NBS-LRR structure. GenBank AF149112 
{11145}. AF149112 (Yr10CG), TraesCS1B03G0000200, shown not to be the candidate gene {11304}. 
YrNAM {11692}. c:  A gene named YrNAM located 1.2 cM from ‘YrCG’, the original allegedly claimed 
Yr10, but with common specificity, encoded an NLR with 5’ NAM and 3’ ZNF0BED domains {11692}. 
YrCG was confirmed as Yr10 {11763).  GenBank OP490604. 

YR11 

Yr11.  Adult plant resistance.  [R11 {1157}].  v:  Joss Cambier {606}.  v2:  Heines VII Yr2 Yr25 see 
{970}.  

YR12 
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Yr12.  Adult plant resistance.  [R12 {1157}].  v:  Fleurus {1158};  Frontier {1159};  Pride {1157}.  v2:  
Armada Yr3a Yr4a {81, 1160};  Mega Yr3a Yr4a {1160, 1157}.  v:  Waggoner Yr3a Yr4a Yr6 {1158}.  

YR13 

Yr13.  Adult plant resistance.  [R13 {1157}].  v2:  Bounty Yr1 Yr3a Yr4a {1459};  Brigand Yr2 Yr3a 
Yr4a Yr14 {609};  Copain Yr3a Yr4a {1158};  Gawain Yr2 Yr3a Yr4a Yr14 {81};  Guardian Yr2 {82};  
Hustler Yr1 Yr2 Yr3a Yr4a {1459, 83};  Kinsman Yr3a Yr4a Yr6 {1459};  Mardler Yr1 Yr2 Yr3a Yr4a 
{1459};  Maris Huntsman Yr2 Yr3a Yr4a {1459, 83, 604};  Maris Nimrod Yr2 Yr3a Yr4a{1459, 607, 
1157};  Marksman Yr1 {heterogeneous} Yr2 Yr3a Yr4a {1459};  Pageant Yr2 Yr3a Yr4a {82};  Professor 
Marchal Yr2 Yr3a Yr4a {607};  Sportsman Yr1 Yr3a Yr4a {1459};  Virtue Yr1 Yr3a Yr4a {1158, 1459, 
83}.  

YR14 

Yr14.  Adult plant resistance.  [R14 {1157}].  v:  Kador {1158};  Score {1157};  Wembley {610}.  v2:  
Avalon Yr3b Yr4b {1459, 83};  Brigand Yr2 Yr3a Yr4a Yr13 {1459, 83, 609};  Galahad Yr1 Yr2 
(heterogeneous) Yr3a Yr4a {1459, 83};  Gawain Yr2 Yr3a Yr4a Yr13 {81};  Hobbit Yr3a Yr4a {1459, 
1157};  Maris Bilbo Yr3a Yr4a 1459, 1157};  Moulin Yr6 {83};  Rapier Yr2 Yr3b Yr4b {83};  Wizard Yr2 
(heterogeneous) Yr3b Yr4b {1459, 83}.  

YR15 

Yr15 {432}, {969}.  1BS {939}, {969|, {0003}.  YrH52 {0003}, YrG303 {11429}, Wtk1 {11392}.  i:  
AVS+Yr15 {970}.  v:  Agrestis {330};  Boston {330};  Clearwhite 515 {11392}; Cortez {330};  
Expresso {11392}; Legron {330};  Ochre {11240};  Patwin 515 {11392}; Seahawk {11392}.  Hexaploid 
derivatives of T. dicoccoides G-25 {466, 432}; T. dicoccoides H52 {0003, 11429}; T. dicoccodes G303 
{11429};  V763-2312 {969};  V763-254 {969}.  tv:  T. dicoccoides G-25 {466, 432, 431};  ;  D447 
derivatives B1, B2, B9, B10 {1434}.  ma:  Xgwm33-1B – 5 cM – Yr15 {9904}; Xgwm33-1B – 4.5 cM – 
Yr15 – 5.6 cM – UBC199200 – 5.6 cM – Nor-B1 {110};  Gene order Yr15 – Yr24 – Xgwm11-1B 
{10112}; OPB131420 – 27.1 cM – Yr15 – 11.0 cM – Nor-B 1{1434}; Xwmc128/Xgwm273/Xgwm582-1B 
– 0.4 cM – Yr15/Xwgp34/Xgwm413/Xbarc8{10826}; Xbarc8-1B – 3.9 cM – Yr15 – 2.5 cM – Xgwm413-
1BS {11173}.  Xbarc8-1B – 0.26 cM – R11/R5 – 0.51 cM – Yr15 – 0.26 cM – Xgwm413-1B/R8 {11240};  
Xbarc-8-1B – 4.2 cM – Yr15 – 3.5 cM – Xgwm413-1B {11348}; Xbarc8-1B – 4.1 cM – Yr15 – 2.5 cM – 
Xuhw-1B – 0.5 cM – Xgwm413-1B {11348}. Yr15 is proximal to Yr64; recombinant lines are reported in 
{11349};  Xwhu300-1B – 0.013 cM – Xwhu273-1B {11392};  distal ...Yr15 – 9.6 cM – YrH52 – 1.4 cM – 
Nor-B1 – 0.8 cM – Xgwm264a – 0.6 cM – Xgwm18{3}; Xgmw273a – 2.7 cM – YrH52 – 1.3 cM – 
Xgwm413/Nor1...centromere {108};  A line combing combining Yr15 and Yr64 is reported in {11618}: 
gene order Xbarc8239 – YR15 – Xgwm413102 – YR64 – Xgwm273196.  c:  Encodes a putative kinase-
pseudokinase protein designated as wheat tandom kinase 1 (TPK1), g-DNA 4,655 bp, 665 amino acids. 
GenBank MG649384, MG674157 {11392}, MK188918 (YrH52) {11429}, and MG18819 (YrG303). 

YR16  
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Yr16 {1598}.  Adult plant resistance.  2D {1598}.  v:  Bersee {1604};  Cappelle-Desprez {1598}.  

YR17 

Yr17 {62}. 2AS-6Mv.2AS {62}. 6Mv = 2MS-6MS.6ML or 2MS-6ML.6MS {0009}.  YrHy1 {11308}, 
YrMm58 {11308}.  i:  AVS+Yr17 {970}.  v:  Apache {10554};  See Lr37 (Reaction to P. triticina) and 
Sr38 (Reaction to P. graminis);  Arche {0044};  Balthazar {0044};  Bill {10554};  Brigadier {0044};  
Caphorn {10554};  CDS Stanley {11579};  Clever {10554};  Clarus {10554};  Cordial {0044};  Corsaire 
{10554};  Eureka {44};  Hussar {0044};  Huaiyang 1 {11308};  Jagger {10973, 11328};  Kris {10283};  
Kochu {11267};  Mace {11579};  Mengmai 58 {11308};  Milan {11267};  Mutus {11267};  Pernel {44};  
Rapsodia {10554};  Renan {10554, 0044};  Rheia {10554};  RL 6081 {939};  SY Mattis {11579}. 
Genotype list in {02105}.  v2:  Brigadier Yr9 {10785};  Lynx Yr6 Yr9;  Savannah Yr1 Yr2 Yr2 
Yr32{ 10016}.  ma: Yr17 was closely linked to the SCAR marker SC-Y15, developed from RAPD 
marker OP-Y15580, and to Xpsr150-2Nv {0044};  Characterized by null alleles for Xwmc382-2A and 
Xwmc407-2A {10283};  SCAR markers SC-372 and SC-385 were developed in {10796}.  
Although Yr17 was reported as a seedling-effective gene {62} some researchers report problems in 
obtaining repeatable seedling responses and prefer to treat this gene as conferring adult plant resistance 
{11221}.The 2NS translocated segment carrying Yr17 replaced the distal half of chromosome 2A (25-38 
cM) from Xcmwg682-2A to XksuH9-2A. PCR markers were developed for the 2NS and 2AS alleles of 
Xcmwg682 {10073}. 
Mundt {11340} noted that many genotypes containing Yr17 continued to have adult plant resistance to 
races virulent on the seedlings. These cultivars included Renan, Apache, Jagger, Bobtail and Madsen. 
However, it was unclear as to whether this represented additional resistance gene(s) in the introduced 
segment or APR genes at other loci.  
The 2NVS segment carries a second high-temperature adult plant resistance gene designated YrM1225 in 
AvS+Yr17 mutant M1225 {11706}. Presumably the same gene was mapped to the proximal 19.36 – 33 
MB region of the translocation in the Jagger reference genome and two candidate genes were predicted 
{11760}. 

YR18. TraesCS7D03G0183600 

Yr18 1362}.  7DS {324}. 7D {1362}.  i:  AVS+Yr18 {970}; Thatcher (Yr7) near-isogenic lines with Lr34 
including the 13 2-gene combinations reported in {434, 937}.  v:  Jupateco 73R;  Lerma Rojo 64 {1375};  
Libellula {11139};  Nacazari 76 {1375};  Strampelli {11139};  Tesia F 79 {1375};  Tonichi S 81 {1375};  
Wheaton 1375}.  v2:  Parula Yr29 {10281};  Penjamo 62 Yr6 (heterogeneous) {1375};  Saar Yr29 
{10481};  Wheats with Lr34 (See Lr34);  Others {1376};  Kauz and derivatives, Bakhtawar 94, WH542, 
Memof, Bascribey 95, Seyhan 95 Yr9 Yr27 {10160}.  ma:  Complete linkage with Lr34{937,1362}; 
Ltn{1361};  and Bdv1{1363}; Xgwm120-7D – 0.9 cM – Yr18 – 0.7 cM – Xgwm295-7D {10259}.  c:  See 
Lr34;  Putative ABC transporter {10648}. This gene is identical to Lr34, Pm38 and Ltn and confers stem 
rust resistance in some genetic backgrounds. Some AVS NILs also have Yr18. Forty-three Chinese land 
varieties predicted to have Yr18 based on markers had high rust severities. Genetic analyses of four of 
these landrace (Sichuanyonggang 2, Baikemai, Youmai and Zhangsihuang) indicated the presence of an 
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independent suppressor {11101}. Libellula had an additional 4 QTL and Strampelli had an additional 3 
QTL {11139}. 

Yr18 conferred seedling resistance to leaf rust when transformed into durum wheat {M10114}. 

YR19 

Yr19 {183}.  [YrCom {183}].  5B {183}.  v2:  Compair Yr8 {183}.  

YR20 

Yr20 {183}.  [YrFie {181}].  6D {183}.  v2:  Fielder Yr6 {183}.  

YR21 

Yr21 {183}.  [YrLem {181}].  1B {183,10450}.  v:  Lemhi {183}.  
A closely linked gene, also in Lemhi, conferred resistance to P. s. hordei {10450}. Both genes were 
mapped relative to RGAP markers. Yr21 – YrRpsLem, 0.3 cM {10450}. 

YR22 

Yr22 {183}.  [YrLe1{183}].  4D{183}.  v2:  Lee Yr7 Yr23{183}.  

YR23 

Yr23 {183}.  [YrLe2 {183}].  6D {183}.  v2:  Lee Yr7 Yr22 {183}.  

YR24  
Identical to YR26. 

Yr24 {952}.  [YrCH42].  1BS {952}.  i:  AVS+Yr24 {970}.  v:  Chuanmai 42 {10339}; 
Meering*3/K733/Ae. tauschii AUS18911 {952};  Neimai 836 {11259}.  Synthetic 769 {10339}.  tv:  
Decoy 1 {10339};  K733 {952}.  ma:  Gene order Yr15 – Yr24 – Xgwm11-1B {10112}; Xbarc187-1B – 
2.3 cM – Yr24 – 1.6 cM – Xgwm498-1B {10339}.  
Yr24 is identical to Yr26 {10339, 11391}. 

YR25 

Yr25 {158}.  1D {158}.  v:  Carina {0010};  Hugenout {0010};  Strubes Dickkopf;  TP1295 {158};  
TP981 {158};  Tugela {314};  Tugela-DN {0010, 314}.  v2:  Carstens V Yr32 {10016};  Heines Peko 
Yr2 Yr6 {0010};  Reichersberg 42 Yr7 {0010};  Spaldings Prolific YrSP {10016}.  
Yr25 was predicted to be present in Strubes Dickkopf, Heines VII Yr2, Heines Peko Yr2 Yr6, 
Reichersberg 42 Yr7 and Clement Yr9 {158}. This prediction was confirmed for Heines VII, Heines Peko 
and Reichersberg 42 but the pathogen culture used in {0010} was not virulent on Clement (Yr9) or on 
Strubes Dickkopf where another, or a different gene, must be present. 
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YR26. Identical to YR24 {10339, 11391}. 

Yr26 {617}.  The earlier location of 6AS (6AL.6VS) {617} is not corect.1BS {0285}. 1BL{10544}.  bin:  
C-1BL-6-0.32 {10544}.  i:  AVS+Yr26 {970}.  v:  Guinong 22 {11098};  Nannong 9918 {10544};  Nei 
2938 {10544};  Nei 4221 {10544};  Neimai 9 {10544};  Lines R43, R55, R64 and R77 {0285}.  tv: T. 
turgidum Gamma 80-1.  tr:  Yangmai-5 {617}.  ma:  Yr26 – 1.9 cM – Xgwm11-1B/Xgwm18-1B {0285}; 
Xgwm11/18-1B – 1.1 cM – Xwe171/202/210-1B – 0.4 cM – Xwe177/201-1B – 0.3 cM – Xwe173-1B – 1.4 
cM – Yr26 – 6.7 cM – Xbarc181-1BL – 3.0 cM – Xwmc419-1BL{10544};  Xgwm11-1B – 0.9 cM – Yr26 – 
6.3 cM – Xbarc181 {11350}.  Located between KASP markers WRS435 and WRS312 in an interval of 0.4 
cM {11350}. 
According to {10554} the markers most closely associated with Yr26 are actually located in chromosome 
1BL. 

YR27.  TraesKAR2B01G0121530LC.  TraesCSB02G182800. 

Yr27 {928}.  [YrSk {928}; QYr.sgi-2B.1 {10184, 11232}.].  2BS {928}.  i:  AVS+Yr27 {970}.  v:  
Avocet 2B (= AvocetS + QYr.sgi-2B.1) {11593}. Ciano 79 {928};  Inquilab 91 {928};  Kauz {928};  
McMurachy {928};  Opata 85 {928};  PWB343 {928};  Selkirk {928};  Webster {928}.  v2:  Attila Yr27 
{928};  Kariega Yr18 {11593};  Kauz and derivatives, Bakhtawar 94, WH542, Memof, Basribey 95, 
Seyhan 95 Yr9 Yr18 {10160}.  ma:  When analysed as a QTL, variation associated with the Yr27 locus 
was associated with RFLP markers Xcdo152-2B and Xcdo405-2B {928}. A Yr27-specific molecular 
marker was based on Asn 895 found only in Yr27 {11593}. 
Many CIMMYT wheat lines {953}. Recombination Yr31 – Yr27, 0.148, Yr31 – Lr23, 0.295 {0325}.  c:  
Yr27 is an allele at the LR13/NE2 locus {11593}. 

YR28  

Yr28 {1377}.  [YrAS2388 {10822, 11438}]; YrAet672 {11664}.  4DS {1377}.  v:  Synthetic = Altar 
84/Ae. tauschii W-219. Synthetic/Opata 85 SSD population. Genotype lists: {970}, {1325}.  dv:  Ae. 
tauschii W-219 {1377};  CPI 110672 {11664}.  ma:  Close association with Xmwg634-4DS {1377}.  c:  
Yr28 has a CC-NBS-LRR structure, alternative splicing in the NBS region and duplicated 3’ UTR 
{11438}. GenBank MK73661 – MK73666 {11438}.  
Yr28 was present in all tested accessions of Ae. tauschii ssp. strangulata and some accessions of ssp. 
tauschii {11438}. Often suppressed in synthetic and derived wheat backgrounds.  
Yr22 was also reported for chromosome 4D, but in the absence of an appropriate single gene stock and 
the unavailability of avirulent cultures in most laboratories, tests of linkage with Yr28 are unlikely in the 
foreseeable future.  Partial suppression of resistance in synthetic wheat derivatives carrying Yr28 was 
associated with reduced transcript accumulation {11664}. 

YR29 

Yr29 {119}.  Adult plant resistance {0119}.  1BL{0119}.  s:  Lalbahadur(Parula 1B) {10281}.  v:  
Druchamp {11235};  Kundan {11248}.  v2:  Attila Yr27 {10281};  Parula Yr18 {10281};  Pavon F76 Yr6 
Yr7 Yr30 {119};  Quaiu3 Yr30 {10943};  Saar Yr18 {10481}; Yr29 is completely linked with Lr46. See 
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Lr46 {119}.  tv:  Stewart {11542}.  ma:  Xwmc44-1B – 1.4 cM – Xbac24prot – 9.5 cM – Yr29 2.9 cM – 
Xbac17R .....Xgwm140-1B{10281}; Xgwm44-1B – 3.6 cM – Yr29 – 2.1 cM – 
XtG818/XBac17R.....Xgwm140-1B {10281};  Associated with Ltn2 and Lr46;  QYr.ucw-1BL was mapped 
to a 0.24 cM region (332 kb IWGSC RefSeq v1.0 between ucw.k31 and csLV46G22 {11386}. 
Yr29 is a frequent gene in durum wheat ({11542}and references therein).  

YR30 

Yr30 {0120}.  Adult plant resistance {0120}.  3BS {0120}.  v:  Opata 85 {0120};  Parula {0120}.  v2:  
Inia 66 YrA {0120};  Pavon F76 Yr6 Yr7 Yr29 {0120};  Quaiu3 Yr29 {10943}; Yr30 is closely linked 
with Sr2 and Lr27 {0120}. 
According to {11773} Yr30 is present in Yaco S, Zhou8425b, Napo 63 and Orofen. 

YR31 

Yr31 {0325}.  2BS.  v:  Pastor {0325}.  ma:  Recombination values: Yr31 – Yr27, 0.148; Yr31 – Lr23, 
0.295; Yr27 – Lr23, 0.131{0325}; Yr31 maps between Lr12 and Lr23 {10928}.  

YR32 

Yr32 {10016}.  [YrCV {1430}, YrCv {939}].  2AL {10016}.  i:  Avocet S*4/Carstens V {970}; 
Cook*6/Carstens V {970};  CRW380 = Carstens V/3*Avocet S {10016};  Tres/6*/Avocet S {10016}.  v:  
Anouska {1430};  Caribo {1430};  Consort {10021, 10023};  Cyrano {1430};  Danis {10023};  Deben 
{10283};  Hereward {10021, 10022};  Okapi {1430};  Oxbow {10021};  Senat {10016};  Solist {10016};  
Stakado {10016};  Toisondor {11144};  Tres {10016};  Vivant {10023};  Wasmo {10016}.  v2:  
Carstens V Yr25 {10016};  Felix Yr3 {1430};  Kraka Yr1 {10021, 10038};  Savannah Yr1 Yr2 Yr3 Yr4 
Yr17 {10016};  Senat Yr3 {10016};  Zdar Yr3a Yr4a {67}.  ma: Xwmc198-2A – 2 cM – Yr32 {10016}; 
Yr32 was coincident with one AFLP marker {10016}.  

YR33 

Yr33 {10039}.  More readily detected in seedling tests at elevated temperatures {10336}.  7DL {10039}.  
v:  Batavia {10039};  EGA Gregory;  Strezecki.  ma:   Linkage with Xgwm111-7D and Xgwm437-7D 
{10039}.  

YR34 

Yr34 {10040}.  [Syn. Yr48 {11266}].  5AL {10040}.  v:  AUSC {10040};  UC1110/PI610750 RIL#143 
{11266};  AUS27492 {11720};  WAWHT2046 = AUS91389 {10040}.  ma:  Xgwm410.2-5A – 8.2 cM – 
B1 – 12.2 cM – Yr34 {10040};  Xgwm291-5A – 0.5 cM – B1 – 1.5 cM – Yr34/Xgwm410.2-5A/Xcfa2149-
5A/KASP_109/KASP_6988/etc. {11266}; Xgwm291-5A – 2.3 cM – B1 – 0.7 cM – Yr34/Xgwm410.2-
5A/Xcfa2149-5A/KASP_109/KASP_6988/etc. {11266}. Yr34 is in a 5AS.5AL-5AmL translocation 
segment that is present in genotypes ArinaLrFor and SY Mattis in the Wheat10+ Genome panel {11602}. 
Associated with 5 markers {11720}. 
This gene confers a weak seedling resistance (IT 2C to 3C) and a strong adult plant resistance (0 to 10R) 
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{10040} to Australian pathotype 134E16A+, but is not effective against Australian pathotype 
110E143A+ {10040}.    
Yr34 is <1cM from the awn inhibitor B1 {11266}. 

YR35 

Yr35 {10203}.  [YrS8 {10204}].  6BS {10203}; 6SS.6SL-6BL {11778}.  v:  98M71 = AUS 91388 = T. 
dicoccoides 479/7*CS {10204}.  tv:  According to {11778} Yr35 originated from Ae. longissima or Ae. 
sharonensis.  T. dicoccoides 479 {10204}.  ma:  Xgwm191-6B – 18.9 cM –Yr35 – 3 cM – Lr53 – 1.1 cM 
– Xcfd-6B – 3.4 cM – Xgwm50-6B {10780}. 
Genetically associated with Lr53. 

Yr36 

Yr36 {10138, 10272}.  Adult plant resistance.  6BS {10138}.  i:  Yecora Rojo NIL PI 638740 {10138}.  
v:  Burnside {11044};  Glencross {11044};  Glupro {10138};  Lilian {11044};  Shumai 1701 {11258};  
Somerset {11044};  UC1041+Yr36 {10649}.  itv:  UC1113 NIL PI 638741 {10138}.  tv:  RSL#65 {623, 
10138, 10649}; T. dicoccoides FA-15 {10138};  T. dicoccum PI 415152 {M10058}.  ma: Yr36 is 
between Xucw74-6B and Xucw77-6B and 3-7 cM proximal to Nor-B2 {10138}; Yr36 is closely linked to 
the high grain protein locus of T. turgidum var. dicoccoides FA-15 {10138}; Nor-B2 ....Xucw68-6B – 
Xucw69-6B/Xbarc101-6B/Yr36 – Xucw66-6B{10272}; Yr36 is 2 - 4 cM proximal to Gpc-B1 {10272}.  c:  
ACF33182; Yr36 encodes wheat kinase-START-1 protein {10649};  WKS1 is absent in almost all 
modern tetraploid and common wheats {10649};   Sr36 was shown to reduce the ability of the 
thylakoidassociated ascorbate peroxidase to detoxify reactive oxygen species {11128}.  
Although originally described as conferring high temperature adult plant resistance. This gene confers 
partial resistance in both juvenile and adult plants at temperatures less than 18C {11277}.  

YR37 

Yr37 {10139}.  Derived from Ae. kotschyi.  2DL {10139}.  v:  Line S14 {10139}.  ad:  Line 8078 
{10139}.  al:  Ae. kotschyi 617 {10139}.  

YR38 

Yr38 {10224}.  [YrS12 {10204}].  6A (6AL-6Lsh.6Ssh) {10224}.  v:  nong  = Ae. sharonensis-
174/9*CS//3*W84-17/3/CS/4/W84-17 {10224};  Recombinants with shorter segments - 07M4-39, 07M4-
157 and 07M4-175 are reported in {10691}.  al:  Ae. sharonensis-174 {10224}.  

YR39 

Yr39 {10416}.  HTAP resistance  7BL {10416}.  v:  Alpowa {10416}.  ma:  Closely linked to several 
RGAP markers {10416}.  

YR40 
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Yr40 {10328}.  Derived from Ae. geniculata.  5DS(5DL.5DS-T5MSG {10328}.  v:  TA 5602 {10328};  
TA 5603 {10328};  TA56501 {11553}.  ad:  TA7659 {11553}.  al:  Ae. geniculata (=ovata) 
(UsUsMgMMg) TA10437 {10328}.  ma:  Completely linked with distinctive alleles of Gsp, Xfbb276 and 
Xbcd873 {10328};  Completely linkd with Lr57 {10328};  CAPS marker XLr57/Yr40-MAS-CAPS16 
{10770}.  
Line TA5601 carries an estimated 5% of 5Mg; and TA5602, 20% {11553}. Genetic analysis of the 
segment in TA5602 indicated terminal replacement of 9.4 Mb in chromosome 5D and that Yr40 is 12.4 
cM proximal to Lr57 {11553}. 

YR41 

Yr41 {10502}.  [YrCN19 {10228}].  2BS {10228, 10502}.  v:  AIM {10228};  AIM6 {10228};  
Chuannong 19 {10228, 10502}.  ma:  Complete linkage to a 391 bp allele of Xgwm410-2BS{10228}; 
Xgwm410-2B – 0.3 cM – Yr41 {10502}.  

YR42 

Yr42 {10537}.  Derived from Ae. neglecta.  6A = 6AL-6AenL.6AenS {10537}.  v:  Line 03M119-71A 
{10537}.  al:  Ae. neglecta 155 {10537}.  
Associated with Lr62 {10537}. 

YR43 

Yr43 {10673}.  2BL {10673}.  v:  IDO377s = PI 591045 {10673};  Lolo {10673};  many IDO377s 
derivatives {10673}.  ma:  Xwms501-2B – 11.6 cM – Xwgp110-2B – 4.4 cM – Yr43 – 5.5 cM – 
Xwgp103-2B – 12.8 cM – Xbarc139-2B {10673}.  

YR44 

Yr44 {10673}.  [YrZak {10674}].  2BL {10674}.  v:  Zak = PI 607839 {10674}.  ma:  XSTS7/8/Yr5 – 
12.7 cM – Yr44 – 3.9 cM – Xwgp100 – 1.1 cM – Xgwm501-2B{10674}.  

YR45 

Yr45 {10677}.  3DL {10677}.  v:  PI 181434 {10677};  PI 660056 {11024}.  ma:  Xbarc6-3D – 0.9 cM 
– Xwmc656-3D – 6.9 cM – Xwpl18-3D – 4.8 cM – Yr45 – 5.8 cM – Xwp115-3D {10677}.  
This gene is highly effective and confers resistance to all North American Pst pathotypes. 

YR46 

Yr46 {10678}.  Adult plant resistance.  4DL {10678}.  bin:  Distal to 0.56.  i:  RL6077 = Thatcher*6/PI 
250413 {10678}.  v:  Chapingo 48 {11070}; PI 250413 {10678}.  ma: Xgwm165-4D/Xgwm192-4D – 0.4 
cM – Yr46/Lr67 {10678}.  c:  This multiple disease resistance locus was identified as a hexose 
transporter most similar to the STP13 family and containing 12 predicted transmembrane helices 
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{11070}.  
Pleiotropic or closely linked with Sr55 and Lr67 

YR47 

Yr47 {10679}.  5BS {10679}.  bin:  5BS6-0.81-1.00.  v:  AUS28183 = V336 {10679};  AUS28187 
{10679}.  ma: Xgwm234-5B – 10.2 cM – Lr52 – 3.3 cM – Yr47 – 9.6 cM – Xcfb309-5B {10679}; 
Xcfb309-5B – Xsun480/Xmag705/Xfcp552-5B – 0.4 cM – Yr47 – 4.3 cM – icg16c008/Xgwm234-5B 
{11200}; Xsun180 – 0.4 cM – Lr52 – 0.2 cM – Yr47 – 1.4 cM – Xgwm234-5B {11200}.  
This is a seedling resistance gene (IT 1CN), effective against the main Australian groups of Pst. V336 is 
the original source of Lr52. 

YR48 

Yr48 {10705}.  [Syn. Yr34 {11266}].  Adult plant resistance.  [Qyr.ucw-5AL {10705}].  5AL {10705}.  
bin:  5AL23 0.87-1.00.  v:  UC1110 (MR)/PI 610750 (MR): RIL4 GSTR 13504 {10705};  RIL167 
GSTR 13618 {10705};  UC1110/PI610750 RIL#143 {11266}.  ma:  Co-segregated with Vrn2, 
BE495011, Xcfa2149-5AL, Xgpw2181a-5AL, Xwmc74-5AL, and Xwmc410-5AL{10705}; Xwmc727-5AL 
– 4.4 cM – Yr48 – 0.3 cM – Xwms291-5AL {10705}.  
PI 610750 = Synthetic 205 ((Croc 1 / Ae. tauschii)/Kauz) {10705}. 

YR49 

Yr49 {10746}.  Adult plant resistance.  3DS {10746}.  bin:  3DS6-0.55-1.00).  v:  AvocetS*3 / Chuanmai 
18 AUS91433 {10746}.  v2:  Chuanmai 18 Yr18 {10746}.  ma: Xgps7321-3D/Yr49 – 1 cM – Xgwm161-
3D {10746}.  

YR50  

Yr50 {10849}.  Derived from Th. intermedium.  4BL {10849}. v:  CH233{10849}.  ma: 
cent...Xbarc1096-4B – 8.0 cM – Yr50 – 7.2 cM – Xbarc-4B {10849}.  
The genetic distance between Yr50 and Yr62 was estimated to be 27.1±8.6 cM {11023}. 

YR51 

Yr51 {10850}.  [YrAW1{10850}].  4AL {10850}.  bin:  4AL4-0.80-1.00.  v:  Line 5515 AUS 91456 
{10850}.  v2:  AUS 278589 Yr57 {10850}.  ma:  Xowm45F3R304A – 1.2 cM – Yr51 – 2.5 cM – 
Xsun104-4A – 1.8 cM – Xgwm160-4A {10850}.  

YR52 

Yr52 {10852}.  Adult plant resistance.  7BL {10852}.  bin:  7BL3-0.86-1.00.  v:  PI 183527 {10852};  PI 
660057 = Avocet S/PI 183527 F4-41 {10853}.  ma:  Xbarc182-7B – 1.2 cM – Yr52 – 1.1 cM – 
Xwgp5258 – 5.7 cM – Xcfa2040-7B {10852}.  
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YR53 

Yr53 {10854}.  2BL {10854}.  bin:  2BL3-0-0.35.  tv:  PI 480148 {10854}.  v:  Avocet S/PI 480148 F5-
128 {10854}.  ma:  Xwmc441-2B – 5.6 cM – Yr53 – 2.7 cM – XLRRrev/NLRRrev350 – 6.5 cM – 
Xwmc149-2B {10853}; Yr53 was estimated to be 35 cM distal to Yr5 based on an F2 allelism test, but on 
an integrated map this distance was about 20 cM.  

YR54 

Yr54 {10944}.  Adult plant resistance.  2DL {10944}.  v:  Yr54 RIL GID6032209 {10944}; Yr54 RIL 
GID6032334 {10944}.  v2:  Quaiu3Yr29 Yr30 {10943, 10944}.   ma:  Yr54 – 0.4 cM – Xgwm301-2D 
{10944}.  
Yr54 could be the same as Qyr.tam-2D in Alcedo {10945}. 

YR55 

Yr55 {10953}.  2DL {10953}.  v:  Frelon Yr17 AUS 38882 {10953}.  ma:  Xmag4089-2D – 11.4 cM – 
Yr55 – 8.4 cM – Xmag3385-2D {10953}.  

YR56 

Yr56 {10955}.  [Qyr.sun-2A {10955}].  2AS {10955}.  bin:  Tentatively 2AS5-0.78-1.00 {10955}.    tv:  
AUS 91575 {10955};  Wollaroi  (AUS 99174) {10955}.  ma:  Xbarc212-2A – 3.7 cM – Xbarc124-2A – 
2.1 cM – Xsun167-2A – 5.7 cM – Yr56 – 7.6 cM – Xsun168-2A – 5.0 cM – Xsun169-2A – 8.0 cM – 
Xgwm512-2A {10955}.  
Wollaroi has additional APR QTL {10955}. 

YR57 

Yr57 {10963}.  [YrAW2 {10963}].  3BS {10963}.  bin:  3BS8-0.78-1.00.  v:  AUS 91463 {10963}.  v2:  
AUS 27858 Yr51{10963}.  ma:  sts3B15 – 4.5 cM – BS00062676 – 2.3 cM – Yr57 – 2.0 cM – Xgwm389-
3B – 2.0 cM – Xbarc75-3B {10963};  Bs0006276 – 0.3 cM – Yr57 – 1.3 cm – Xgwm389-3B – 6.1 cM – 
csSr2 – 2.6 cM – Xgwm533-3B {11480}.  

YR58 

Yr58 {10964}.  Adult plant resistance.  [QYr.sun-3BS {10964}]  3BS {10964}.  bin:  3BS7-0.87-1.00.  v:  
Sonora W195 AUS 19292 Yr46 {10964.  ma:  1121669/3023704 – 3.9 cM – Yr58 – 4.6 cM – 
100016328/123392 {10964}.  

YR59 

Yr59 {10966}.  Adult plant resistance.  7BL {10966}.  bin:  7BL-0.86-1.00.  v: Avocet S/PI 178759 F4-
158 {10967};  PI 660061;  PI 178759 {10966}.  ma: Xwmc557-7B – 2.2 cM – Xwgp5175 – 2.1 cM – 
Yr59 – 1.1 cM – Xbarc32 – 0.5 cM – Xbarc182-7B {10966}. Yr59 can be detected in high temperature 
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seedling tests {10966, 10967}. Yr59 is a highly effective HTAP resistance gene. Crosses with lines 
possessing Yr39, Yr52 or YrZH84 previously reported on chromosome 7BL segregated, indicating that 
they are at different loci. However, the allelism test data were based on F2 phenotypes only. The linkage 
order of these genes is (proximal) Yr39 – 31.2 cM – Yr52 – 5.4 cM – YrPI178759 – 6.0 cM – YrZH84 
(distal). 

YR60 

Yr60 {10968}.  4AL {10968}.  v:  Almop, Avocet*3//Lalbmono 1B*4/Pavon GID 5934039 {10968}.  
v2:  LB(Pavon1B) Yr29 {10968}.  ma:  Xwmc313/Xwmc219-4A – 0.51 cM – Yr60/Xwmc776-4A 
{10968}.  
Yr60 was estimated to be about 10 cM distal to Yr51 

YR61 

Yr61 {10970}.  [Yrpd34 {10970}].  7AS {10970}.  v:  Pindong 34 {10970}.  ma:  Xwgp5765b – 3.9 cM 
– Yr61 – 1.9 cM – Xwp5467 – 12.5 cM – Xcfa2174 {10970}.  

YR62 

Yr62 {11023}.  Adult plant resistance.  4BL {11023}.  bin:  4BL5-0.86-1.00.  v:  PI 192252 {11023};  PI 
660060 = Avocet S/PI 192252 F4-103 {11024}.  ma:  IWA3611-4B – 0.8 cM – IWA4041-4B – 0.8 cM – 
IWA2171-4B – 0.7 cM – IWA99-4B – 1.0 cM – IWA1923-4B – 1.2 cM – Xgwm251-4B – 3.3 cM – Yr62 – 
2.0 cM – Xgwm192- – 0.6 cM – Xgwm495-4B – 0.7 cM – Xgwm513-4B {11023}.  
The genetic distance between Yr62 and Yr50 was estimated to be 27.1±8.6 cM {11023}. 

YR63 

Yr63 {11027}.  7BS {11027}.  bin:  7BS1-0.27-1.00.  v:  AUS 27955 {11027}.  ma:  IWB33120 – 0.9 
cM – Yr63 – 1.5 cM – IWB52844 – 10.5 cM – Xwmc606-7B {11027}. sun_KASP401 (0.6 Mb, CS RefSeq 
2.1) – 2.1 cM – sunCS_Yr63 – 2.1 cM – sunKASP_406 (7.4 Mb) {11733}. 

YR64 

Yr64 {11030}.  1BS {11030}.  bin:  1BS9-0.84-1.00.  v:  PI 660064 = Avocet S/PI 331260 {10967}.  tv:  
PI 331260 {11030}.  ma:  Xbarc8-1B – 0.6 cM – Xbarc119-1B – 6.5 cM – Xgwm413-1B – 3.5 cM – Yr64 
– 2.0 cM – Xgdm33-1B – 5.0 cM – Xgwm498-1B – 3.9 cM – Xcfd59- – 0.4 cM – Xgwm273-1B – 3.9 cM – 
Xgwm18-1B – 2.6 cM – Xbarc137-1B – centromere {11030};  Yr64 is distal to Yr15; recombinant lines 
are reported in {11349}.  A line combing combining Yr15 and Yr64 is reported in {11618}: gene order 
Xbarc8239 – YR15 – Xgwm413102 – YR64 – Xgwm273196. 

YR65 

Yr65 {11030}.  1BS {11030}.  bin:  1BS10-0.5-centromere.  v:  AvS/PI 480016 F7-12 {11030}.  tv:  PI 
480016 {11030}.  ma:  Xbarc119-1B – 6.5 cM – Xgwm413-1B – 5.5 cM – Xgdm33-1B – 4.6 cM – 
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Xgwm498-1B – 3.5 cM – Xbarc187-1B – 2.8 cM – Xgwm273-1B – 3.7 cM – Xgwm18-1B – 1.2 cM – Yr65 
– 2.1 cM – Xgwm11-1B – 2.1 cM – Xbarc137-1B – centromere {11030}.  

YR66 

Yr66 {11032}.  [YrVL1 {11032}].  3DS {11032}.  bin:  3DS6-0.55-1.00.  v:  AGG91584WHWA = 
MSP4543.1 {11032}.  v2:  VL Gehun 892 = AGG91586WHEA Yr67 {11032}.  ma:  KASP_18087 
(3.550 Mb) – 2.1 cM – Yr66 – 0.6 vM – KASP_48179 {11032}.  

YR67 

Yr67 {11032}.  [YrC591 {11033}, YrVL2 {11032}].  7BL {11032, 11033}.  bin:  7BL10-0.78-1.00.  v:  
AGG91585WHEA = MSP4543.4 {11032};  C306 {11032};  C591 {11032, 11033}.  v2:  VL Gehun 892 
= AGG91586WHEA Yr66 {11032}.  ma:  Xbarc32-7B – 2.2 cM – Xcfa2040-7B – 8.0 cM – Yr67 – 11.7 
cM – SC-P35M48 {11033}; KASP_37096 (7.170 Mb) – 1.2 cM – Yr67 – 3.6 CM – KASP_2239 7.211 
MB) {11032}.  

YR68 CURATOR’S NOTE: publication could not be located. 

Yr68 {11051}.  Adult plant resistance.  4BL {11051}.  bin:  4BL1-0.86-1.00.  i:  AGG91587WHEA1 = 
csAvYr4BL = Avocet S*5/Undesignated International Nursery ex New Zealand Entry 03.25 {11051}.  v:  
Undesignated International Nursery ex New Zealand 03.25 {11051}.  ma:  IWB74301 – 0.5 cM – 
Yr68/IWA4640 – 0.5 cM – IWB28394 {11051}.  

Yr69 

Yr69 {11052}.  Derived from Thinopyrum ponticum partial amphiploid Xiaoyan 7430.  [YrCH86 
{11052}].  2AS {11052}.  bin:  2AS5-0.78-1.00.  v:  CH7086 {11052}.  ma:  Xwmc25-2A – 2.7 cM – 
X2AS33 – 1.9 cM – Yr69 – 3.2 cM – Xmag3807-2A {11052}.  
Linked with Yr17: (F2 seedling test) 30.0 cM {11052}. No positive evidence for a Th. Ponticum origin 
was prested. 

YR70 

Yr70 {11055}.  Derived from Ae. geniculata [YrUmb {11055}].  5DS {11055}.  v:  IL393-4, T. durum 
cv. WH890 / Ae. umbellulata Pau 3732 // CS PhI/3/2*WL711{11055}.  al:  Ae. umbellulata Pau 3732 
{11055}.  ma:  Yr70 – 7.6 cM – Xgwm190-5D {11055};  A co-segregating 450 bp Lr57-Yr40-CAPS16 
marker was present in IL393-4, but not in many Australian wheat cultivars {11055}.  
Yr70 behaves as an allele of Yr40 derived from Ae. geniculata. The low infection types are also different.  
The introgression carrying the Ae. umbellulata segment replacing terminal chromosome arm 5DS was 
9.47 Mb with the break point between TraesCS5D02G1600 and TraesCS5G02G20010 {11552}. 
Independent mutations indicated that Yr70 differed from Lr76 {11552}. 
 

YR71 
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Yr71 {11056}.  Adult plant resistance.  [YrSA3 {11056}].  3DL {11056}.  v:  AGG91588WHEA, 
Sunco/Avocet S RIL4667.153.11.1 {11056}.  v2:  Sunco Yr18 {11056}.  ma: Yr71 – 1.6 cM – 
IWB17207/IWB10438/IWB23615/IWB63653 – 0.5 cM – IWB57983 – 0.9 cM – IWB23518 – 2.4 cM – 
Xgwm114b-3D – 5.6 cM – Sr24/Lr24 {11056}.  

YR72 

Yr72 {11059}.  [YrAW4 {11059}].  2BL {11059}.  bin:  2BL5-0.59-0.89.  v:  AUS27506 {11059};  
AUS27894 {11059}.  ma:  Xsun481-2BL (wPt-665550) – 1.8 cM – Yr72 – 1.2 cM – IWB12294 – 1.5 cM 
– Xsun482-2BL (wPt-7161) – 1.5 cM – IWB69000 {11059}.  

YR73 

Yr73 {11062}.  Complementary gene involved in the Yr specificity.  3DL {11064, 11062}.  v2:  Avocet 
R Yr74 {11063};  Anza = WW15 Yr74 {11062};  Banks R Yr74 {11063};  Condor R Yr74 {11063};  
Egret R Yr74 {11063};  Funo Yr74 {11062};  Jupateco 73 Yr74 {11062};  Lerma Rojo-64 Yr74 {11062}.  
ma:  Located and mapped by DarT-Seq markers {11062}.  

YR74 

Yr74 {11062}.  Complementary gene involved in the YrA specificity.  5BL {11062}.  v2:  Avocet R Yr73 
{11063};  Anza = WW15 Yr73 {11062};  Banks R Yr73 {11063};  Condor R Yr73 {11063};  Egret R 
Yr73 {11063};  Funo Yr73 {11062};  Jupateco 73 Yr73 {11062};  Lerma Rojo-64 Yr73 {11062}.  ma:  
Located and mapped by DarT-Seq markers {11062}.  
The cross Avocet R/Teal used to map Yr73 and Yr74 included a 5BL-7BL reciprocal translocation. 
Susceptible lines carrying the individual genes will be permanently accessioned after screening candidate 
lines for the Avocet R = Chinese Spring chromosome configuration. The translocated chromosomes are 
present in Teal and do not involve Yr74. 

Yr75 

Yr75 {11065}.  Adult plant resistance.  [YrAxe {11065}].  7AL {11065}.  bin:  7AL16-0.86-0.90.  v:  
Axe/Nyabing-3 RIL#5 {11065}.  v2:  Axe Yr29 {11065}.  ma:  Xcfa2016-7A – 1.0 cM – Yr75 – 0.3 cM – 
IWB36240 {11065}.  sunKASP_429/_428 – 0.1 cM – sunKASP-427 – 0.4 cM – Yr75 – 0.3 cM – 
sunKASP_430 {11670}. 

YR76 

Yr76 {11067}.  [YrTye {186}].  3AS {11067}. 6D {186}.  bin:  3AS4-0.45-1.00 {11067}.  i:  
AvS*4/Tyee{11067}.  v:  Tyee Citr 17773 {11067}.  v2:  ARS-Amber {11067};  Cara {11067};  Chukar 
{11067});  Hyak Yr17 (based on flanking markers) {11067}.  ma:  Xbarc321-6D – 6.2 cM – Xbarc57-6D 
– 4.3 cM – Xwmc11-6D – 2.6 cM – Yr76 – 3.4 cM – Xwmc532-6D – 6.9 cM – Xgwm369-6D – 2.6 cM – 
Xbarc12-6D {11067}.  

YR77 
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Yr77 {11174}.  Adult plant resistance.  [Qyr.ucw-6D {11174}].  6DS {11174}.  v:  PI 322118 {11174};  
PI 164377 {11174};  PI 388095 {11174};  PI 520350 {11174};  PI 623378 {11174}.  ma:  Yr77 was 
strongly associated with IWA167 in the region Xbarc54-6D (6DS) – 15.2 cM – IWA167 (6DS) – 3.9 cM 
– Xcfd188-6D (6DL ){11174}.  
Among the listed accessions two were from India, one from Pakistan, one from Iran, and one from the 
USA. 

YR78 

Yr78 {11174}.  Adult plant resistance.  [Qyr.ucw-6B {11174}].  6BS {11174}.  v:  Cadenza {11591}; 
Lancer {11591}; PI 519805 {11174};  Spelt PI 190962 {11591};  Nine others {11174}.  ma:  The Yr78 
peak fell within a 4.3 cM interval, IWA7257 – Xwmc737-6B {11174}. Yr78 was mapped to a 0.05 cM 
interval including the un-assembled NOR-B2 locus on chromosome 6BS (RefSeq v1.1 0 region between 
101,735,482 and 112,897,900 bp) {11591}.  
According to {11174} Yr78 is identical to QYr.wgp-6BS.1 in Stephens {10602} and QYr.sun-6B in Janz 
{10751}. 

YR79 

Yr79 {11222}.  7BS {11222}.  bin:  7BL-0.40-0.45.  v:  PI 182103 {11222}; PI 679609, Avocet S / PI 
679609 RIL#195 {11222}.  ma:  IWA220 – 2.9 cM – Yr79 – Xwmc335-7B – 0.9 cM – Xbarc72-7B – 1.7 
cM – Xgwm297-7B) – 1.6 cM – Xgwm333  {11222}. 

YR80 

Yr80 {11261}.  Adult plant resistance.  YrAW11 {11261}.  3BL {11261}.  bin:  3BL2-C-0.22.  v:  
AUS27284 {11261}.  ma:  Xgwm3763B – 15.2 cM – KASP_5392/KASP_65624 – 3.0 cM – Yr80 – 4.9 
cM – KASP_53113 {11261}. 

YR81 

Yr81 {11262}.  Adult plant resistance.  YrAW5 {11262}.  6AS {11262}.  v:  Aus27430/AvS RIL#16 
{11262}.  v2:  AUS27430 Yr29 {11262}.  ma:  KASP_3077 – 2.7 cM – Yr81 – 6.4 cM – Xgwm459-6A – 
1.0 cM – KASP_11315 {11262}. 

YR82  

Yr82 {11322}.  3BL {11322}.  bin:  3BL7-0.63-1.00.  v2:  AUS27969 = JI 1190592 Yr29 {11322}.  ma:  
KASP_13376/sunKASP_301 – 0.4 cM – sunKASP_300 – 2.0 cM – Yr82 – 2.0 cM – KASP_8775 {11322}. 

YR83 

Yr83 {11396}.  6A (T6AL·6RL {11396}.  tr:  T6AL·6RL C19.3 {11396}.  ad:  Wheat + 6R {11396}; 
Wheat + 6RL {11396}.  su:  CS + 6R(6D) {11396}.  al:  Triticale accession T-701 {11396}.  ma:  
Deletion mapping indicated that Yr83 was located in 6RL bin FL 0.73-1.00 containing PCR markers 
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KU.86, TNAC1823, TNAC1826, and TNAC1844 {11396}.  
The only previously designated Yr gene derived from Secale cereale is Yr9 from chromosome 1RS. 

YR84 

Yr84{11585}.  YrPI487260 {11585}.  1BS {11585}.  AvocetS + Yr84 {11777}.  v:  Ruta*2 / PI 487260 
{11585}.  tv:  T. dicoccoides PI 487260 {11585}.  ma:  Located at 9.65 – 11.99 Mb YR84 is proximal to 
YR10 (0-1.4 Mb) and distal to YR15 (98 Mb) {11585} in the Zavitan v2 assembly (11585). Reduced to a 
0.5 cM interval (975 Kb, Zavitan seq. v2).  c:  Yr84 mutations were identified in closely linked head-to-
head CNL (GenBank PP841907) and NL (NB-ARC-LR) (GenBank PP841906) genes, both of which 
were required for resistance {11777}. 
Yr84 confers resistance to all Pst pathotypes thus far tested and is described as incompletely dominant. 
Other named YR loci in chr. 1B are proximal to YR15 or located in arm 1BL. The low infection type is ; 
(fleck) to ;1 on a 0-4 scale. Yr84 varies from other permanently named Yr genes in the region by location, 
specificity and dominance. 

YR85 

Yr85 {11616}.  YrTr1 {181}.  1BS {11616}.  bin:  1BS18 (0.5).  i:  AvSYrTr1NIL {11616}.  v:  Tres CI 
017917 {11616}.  ma:  IWA406 – 3.0 cM – IWA63 – 1.6 cM – IWA5370 – 2.2 cM – IWA4349 – 2.0 cM – 
IWA2583 – 1.8 cM – YR85 – 1.3 cM – IWA7480 – 3.0 cM – Xbarc8 – 5.1 cM – IWA2197 – 3.1 cM – 
Xgwm413 – 7.4 cM – Xbarc137 – 4.6 cM– Xwmc626 {11616}; Rg1 – 1.4 cM – Yr10 – 7.4 cM – YR85 
{11616}; Yr10/Xsdauw79 (1.519 Mb, 0-1.4 Mba) – Yr84 (9.65 – 11.99 Mba) – IWA2583 (30.675 Mb) – 
YR85 – IWA7480 (60.382 Mb) – Yr15/uhw264 (67.695 Mb, 98 Mba) {11616}. aValues from the Zavitan 
v2 assembly {11585}. 

YR86 
 
Yr86 {11641}.  Adult plant resistance.  YrZM895 {11641}; QYr.caas-2AL.2 {11641}.  2AL {11641}.  v:  
Liken 4 = Shaaken 4 {11641}; Zhongmai 895 {11641}.  ma:  Flanked by Ax-111584166 (703.7 Mb) and 
Ax-110429464 (715.3 Mb) {11641}. KASP markers developed in {11641}. Located to a 0.15 cM, 710.3 
– 712.6 Mb, interval in a Jimai 22 / Zhongmai 895 F2 population; however, recombination was 
suppressed in crosses of Zhongmai 895 with Emai 580 and Avocet S due to a 4.1 Mb inversion in the 
region {11730}.  

YR87 

Yr87 {11712}.  6B (6B-6Ssh) {11683, 11684, 11712}.  v:  Line 6B-RY-32-3-14 {11683} = Line 42 
{11684} = D42 {11712} = Genebank accession number to be advised.  al:  Ae. longissima AEG-6782-
2 {11712}; Ae. sharonensis AEG-548-4 {11712}.  c:  The same NLR gene with a distinctive coiled-coil 
(CC) domain was cloned from each alien diploid accession {11712}. 
Development of lines with shortened 6Ssh segments is described in {11684}. 
All 16 EMS-induced mutants in Line D42 were susceptible to both stripe rust and leaf rust {11712}. 
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Sources of additional genes for seedling (designated “12”) and adult resistances (“13”, “14”, “15”) are 
listed in {1430}.  
Genotype lists: Chinese common wheats {10369}. European wheats {10579}. U.K. wheats {10697}. 

3.21.2. Temporarily designated genes for resistance to stripe rust 

North American workers {181, 186, 184} allocated a number of temporary designations to uncatalogued 
genes detected with North American P. striiformis accessions. Druchamp, Yamhill and Stephens were 
reported to carry ‘Yr3a or Yr4a’ because these genes could not be distinguished with the cultures that 
were used. 

Yr041133 {11675}.  7BL {11675}.  v:  Line 041133 {11675}.  ma:  Xicst23 (608.9 Mb, CS RefSeq 1.0) 
– 0.6 cM – Yr041133 – Xicst338 (609.7 Mb) {11675}. 
 
YrA.  Refers to a phenotype specificity that appears to be controlled by complementary genes {1563}. v: 
Avocet* {*= heterogeneous};  Anza = Karamu = Mexicani =T4 = WW15; Banks*; Condor*;  Cocamba; 
Egret*;  Inia 66;  Lerma Rojo 64;  Lerma Rojo 64A;  Nainari 60;  Nuri 70;  Sanda 73;  Sonalika;  
Zaminder 80.  v2:  Condor selection P44 Yr6*;  Pari 73 Yr6;  Saric 70 Yr6;  Yecora 70 Yr6{1563}. The 
complementary genes are now named Yr73 and Yr74. 

YrAc {11613}.  5DS {11613}.  v:  Ae. caudata derivative PAU16060 {11613}.  al:  Ae. caudata 
PAU3556 {11613}. 

 

YrAlp {10416}.  1BS {10416}.  v2:  Alpowa Yr39 {10416}.  ma:  YrAlp – 15.2 cM – Xgwm18-1B – 1.1 
cM – Xgwm11-1B {10416};  and more closely linked to RGAP markers {10416}.  

YrAS1676 {11672}.  1AL {11672}.  v:  Undesignated selection.v2:  AS1676 Yr18 {11672}.  ma:  
Located to a 1.7 cM region – 485.3 – 490.2 Mb where it co-segregated with 6 KASP markers {11672}. 
May be the same as YrXH-1AL in Xiaohemai based on common markers {11672}. 
 
YrAS2388 {10822}.  [Yr28 {11438}; NLR4D-1 {11438}].  v:  KS91WGRC11 {11599}.  dv:  Ae. tauschii 
AS2388 {10822};  Ae. tauschii accessions Clae9 {11438}; PI 5111383 {11438}; PI 511384 {11438}.  
ma:  Xwmc617-4DS – 34.6 cM – YrAS2388 – 1.7 cM – Xwmc285-4DS {10822}.  KASP markers were 
developed in {11566}.  c:  Yr28 has a CC-NBS-LRR structure, alternative splicing in the NBS region and 
duplicated 3’ UTR {11438}. GenBank MK73661 – MK73666 {11438}.   

YrAvS {11007}.  v:  Avocet R {11007};  Avocet S {11007}.  
This designation was used to describe an assumed resistance gene in both Avocet R and Avocet S, the 
latter being the genetic background of the Avocet S near-isogenic lines. AvS NILs with Yr6, Yr7 and Yr9, 
as well as Avocet R, were susceptible to the variant of Pst race 6 E0 {11007}. 

YrC142 {10667}.  1BS {10667}.  v:  Synthetic CI142 = Gaza/Boy//Ae. tauschii 271 {10667}.  ma:  
Located in the Yr24/Yr26 region close to Xbarc187-1B and Xgwm273-1B {10667}.  
Although postulated to be unique this gene is likely Yr24/Yr26. 



 

104   PATHOGENIC DISEASE/PEST REACTION  

 

YrC591 {10606}.  Yr67.  7BL {10606}.  bin:  7BL3-0.85.1.00.  v:  C591 {10606};  Zhongzhi 1 {10606}.  
ma:  Xcfa20-40-7B – 8.0 cM – YrC591 – 11.7 cM – SCP35M48 {10606}; Xmag1714-7B – 1.2 cM –  – 
0.4 cM – Xbarc182-7B {11099}. This gene is Yr67 {11032}. 

YrCf75 {11646}.  Recessive.  2AL {11646}.  v:  Changfeng 75 {11646}.  ma:  Located in interval 577-
638 Mb (CS RefSeq v1.0, flanked by AX-1110060462 and AX-111004763 {11646}. 

YrCle {186}.  4B {186}.  v2:  Clement Yr9 {186}.  

YrCK {10221, 10220}.  Temperature sensitive {10219}.  2DS {10220}.  v:  Cook Yr34 {10221, 10219, 
10220};  Sunco Yr34 {10220}.  

YrCN17 {10562, 10686}.  Derived from S. cereale.  1B, 1BL, 1RS {10562, 10686}.  v:  Chuannong 17 
{10686};  CN12 {10562};  CN17 {10562};  CN18 {10562}.  dv:  S. cereale R14 {10686}.  al:  S. 
cereale L155 {10562}.  

YrD {185}.  6A {185}.  v:  Druchamp {185}.  

YrDa1 {186}.  1A {186}.  v2:  Daws YrDa2 {186}.  

YrDa2 {186}.  5D {186}.  v2:  Daws YrDa1 {186}.  

YrDru {184, 185}.  6B {185}. 5B {184}.  v:  Druchamp {184, 185}.  

YrDru2 {184}.  6A {184}.  v:  Druchamp {184}.  

YrExp1 {10601}.  1BL {10601}.  v2:  Express YrExp2 {10601}.  ma: Xwgp78-1B – 4.2 cM – YrExp1 – 
3.4 cM – Xwmc631-1B {10601}.  

YrExp2 {10601}.  5BL {10601}.  v2:  Express YrExp1 {10601}.  ma:  Xgwm639-5B – 9.2 cM – 
Xwgp81-5B – 1 cM – YrExp2 – 0.7 cM – Xwgp82-5B {10601}.  
Based on the presence of the nearest flanking markers YrExp2 was postulated in Expresso, Blanca 
Grande, Buck Pronto and Jeff/Pronto {10601}. 

YrF {11156}.  2B {11218}. 2BS {11219}.  v2:  Francolin#1 Yr29 {11156, 11218, 11219}.  ma:  
Xgwm374-2B – 2.0 cM – YrF – 1.8 cM – Xwmc474-2B {11219}.  
Francolin#1 is also released under the names Ufam and BARI Gom 27 {11156}.  

YrF {11781}.  5AS {11781}.  bin:  5AS-0.4-0.98 {11781}.  v:  Flanders {11781}.  ma:  Xbarc56-5A 2.0 
cM – YrF – 0.6 cM – AX108925494 {11781}. 
 
YrHA {11100}.  1AL {11100}.  v:  H901414-121-5-5-9 {11100}.  ma:  Xwmc469-1A – 3.4 cM – YrHA – 
4.6 cM – Xgwm497-1A {11100}.  

YrH46 {184}.  6A {184}.  v2:  Hybrid 46 Yr4b {184}.  
Not the same gene as YrDru2 {184}. 
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YrHu {11229}.  Derived from Psathyrostachys huashanica.  3AS {11229}.  bin:  H9020-17-25-6-4 
{11229}.  ma:  Xcfd79-3A – 7.2 cM – YrHu – 0.7 cM – BG604577 {11229}. 

YrH62 {11303}.  1B {11303}.  v:  Line 03031-1-5 (ex CIMMYT) {11303}.  ma:  Xgwm273-1B – 3.7 
cM – Ax-109871410/Ax-109472792/Ax109352427 – 0.3 cM – YrH62 – 0.8 cM – Ax-109862469 – 2.1 cM 
Xbarc137-1B {11303}. 

YrH9020 {10979}.  Derived from Psathyrostachys huashanica.  2DS {10979}.  v:  H9020-1-6-8-3 
{10979}.  al:  Psathyrostachys huashanica 0503383 {10979}.  ma:  Xgwm102-2D – 3.8 cM – Xgwm455-
2D – 5.8 cM – YrH9020 – 4.4 cM – Xgwm261-2D – 2.3 cM – Xwmc503-2D – 0.6 cM – Xcfd53-2D 
{10979}.  

YrHVII {186}.  4A {186}.  v2:  Heines VII Yr2 Yr25 {186}.  

YrJ22 {11195}.  2AL {11195}.  v:  Jimai 22 {11195}.  ma:  Xgwm382-2AL – 1.0 cM – YrJ22 – 7.3 cM – 
IWA1348 {11195};  The mapped region was reduced to 0.3 Mb corresponding to 340.5 kb; H736 – 
J22/HJ732 – H400 (768.7 – 769.0 Mb) {11679}.  
 
YrJ44 {11696}.  QYr.nwafu-6AL {11696}.  6AL {11696}.  v2:  Jimai 44 Yr29 {11696}.  ma:  Mapped to 
a 3.5 cM interval flanked by AQP markers AX-109373479 and AX-109563479 {11696}. 
 
YrKK {11034}.  Adult plant resistance.  2BS {11034}.  bin:  2BS-1.  v:  Kenya Kuku {11034}.  ma:  
Xgwm148-2BS – 3.2 cM – YrKK – 1.8 cM – Xwmc474-3B {11034}. Resistance conferred by YrKK at the 
adult stage approached immunity. A slight effect was observed on seedling response {11034}. 
 
YrLk {11252}.  7BL {11252}.  v:  Lankao 5 {11252}.  Xbrac267-7B – 4.4 cM – YrLk – 3.3 cM – 
Xwmc396-7B {11252}. 

YrLM168a {11284}.  Adult plant resistance.  6BL {11284}.  v:  Xwmc756-6B – 4.6 cM – YrLM168a – 
4.6 cM – Xbarc146-6B {11284}.  ma:  Xwmc756-6B – 4.6 cM – YrLM168a – 4.6 cM – Xbarc146-6B 
{11284}. LM168a and LM168b are derivatives of Milan {11284}. 

YrMin.  4A {184}. v:  Minister {184}.  

YrMor {186}.  4B {186}.  v2:  Moro Yr10 {186}.  ma:  The development of an STS marker, derived 
from an AFLP fragment, that co-segregates with YrMor was reported in {357}.  

YrMY37.  yrMY37 [{11282}].  Recessive.  7BL {11282}.  v:  Mianmai 37 {11282}.  ma:  Xwmc476-7B – 
1.57 cM – Xgwm297-7B – 0.79 cM – YrMY37 – 0.38 cM – Xbarc267-7B {11282}. 

YrMY41 {11271}.  1B {11271}.  v:  Mianmai 41 {11271}.   
A cross with AvS+Yr26 failed to segregate. Although claimed to be a possible allele of Yr24/Yr26 the 
gene identified is likely to be the same. 

YrND.  4A {184}.  v2:  Nord Desprez Yr3a Yr4a {184}.  
May be the same as YrMin {184}. 
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Yrns-B1 {33}.  3BS {33}.  v:  Lgst.79-74 {33}.  ma:  Xgwm493 (distal) - 21 cM – Yrns-B1 {33};  As a 
QTL, Yrns-B1 was located in a 3 cM interval between Xgwm493-3B and Xgwm1329-3B {10383}.  

YrP {11614}.  5DS {11614}.  v:  Ae. peregrina derivative PAU16058 {11614}.  al:  Ae. peregrina 
PAU3519 {11614}. 

YrP81 {10696}.  2BS {10696}.  v:  P81{10696};  Xu29 {10696}.  ma: Xgwm429-2B – 1.8 cM – YrP81 
– 4.1 cM – Xwmc770-2B {10696}. 

YrPak {11543}.  5BS {11543}.  v:  PI 1388231 {11543}.  ma:  sunKASP_338 – 3.3 cM – YrPak – 3.5 
cM – sumKASP_341 {11543}.  
PI 1388231 also carried two genes for adult plant resistance, one of which was positive with Lr46 marker 
Lr46_SNP1G22 {11543}. 

YrR61 {10914}.  [QYr.uga-2AS {10914}].  2AS {10914}.  v:  Pioneer 26R61 = PI 612056 {10914}.  

YrR212 {10562}.  Derived from S. cereale  1B, 1BL.1RS {10562}.  v:  R185 {10562};  R205 {10562};  
R212 {10562}.  al:  S. cereale R212 {10562}.  

YrS {185}.  3B {185}.  v:  Stephens {185}.  

YrS2199{10618}.  2BL{10618}.  bin:  2BL0.89-1.00{10618}.  v:  S2199{10618}.  ma:  Xgwm120-3B – 
11.0 cM – YrS2199 – 0.7 cM – Xdp269-2B{10618}.  

YrSte {184}.  2B {184}.  v:  Stephens {184}.  

YrSte2.  Stephens {184}  3B {184}.  

YrSD {11085}.  5BL.  i:  Taichung 29*6/Strubes Dickkopf {11085}.  v:  Strubes Dickkopf {11085}. ma: 
Xwmc640-5B  – 3.6 cM – YrSD – 2.4 cM – Xbarc59-5B – 3.0 cM – Xwmc783-5B {11085}.  
The authors concluded that this gene was different from Yr25, which was located in chromosome 1D 
{158}. 

YrSP {10018}.  2BS {10018}.  bin:  2BL-C-0.5.  i:  Cx1 = Avocet S*4/Spaldings Prolific {10018}.  v2:  
Spaldings Prolific Yr25 {10018}.  ma:  IWA638 – 0.6 cM – YrSP – 1.5 cM – dp269-2 – 1.9 cM – 
Xwmc332-2B {11091}.MOVE TO YR5  

YrSp {10352}.  Allelic with Yr5 and Yr7 {10759}  [YrSP {10018}].  2B {10018, 10352}. Probably 2BL.  
i:  Avocet*3/Spaldings Prolific {10018};  Taichung*6/Spaldings Prolific {10352}.  v:  Spaldings Prolific 
{10018, 10352}.  ma: YrSp – Xwmc-2B, 12.1 cM{10352}. MOVE TO YR5 

YrTr1 {186}.  6D {186}.  v2:  Tres YrTr2 {186}.  

YrTr2 {186}.  3A {186}.  v2:  Tres YrTr1 {186}.  

YrTye {186}.  6D {186}.  v:  Tyee {186}.  
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Yru1 {11494}.  TuG1812G0500003718.  5AL {11494}.  bin:  5AL10-0.57-0.78.  dv:  T. urartu PI 
428309 {11494}.  ma:  Xgwm186-5A – 30.5 cM – Yru1 – 10.8 cM – Xgpw7007-5A, then fine mapped 
with 82 additional polymorphic markers {11494}.  c:  Yru1 has as NBS-LRR structure with N-terminal 
ankyrin and C-terminal WRKY repeats {11494}. GenBank MT018453.  
The Yru resistance allele was present in a number of T. urartu accessions, but not in G1812 {11494}. 

YrV23 {10370}.  Presumed to be Yr3a.  2B {184}.  v:  Vilmorin 23 {10370};  Vilmorin {184}.  
Allelic but not the same as YrSte {184}. 

Yrwh2 {11150}.  Recessive.  3BS {11150}.  v:  Wuhan 2 {11150}.  ma:  Xwmc540-3B – 5.9 cM – Yrwh2 
– 10 cM – Xgwm566-3B {11150}. 

YrXH [{11729}].  YrXH-1AL {11729}.  1AL {11729}.  v:  Xiaohemai ZM004745 {11729}.  ma:  
Located to a 1.5 cM interval – 484.33 – 490.09 Mb, CS RefSeq 1.0 {11729}. 
May be the same as YrXH-1AL {11672} based on common markers with {11729}. 

Yrxy1 {10829}.  High temperature resistance.  v:  Mingxian 169/Xiaoyan 54 F3-4-14 {10829}.  v2:  
Xiaoyan 54 Yrxy2 {10829}.  ma:  Xbarc49-7AS – 15.8 cM – Yrxy1 with closer flanking RGA markers 
{10829}.  

Yrxy2 {10829}.  High temperature resistance.  v:  Mingxian 169/Xiaoyan 54 F3-4-30 {10829}.  v2:  
Xiaoyan 54 Yrxy1 {10829}.  ma:  Xwmc794-2AS – 4.0 cM – Yrxy2 – 6.4 cM – Xbarc5-2AL {10829}.  

YrYam {184, 185}.  4B {185}.  v2:  Yamhill Yr2 Yr3a Yr4a {185}.  

YrZH22 {11563}.  4BL {11563}.  v:  Zhoumai 22 {11563}.  ma:  XWGGB133 – 3.29 cM – YrGH22 – 
2.63 cM – XWGGB146 {11563}.  
YrZH22 could not be distinguished from Yr50 based on map location. 

YrZH84 {10331}.  7BL {10331}.  v:  Annong 7959 {10331};  Zhoumai 11 {10331};  Zhoumai 12 
{10331}.  v2:  Zhou 8425B Yr9 {10331}.  ma:  Xwmc276-7B – 0.6 cM – Xcfa2040- – YrZH84 – 4.8 cM 
– Xbarc32-7B {10331}.  

3.21.3. Stripe rust QTL 

Alcedo (R) / Brigadier (S): DH population: Two major QTLs QPst.jic-2DL (R2 up to 0.36) and QPst.jic-
4BL (R2 up to 0.29) for percent infection contributed be Alcedo {10785}. A seedling-expressed QTL was 
located at the same position in 2DL {10774}. 

Avocet S / AUS27482.  AUS 27482 was shown to have Yr34 (YrAW6) and a second novel gene (YrAW7) 
on chromosome 2B linked to IWB71684 {11720}. 
 
Avocet S / Attila: QTLs were located on chromosomes 2BS (probably Yr27), 2BL (a race-specific effect) 
and 7BL (XP32/M59 - Xgwm344-7B {10586}.  
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Avocet (S) / Chapio (I): F6RIL population: In Mexico QTLs were located in chromosomes 2BS (Yr31), 
3BS(Yr30) and 7DS(Yr18); only the last two were effective in 2009. In China QTLs were located in 
chromosomes 3BS, 5BL and 7DS. A 3DS QTL was effective in Mexico in 2009 and in China in 2013 
{11020}.  

Avocet R (S) / Chilero: Lr46/Yr29, QLr.cim-5DS/QYr.cim-5DS, QYr.cim.6BS and QYr.cim-7BL from 
Chilero, and QLR.cim-1DL/QYr.cim-1DL from Avocet R {11306}. 

 
Avocet S (S) / Eltan (MR): RIL population: Three QTL for seedling reaction located on chromosome 
arms 2BS, 4AL and 5BS (minor) and two addition QTL for APR identified on chromosome arms 6AS 
and 7BL {11560}. A significant increase in the disease response of Eltan was associated with races 
virulent on Eltan seedlings. 

 
Avocet (S) / Kundan (R): Yr29 plus QYr.cim-2AL flanked by 3064488_30:T>G (R2 = 0.05 – 0.09), 
QYr.cim-3DS flanked by 3021242 and 224356 (R2 = 0.04} and QYr.cim-5AS flanked by 
3025355_10:T>C and 1067590 (R2 = 0.04 – 0.05) {11248}.  

 
Avocet S (S) / Napo 63 (R): Qyrnap.nwafu-2BS (11283}.  2BS {11283}.  bin:  2BS-1-0.53.  ma:  
Mapped to a 5.46 cM interval flanked by KASP markers 90K-AN34 and 90K-AN36; and by Xbarc55-2B 
and Xgwm374-2B {11283 }. 

Avocet (S) / Pastor (I): RIL population: QTL mapped on 1BL (Yr29), 2BS(Yr31), 5A, 6B and 7AL plus 
minor QTLs on 1AL, 1B, 3A, 3B, 4D, 6A, 7AS and 7AL {10928}. 

Avocet S/Pavon 76: QTL identified in 1BL (Xgwm259), 3BS (PstAATMseCAC2), 4BL (Xgwm495), 
6AL (Xgwm617), 6BL (PstAAGGMseCGA1) {10443}.  

Avocet S / PI 182103 (R): RIL population: QTL detected on chromosomes 2AS and 3AL for seedling 
resistance and 4DL, 5BS and 7BL for APR; QyrPI182103.wgp-4DL was designated as Yr79 {11222}. 

 
Avocet S (S) / Qinnong 142 (R): RIL population: Two QTL for seedling resistance to race CYR23 on 
chromosome arms 1DL and 4AL. These genes were not effective against races used in the field where 
APR was controlled by QTL on chromosome arms 1BL (QYrqin.nwafu-1BL: probably Yr29), 6BS 
(QYrqin.nwafu-6BS, possibly Yr78); 2AL QYrqin.nwafu-2AL) and 2BL (QYrqin.nwafu-2BL) {11559}. 

 
Avocet S (S) / Qinnong 142 (R): RIL population: Adult plant resistance: QYrqin.nwafu-1BL – AX-
95133868 – AX-94522424, R2 = 0.16 – 0.20, likely Yr29; QYrqin.nwafu-2AL, AX-94655393 – AX-
9489521, R2 = 0.08 – 0.20; QYrqin.nwafu-2BL, AX-94507002 – AX-94562871, R2 = 0.18 – 0.39; 
QYrqin.nwafu-6BS R2 = 0.14 – 0.31 {11377}. 
Seedling resistance in Qinnong 142 to race CYR23 was attributed to genes on chromosomes 1DS and 
4AL {11377}. 

 
Camp Remy/Michigan Amber: Two QTLs were located on chromosome 2BL (QYR1,  LOD score 12) 
and 2AL (QYR2, LOD 2.2) {0287}. Four QTLs were scored in the ITMI population. The most effective 
(QYR3, LOD 7.4) on chromosome 2BS was probably Yr27, the others were located in 7DS (QYR4, LOD 
3.4), 5A (QYR5, LOD 2.8), 3D (QYR6, LOD 2.8) and 6DL(QYR7, LOD 2.4) {0287}. 
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Camp Remy/Recital: 217 RILs. Six QTLs for APR were detected over 4 years. QYr.inra-2BL (R2=0.42-
0.61) corresponded largely to seedling resistance gene Rsp and possibly Yr7. The other genes were 
Qyr.inra-2AL, QYr.inra-2BL, QYr.inra-2DS (perhaps Yr16), QYr.inra-5BL.1 and QYr.inra-5BL.2 
{10279}. Differential reactions of RILs possessing different QTL occurred between old and new P. 
striiformis races {11144}.   

Capo (R) / Arina (S) and Capo (R) / Furore (S): Four QTL on chromosomes 2AL, 2BL, 3BS and 5A 
were from Capo and one on chromosome 3AS was from Arina; the QTL on 2AL, 2BL and 3BS were co-
located with QTL for resistance to leaf rust {11449}.Claire / Lemhi: DH population: 4 QTLs for 
APR:Qyr.niab-2D.1 (at or near Yr16, R2=0.1-0.25, Qyr.niab2DL.2 (R2=0.14-0.32), Qyr.niab-2BL, and 
Qyr.niab-7B (R2=0.11-0.13) {10962}. An unknown seedling resistance gene was located in chromosome 
3BL {10962}.  

Chuanmai 42 (variable) / Chuanmai 55 (R): RIL population: Two QTL on chr. 1B and 2A were 
derived from CH55 and a less effective QTL on Chr 7B was from CH42 {11558}. The chr 1B QTL was 
postulated to be Yr29. CH42 carries Yr24 and CH55 carries the 1BL.1RS (Yr9) translocation and 5B.7B 
reciprocal translocation– neither gene was effective in this study {11558}. 

Coker 9835 (S) / VA96W-270 RIL population: Adult plant resistance was conferred by QYr.ar-3BS 
(nearest markers Xbarc147, ger9-3p, IWA6092) and QYr.ar-4BL (nearest markers Xbarc163, Xcfd39 and 
several IWA markers {11175}. Cultivar Pat had the same haplotype {11175}. USG 3555 / Neuse: Three 
QTL on chromosomes 1AS, 4BL and 7D (not Yr18) were derived from USG 3555 and one QTL on 
chromosome 3A was from Neuse {11142}.  

Express / Avocet S: RIL population: Relative AUDPC for high temperature APR was controlled by 
QYrex.wgp-6AS, R2=0.326, interval Xgwm334-6A - Xgwp56-6A; QYrex.wgp-3BS, R2=0.274, interval 
Xgwm299-3B - Xwgp66-3B, QYrex.wgp.1BL, R2=0.094, interval Xwmc631-1B - Xwgp78-1B {10672}. 
When rust phenotyping was based on infection type only the 6S and 3BL QTLs were evident {10672}. 

Druchamp (R) / Michigan Amber (S): Eight QTL for high-temperature adult plant resistance: QTL in 
chromosomes 1BL (nearest marker Xgwm131-1B), 2BL (IWA7583), and 5BL (2, IWA2558 and IWA6383) 
were stable across environments, whereas genes in chromosomes 1BL (IWA8581, probably Yr29), 1DS 
(IWA22668), 3AL (IWA6834) and 6BL {IWA6420) were not {11284}. In addition three QTL for all stage 
resistance were detected on chromosomes 5B (probably Yr3, IWA6271), 5DL (IWA8331) and 6BL 
(IWA3297). 

Fukuhokomugi/Oligoculm: Seven QTLs were identified for stripe rust severity in a joint analysis of five 
datasets from a doubled haploid population {10060}. Their location, associated marker, percentage 
variation explained, and genotype contributing to enhanced resistance at that locus, are listed as: 3BS; 
Xgwm389-3B; 0.2-4.9%; Oligoculm {10060}. 4BL; Xgwm538-4B; 1.8-12.3%; Oligoculm {10060}. 4DL; 
Xwmc399-4D; 2.5-8.0%; Oligoculm {10060.} 5BL; Xwmc415-5B; 2.4-16.1%; Oligoculm {10060}. 
6BS(centromeric); Xgwm935-6B; 0.5-3.8%; Oligoculm {10060}. 7BS; Xgwm935-7B; 1-5.2%; Oligoculm 
{10060}. 7DS; Xgwm295-7D; 10.7-23.7%; Fukuho {10060}; the 7DS QTL was probably Yr18 {10060}. 
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Four QTLs were identified for stripe rust infection in a joint analysis of three datasets from a 
Fukuhokomugi/Oligoculm doubled haploid population {10060}. Their location, associated marker, 
percentage variation explained and parent contributing to enhanced resistance at that locus are listed as:. 
2DL; Xgwm349-2D; 6.5-9.6%; Fukuho {10060}. 3BS; Xgwm389-3B; 15.1-24.5%; Oligoculm{10060}. 
The 3BS QTL may be Yr30 {10060}. 5BL; Xwmc415-5B; 6.4-12.7%; Oligoculm {10060}. 7BL; 
Xwmc166-7B; 2.5-9%; Oligoculm {10060}.  

Flinor (R) / Mingxian 169 (S): Two independent QTLs for high temperature (24/18C) seedling 
resistance located in chromosome 5BL, designated QYr-tem-5B.1 (Xbarc89 - Xgwm67) and QYr-tem-5B.2 
(Xbarc140n - Xwmc235) and R2 = 0.37 and 0.33, respectively {10797}. 

Guanggtoumai (R) / Avocet S (S): RIL population. QYr.GTM-5DL accounted for 22 – 44% of the 
phenotypic variation across three sites (11562). 

Guardian / Avocet S: F3 lines. One major QTL, QPst.jic-1BL (Xgwm818-1 - Xgwm259-1B, R2 up to 
0.45), and two minor resistance QTLs on chromosomes 2D and 4B originating from Guardian {10589}. 
The major QTL was in the region of Yr29.  

Jagger (MR) / 2174 (MS): RIL population: Qyr.osu-2A (Yr17) and Qyr.osu-5A (in Xgwm156-5A - 
centromere region) from Jagger and Yr18 from 2174 (but only in tests in China) {10973}.   
According to 11393 Qyr.osu-5A is an orthologue of OsXA21 and confers resistance to multiple 
pathogens/pests.  

Kariega/Avocet S: DH population: Two QTLs QYr.sgi-7D (probably Yr18) and QYr.sgi.2B.1 accounted 
for 29 and 30%, respectively, of the phenotypic variation for stripe rust response. The nearest marker to 
the latter was Xgwm148-2B {10184}. These locations were confirmed in a subsequent study; QYr.sgi-
2B.1a was located within the wPt5556 – wPt6278 segment {11232}. 

Kukri (MR) / Janz (MR): DH population: Tested with pre- and post-2003 Australian Pst races in several 
environments. QYr.sun-7B (Kukri) and Qyr.sun-7D (=Yr18)) (Janz) were consistent over environments; 
QYr.sun-1B, -5B and -6B were detected in most environments and QYr.sun-3B was identified in only one 
season. Two genes, QYR.sun-1A from Janz and QYr.sun-2A from Kukri, were detected only with pre- and 
post-2003 races, respectively, and likely contributed to differential responses of these cultivars to the two 
groups of races {10751}.  

Luke (R) /Aquileja (R): Two QTLs for high-temperature adult plan resistance, QYRlu.cau-2BS.1 (distal, 
flanked by Xwmc154-2B and Xgwm148-2B, R2 = 0.366) and QYrl.cau-2BS.2 (proximal, flanked by 
Xgwm148-2B and Xbarc167-2B, R2 = 0.415) from Luke, and QYraq.cau-2BL (flanked by Xwmc175-2B 
and Xwmc332-2B, R2 = 0.615) in Aquileja for stripe number {10582}.   

Luke (MR) / AQ24788-83 (APR): RIL population: QYr.cau-2AL near IWB4475 (R2 = 23-40%) from 
AQ24788-83 and Yr18 (R2 = 11.0-14.7%) from Luke (11393). 
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Mianyang351-15 (R) / Zhengzhou 5389 (R): RIL population: Seven QTL were located on chromosome 
arms 1BL (Yr29), 2AS (Yr17 or another gene), 2DS, 3AS, 3DS, and 7BL (possibly associated with Lr68) 
{11545}. 

 
Mingxian 169 (S) / Centrum (R): RIL population: QTL detected on chromosomes 7BL (QYrcen.nwafu-
7BL, R2 = 23.4%, AX-94556751 - AX-110366788), 1AL (QYrcen.nwafu-1AL (R2 = 11.2%, AX-94488258 
– AX-94458040) and 4AL (QYrcen.nwafu-4BL, R2 = 12.6%, AX-94695204 – AX-94996273 {11365}. 

 
Mingxian 169 (S) / Chakwal 86 (R): RIL population: QTL on chromosomes 1BL (Yr29), 3BS (not 
Yr30) and 6BS (QYrcw.nwafu-6BS) contributed to the high level of APR in Chakwal 86 {11371}. 

 
Mingxian (S) / P1057: RIL population, and Avocet S (S) /P10057 and Zhengmai 9023 (S) / P10057 F2:F3 
populations: Two strong QTL located in clustered QTL regions: Qlrlov.nwafu-2BS identified by 
IAW5377, IWA2674, IWA5830, and Qyrlov.nwafu-3BS identified by IWB57990 and IWB6491 {11279}. 

Mingxian (S) / P9936 (R): RIL population: QYr.nwafu-3BS (probably Yr30) and QYr.nwafu-7BL flanked 
by AX-108819274 and AX-11040708 (R2 = 36.0 – 38.9%; a KASP marker was developed for the latter 
{11373}.  

 
Mingxian 169 / P10090: QYr.nwafu-6A (syn YrP10090 for adult plant resistance reduced stripe rust 
severity by a mean 14.8%. Located in the chr. 6A centromeric region and flanked by Ax94460938 
andAx710585473, a 3.5 cM region corresponding to physical interval 107.1 – 446.5 Mb {11555}. 

  
Mingxian 169 (S) / Qing Shumai (R): RIL population: APR QTL QYr.cau.6DL, Xbarc1121-6D – 
Xgpw4005-6D region: positive interaction with Yr18 {11323}. 
Mingxian 169 (S) / Toni (R): RIL population: QYrto.swust-3AS, AX-95240191 – AX-9482889091, R2 = 
0.22 – 0.56: QYrto.swust-3BS, AX-994509749 – AX-94998050, R2 = 0.23 – 0.55 {11379}. 
 
Otane (R) / Tiritea (S): DH population: QTL in 7DS (probably Yr18), 5DL (from Otane) and 7BL 
(Tiritea) {10150}. Interval mapping of 7DS indicated that the presumed Yr18 was 7 cM from Xgwm44-
7D {10150}.  

Pingyuan 50 (R) / Mingxian 169 (S): DH population: APR: QYrcaas-2BS (Xbarc13-2BS) - Xbarc230-
2BS, R2=0.05-0.09), QYr.caas-5AL(Xwmc410-5AL - Xbarc261-5AL, R2=0.05-0.2), QYrcaas-
6BS(Xgwm361-6BS - Xbarc136-6BS, R2=0.05-0.08) {10693}.  

Pioneer 26R61(R) / AGS2000(S): RIL population: Two QTLs, QYr.uga-2AS (R2=0.56) flanked by 
Xbarc124-2A and Xgwm359-2A (also named YrR61) and QYr.uga-6AS (R2=0.06) {10914}. Minor QTLs 
were also on other chromosomes 

Renan (R) / Recital (S): RIL population: Tested for AUDPC in 1995/6 and 2005/6 with pathogen 
isolates avirulent and virulent, respectively, for Yr17:QYr.inra-2AS.2, (=Yr17), R2=0.45, 1995/6; 
QYr.inra-2AS.1, R2=0.9, 2005/6; QYr.inra-2BS, R2=0.11 & 0.13, QYr.inra-3Bcent, R2=0.06 in 2005/6; 
QYr.inra-6B, R2=0.04 & 0.06; from Renan; and QYr.inra-2AS.1, R2=0.09; QYr.inra-3DS, R2=0.08 & 0.12 
from Recital. Other QTLs were effective only at certain growth stages {10689}. 
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Soru#1 (R) / Naxos (MR): RIL population: Seedling and field tests detected two moderately effective 
QTL that were likely Yr24 and Yr28 derived from Soru#1 {11368}. A KASP marker was developed for 
Yr28.  
 
Stephens / Michigan Amber: Two QTLs for high temperature APR were located in chromosome 6BS; 
QYrst.wgp-6BS.1 located in a 3.9 cM region flanked by Xbarc101-6B and Xbarc136-6B and QYrst.wgp-
6BS.2 located in a 17.5 cM region flanked by Xgwm132-6B and Xgdm113-6B {10602}. 

Stephens (I) / Platte (S): RIL population: 13 QTLs were identified across several environments; 
significant QTL x environment interactions suggested that plant stage specificity, pathogen genotype and 
temperature as well as host genotype were important in determining rust response {10890}.  

Stewart (R) / Bansi: Durum, F5 and F7 populations: Yr29 and QYr-3BL (r2 = 0.045); the latter was in the 
vicinity of Yr80 with kIWA6221 as the nearest marker {11542}. 

Svevo (R) / Zavitan (MS): Tetraploid, RIL population tested in Israel and China. Nine QTL for APR; 8 
from Svevo and one from Zavitan, the most effective of which was QYrsv.swust-1BL.1 {11557}. This 
QTL overlapped the Yr29 region and Svevo was positive for the Yr29 marker. 

Thatcher (S) / Hong Qimai (APR): RIL population: QYr.cau-2AL near Xgwm311-2A and IWB4475 (R2 
= 47-52%), Qyr.cau-4AL (R2 = 5-7%) and Qyr.cau-7AL (R2 = 9-10%) derived from Hong Mai {11366}. 

T. monococcum PAU14087 (R) / T. boeoticum PAU5088 (R): RIL population: One adult plant 
resistance QTL identified in each parent and named QYrtm.pau-2A (in a 3.6 cM interval between 
Xwmc407-2A and Xwmc170-2A; R2 = 0.14) and QYrtb.pau-5A (in a 8.9 cM interval between Xbarc151-
5A and Xcfd12-5A; R2 = 0.24) {10518}.  

UC1110 (MR) / PI 610750 (MR): RIL population: QYr.ucw-3BS ex UC1110, R2=0.22, associated with 
Xgwm522-3B.1. This marker differs from Xgwm533-3B.2 that is associated with Yr30 {10705}; QYr.ucw-
5AL, R2=0.1, ex PI 61075 - syn. Yr48 {10705}; QYr.ucw-2BS, R2=0.045, ex UC1110, located in the 
centromeric region near Xwmc474-2BS {10705}, Qyr.ucw-2AS, R2=0.023, ex PI 61725, near wPt-5839 
{10705}.  

Yaco S (R) / Mingxian 169 (R): Adult plant resistance. Qyryac.nwafu-2BS located within a 1.3 cM 
region flanked by KASP markers BS00022657_51 and IACX6411.BobWhite_22503_605 within the 10.4 
cM Xgwm148-2B – Xbarc55-2B region {11241}. 
 
Yibinzhuermai (AS1591) / Taichung 29: RIL population: QTL in chromosome arms 5BL, 6AL and 
7DS (Yr18) derived from Yibinzhuermai; QYr.YBZR-6AL was considered new (11759}. 
 
Yr16DH70 (Cappelle Desprez / 2*Palmiet Selection) / Palmiet: DH population: One major effect 
QTL, Qyr.ufs-2A, and three less effective QTLs in 2D (possibly Yr16), 5B and 6D were from Yr16DH70, 
and a minor effect QTL on 4B was from Palmiet {10933}.  
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Four QTLs were detected in a multiple cross analysis {10283}: Chromosome 2AL (probably Yr32 in 
Deben, Kris and Soloist), 2AS (probably Yr17 in Kris), 2BL (Xwmc149-2B – Xwmc317a-2B in Deben) 
and 6BL (Xwmc397-6B - Xwmc105b-6B in Soloist and Kris).A summary of published QTL locations is 
provided in {11089}; 49 chromosome regions on 20 of the 21 wheat chromosomes were covered.  
Markers associated with many stripe rust resistance genes are summarized in {11254}. 

Tetraploid wheat 
Kofa (S) / W9262-260D3 (MR): DH population: QTL were identified on chromosomes 5B (APR) and 
7B (seedling resistance and APR) in the region of Yr67 {11689}. Full resistance required the presence of 
both QTL. The 5B QTL was not detected in field trials in Mexico {11689}. 
 
3.21.4. Spike response to stripe rust 
 
Bouvet et al. {11658} identified five QTL controlling stripe rust response in spikes in a UK Magic 
population; three (on chromosomes 2D, 4D and 5A (possibly Yr34)) co-located with previously identified 
QTL and two (chromosomes 2D and 4A) associated with flowering time. Heritability was lower than that 
for leaf response. 
 
3.22. Reaction to Puccinia triticina 

Disease: Brown rust, leaf rust. 

3.22.1. Genes for resistance 

LR1 

Lr1 {47}.  5D {954}. 5DL {945}. 1B {1409}.  i:  Centenario/6*Thatcher {317}; Malakoff/6*Prelude 
{317}; Wichita*4/Malakoff {613}.  v:  Line 87E03-S2B1 {10561};  Centenario {317};  Chicora 'S' 
{143};  Daws (heterogeneous) {1019};  Dirkwin {1019};  Glenlea {976, 1255};  Halle 9H37 {74};  
Hyslop {1019};  Luke {heterogeneous}{1019};  Malakoff {47};  McDermid {1019};  Mexico 120 {933};  
Newton {1023}, {1024}, {143};  Norco {1019};  Shabati Sonora {842};  Sonora 64 {842};  Tarsa {842};  
Uruguay {954};  Walliday {1019}. v2:  Blueboy Lr10 {143};  Blueboy II Lr10 Lr24 {143};  
Erythrospermum 142 and 953 Lr3 {74};  Laura Lr10 Lr34 {712};  Norka Lr20 {1552};  Plainsman V Lr3 
{1024};  Suneca Lr13 {485}.  dv:  Several Ae. tauschii accessions {10191}.  ma:  Co-seg. with Xpsr567-
5D and Xglk621-5D in a Frisal/Lr1 resistant line. pTAG621 was converted to a diagnostic STS{354};  
Terminally located{10189};  In Ae. tauschii recombination in the region was 5-10X that in common 
wheat, gene order Xpsr567-5D - Lr1 - Xabc718-5D{10191};  Mapped to a 0.7 cM interval in Ae. tauschii 
and a 0.075 cM interval in wheat {10408};  A candidate gene for Lr1, Lr1RGA1, encoding a CC-NBS-
LRR protein, cosegregated with Lr1{10408};  Co-segregation with RGA567-5{10561}.  c:  Lr1 is a 
member of a multigene family (PSR567), has a CC-NBS-LRR structure, and produces a protein of 1,344 
aa, EF567063 {10561}.  

LR2.  1B {1409}. 2DS {942, 843}.  



 

114   PATHOGENIC DISEASE/PEST REACTION  

 

Lr2a {320}.  [Lr2 {47}].  i:  Prelude*6/Webster {320}; Red Bobs*6/Webster {320}; Webster/6*Thatcher 
RL6016 {306}; Wichita*4/Webster {613}.  v:  EurekRRa CI 17738 {143};  Festiguay {843};  Webster CI 
3780 {47}; Common in the Canadian Western Spring Wheat (CWSW) cultivars {11700}.  v2:  Alex Lr10 
{976};  Ck 9835 Lr9 {10146};  Ck 9663 Lr2 Lr10 {10146};  Guard Lr10c {976};  James Lr10 {976};  
Len Lr10 {976};  Marshall Lr10 {976};  Mediterranean W1728 Lr3 {1369};  Shield Lr3 Lr10 {198};  
Waldron Lr10 {143}.  ma:  Flanked by KASP markers kwm1620 (64.455 Mb, CS REFSeq 2.1.) and 
kwm1623 (64.760 Mb) {11700}. 

Lr2b {320}. [Lr22 {1409}].  i:  Prelude*6/Carina {320}; Red Bobs*6/Carina {320}; Thatcher*6/Carina 
{320}; Wichita/4*Carina {613}.  v:  Carina {613}.  

Lr2c {320}. [Lr23 {1409}].  i:  Prelude*5/Brevit {320}; Prelude*6/Loros {320}; Red Bobs*6/Brevit 
{320}; Red Bobs*6/Loros {320}; Thatcher*4/Brevit {320}; Thatcher*6/Loros {320}; Wichita*4/Brevit 
{613}; Wichita*4/Loros {613}. v:  Brevit {613};  Loros {1257, 317}.  

LR3 {47}.  

Because Lr3 appears to be a complex locus {486} Democrat and Democrat/6* Thatcher should be 
accepted as standards. There is evidence to suggest that the allele in Mentana, and therefore many 
derivatives, is Lr3b {939}. If this is correct, many genotypes listed under Lr3a are likely to be Lr3b.  
Durum cv. Storlom likely carries Lr3a or Lr3b {10469}. Cv. Camayo was considered to have a closely 
linked gene, or Lr3 allele {10469}. Resistance in Storlom co-segregated with an STS derivative of 
Xmwg798-6B. All three Thatcher NILs with named Lr3 alleles carried the STS marker {10469}. 

Lr3a {10028}.  [Lr3 {47}].  6B {549}. 6BL {939}.  i:  Democrat/6*Thatcher {318}; Wichita*4/ 
Mediterranean {613}.  v:  Belocerkovskaja 289 {74};  Bennett {1024};  Democrat {47};  Fertodi 293 
{74};  Gage {1024};  Hana {68};  Homestead {1024};  Ilyitchovka {75};  Juna {75};  Jubilejne {68};  
Kawvale {143};  Lancota {1024};  Mara {68};  Mediterranean {47};  Mediterranean W3732 {1369};  
Mentana {842};  Mironovskaya 264 & 808 {74};  Odra {75};  Osetinskaya {74};  Ottawa {143};  
Pawnee {1408};  Ponca {143};  Rannaja 12 {74};  Shawnee {143};  Shirahada {842};  Sinvalocho MA 
{10929};  Skorospelka 3b {74};  Sledkovicova K1004 {74};  Viginta {68};  Warrior {1024, 143};  
Yubileynaya {75}.  v2:  Amika Lr26 {76};  Bezostaya 1 Lr34 {74};  Bowie Lr14b {319};  
Erythrospermum 142 & 953 Lr1 {74};  Istra Lr26 {76};  Mediterranean W1728 Lr2a {1369};  Plainsman 
V Lr1 {1024};  Shield Lr2a Lr10 {198};  Solaris Lr26 {76};  See also {69}.  tv:  Storlom {10469}.  ma:  
Co-segregation with Xmwg798-6B {10469, 9921};  cDNA marker TaR16 was completely linked to Lr3 in 
a population of 109 gametes {10058}; UBC840540 - Lr3a, 6 cM {10263}.  

Lr3b.  [Lr3bg {486}].  i:  Thatcher*6/Bage; RL6094 = Tc*6/T6 {307}.  v:  Bage {486}.  v2:  T6 Lr16 
{307}.  
Durum cv. Storlom likely carries Lr3a or Lr3b {10469}. Cv. Camayo was considered to have a closely 
linked gene, or Lr3 allele {10469}. Resistance in Storlom co-segregated with an STS derivative of 
Xmwg798-6B. All three Thatcher NILs with named Lr3 alleles carried the STS marker {10469}. 
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Lr3c.  [Lr3ka {486}].  i: Tc*6/Klein Aniversario.  v:  Blava {10345};  CI 13227 {11021};  Klein 
Aniversario {486}.  

Lr3d {11054}.  i:  RL6062, Thatcher*6/PI 268316 {11054}.  v:  PI 268316 {11054}.  

LR4, LR5, LR6, LR7, LR8 {365}. v:  Purdue Selection 3369-61-1-10 = Waban{365};  Not available as 
separate single-gene lines. Therefore, alleles at these predicted loci were never characterized. 

LR9 

Lr9 {1408}.  Derived from Ae. umbellulata.  6BL = T6BS.6BL-6U#1L {389}. 6B{1299}, {1296}, 
{954}.  i:  T47 = Transfer = CS + Lr9 {1408}; Thatcher*6/Transfer; Wichita*4/ Transfer {613};  Lines 
listed in {10244}.  v:  Abe {143};  Arthur 71 {1024, 1320};  Clemson 201 {465};  McNair 701 & 2203 
{143};  PI 468940 {1439};  Riley 67 {1024, 1320};  Sullivan {1110};  Transfer {1296}.  v2:  Ck 9835 
Lr2a {10146};  Ck 9663 Lr2a Lr10 {10146};  Lockett Lr24 {10146};  Oasis Lr1 {1109}.  al:  Ae. 
umbellulata TA1851 {11630}.  ma:  Co-seg with XksuD27-6B {48};  co-seg with Xmwg684-6B and STS 
Xsfr1 {1272}; Lr9 – 8 cM – Xpsr546-6B {1272};  SCAR markers were developed in {10244}.  c:  
Encodes a 1,167-aa protein with an N-terminal tandem kinase domain followed by a von Willebrand 
factor type A (vWA) domain in the C-terminus {11630}. The ~28.4 Mb translocation at 725.61 Mb 
replaces a 5.58 Mb wheat segment containing 87 high confidence genes {11630}. 
Lr9 has the identical sequence and translocation breakpoint to Lr58 {11630}. 
The structures of additional translocations are given in {389}. 

LR10 

Lr10 {199}.  [LrL {31}].  1A {312}, {546}. 1AS {939}.  i:  Exchange/6*Thatcher {306}; 
Gabo/6*Thatcher {306}; Lee/6*Thatcher {306}; Selkirk/6*Thatcher {306}; Timstein/6*Thatcher{306}.  s:  
CS*5/Timstein 1A {939}; CS/7*Kenya Farmer 1A {939}.  v:  Centurk {1024};  Centurk 78 {1024};  
Concho {143};  Federation {939};  Mayo 52 {31};  Mayo 54 {31};  Parker {546, 1024};  Rocky {1024};  
Scout 66 {2101};  Sinton {1256};  Tascosa {143};  TAM-105 {55};  Unknown accessions {208};  See 
also {337}.  v2:  Alex Lr2a {976};  Blueboy Lr1 {143};  Blueboy II Lr1 Lr24 {143};  Ck 9663 Lr2a Lr9 
{10146};  Era Lr13 {143};  Exchange Lr12 Lr16 {31};  Gabo Lr23 {31};  Guard Lr2a {976};  James 
Lr2a {976};  Kenya Farmer Lr23 {939};  Laura Lr1 Lr34 {712};  Lee Lr23 {31};  Len Lr2a {976};  
Marshall Lr2a {976};  Parker 76 Lr24 {143};  Selkirk Lr14a Lr16 {31,199};  Shield Lr2a Lr3 {198};  
Timstein Lr23 {31};  Waldron Lr2a {143};  Warden Lr16 {31}.  tv:  Altar 82 {10760};  Russello 
{10760}.  ma:  Xcdo426-1A – 5.1 cM – Lr10{1058}; Lr10 – 8 cM – Glu-A3 {355};  cosegregation with 
Xsfr1(Lrk10-1A) and Xsfrp1(Lrk10-1A) {1270};  complete linkage with Xsfr1(Lrk10-1A), which encodes 
a protein kinase {639}.  c:  Lr10 was cloned - it has a CC-NBS-LRR structure, syn, T10rga1 GenBank 
AY270157 {10442};  A second CC-NBS-LRR gene, RGA2, is required for expression of Lr10 in 
tetraploid and hexaploid wheats {10760}.  

Lrk10. A receptor-like kinase. The locus Xsfr1(Lrk10)-1A, detected by the probe Lrk10, is completely 
linked with Lr10 in chromosome 1AS {356}. The gene encodes a receptor-like kinase with extracellular 
and kinase domains {0297}. Using probe pLrk10-A, developed from the extracellular domain, 6 
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homologues were found in chromosomes 1A (1), 1B (3) and 1D (2) as well as group 1 chromosomes of T. 
monococcum, Ae. tauschii and barley {0296, 0294}. Probes based on the kinase domain identified further 
homologues in chromosomes 3AS and 3BS as well as the corresponding regions in rice and maize 
{0294}. Both orthologous and paralogous evolution were suggested.  

LR11 

Lr11 {1409}.  [LrBP2 {11074}].  2DS {11074}. 2A {1409}.  i:  Thatcher*6/Hussar {306}; 
Wichita*4/Hussar {613}.  v:  Bulgaria 88 {142};  Hart {1024};  Hazen {49};  Hussar {1409};  Panola 
{10830};  Pioneer 2850;  Pocahontas {10146};  Saluda {10699, 10146}.  v2:  Buck Poncho Lr10 
{11074};  Ck9803 Lr18 {10595};  FFR 524 Lr18 {10595};  Jamestown Lr18 {10830};  Karl 92 Lr3 Lr10 
{2101};  Oasis Lr9 {143};  Pioneer 2684 Lr18 {10595};  SS520 Lr18 {10595}.  ma:  Lr11 – 0.3 cM – 
SCAR32/35 – 1.6 cM – Xgwm614-2D {11074}.  

LR12 

Lr12 {326}.  Adult plant reaction.  4B {312}. 4BL {10951}.  bin:  4BL5-0.86-1.00.  i:  
Exchange/6*Thatcher {306}.  v:  Opal {306}.  v2:  AC Domain Lr10 Lr34 {228};  Caldwell Lr14a 
{10787};  Chinese Spring Lr34 {301};  Exchange Lr10 Lr16 {326};  Sturdy Lr13 {301};  Unknown 
accessions {208}.  ma:  Xgwm251-4B – 0.9 cM – Lr12 – 1.9 cM – Xgwm149-4B {10951}.  
Possible commonality with Lr31. 

LR13 TraesCS2B01G182800 {11530, 11531}; also predicted in {11529}. 

Lr13 {326}.  Although originally described as a gene for adult plant reaction {032}, {326}, Lr13 can be 
detected at the seedling stage especially at high temperatures {939, 1156}.  [LrZH22 {11467, 11468}; 
LrLC10 {11468}].  2BS {939}.  i:  Tc*7/Frontana = RL4031 {306};  fifteen Thatcher lines with 2-gene 
combinations {711}.  bin:  2BS1-0.35-0.75.  v:  This gene is very widespread {939};  Hereward {288};  
Hustler {608};  Kinsman {608};  Kenya Plume {1370};  Liaochen 10 {11468, 11530};  Manitou {326};  
Mardler {608};  Maris Huntsman {608};  Moulin {288};  Napayo {70};  Neepawa {143};  Norman 
{608};  Pastiche {288};  Polk {143};  Virtue {608};  Zhoumai 22 {11467, 11468, 11531}.  v2:  AC 
Barrie Lr6 {10178};  Beaver Lr26 {1032};  BH1146 Lr34 {268};  Biggar Lr14a {712};  Chris Lr34;  
Columbus Lr16 {1258};  Cumpas 88 Lr26 {1373};  Era Lr1 0 {143};  Frontana Lr34 {32}, {1374}, 
{326};  Genesis Lr14a {712};  Hartog Lr1 Lr46 {127};  Hobbit Lr17a {608};  Hobbit Sib Lr17a {1350};  
Inia 66 Lr14a Lr17 {1373};  Klein Aniversario Lr3ka {32};  Kenyon Lr16 {300};  Lerma Rojo 64 Lr17a 
Lr34 {1373};  Oasis 86 Lr19 {1373};  Parula Lr34 Lr46 {1374};  Suneca Lr1 {485};  Yecora Lr1 
{1374}.  ma:  Xpsr912-2B – 9.1 cM – Lr13 – 7.9 cM – Xbcd1709-2B – 9.8 cM – Cent. {88}; Lr13 – 10.7 
and 10.3 cM – Xgwm630-2BS {10463}; Xbarc163-2B – 5.1 cM – Lr13 – 8.7 cM – Xstm773b-2B {329}; 
Xbarc55-2B – 1.1 cM – Xkwh37 – 4.9 cM – Lr13 – 5.8 cM – Xgpw1109 – 3.7 cM – Xbarc18-2B{11068};  
Xbarc55-2B – 2.4 cM – LrZH22 – 4.8 cM – Xgwm374-2B {11467}; Xbarc55-2B – 2.2 cM – XCAUT163 
– 1.10 cM – LrLC10 – 0.55 cM – Lseq22 – 6.05 cM – Xbarc18-2B {11468}.  c:  Encodes a CC-NBS-
LRR protein {11531; 11532} that is identical to that produced by one of the Ne2m haplotypes {11531}. 
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GenBank MW756036 {11532}.  Lr13 is an allele of the YR27/NE2 locus {11593}.   
Pleiotropic with the specific Ne2m allele at the NE2 locus. 

LR14.  

Lr14a {964, 319}.  [LrLla  {10520}].  7B{964}. 7BL {770}.  bin:  7BL10-0.78-1.00.  i:  
Selkirk/6*Thatcher {319};  Arina LrFor {11549}.  s: CS*6/Hope 7B {964}.  v:  Aotea {964};  Brigand 
{608};  Gala {964};  Glenwari {964};  Hofed {964};  Hope {964};  H-44 {964};  Lawrence {964};  
Redman {964};  Regent {964};  Renown {964};  Spica {964}.  v2:  Biggar Lr13 {712};  Brambling Lr23 
Lr34 {10563};  Caldwell Lr12 {10787};  Genesis Lr13 {712};  Inia 66 Lr13 Lr17a {939};  Selkirk Lr10 
Lr16 {319}.  tv:  Arcangelo {11015};  Bicre {11015};  Creso {11015};  Colosseo {11015};  Italo 
{11015};  Lloreta INIA {10520};  Plinio {11015};  Somateria {10520}.  v2:  Forno Lr34 Lr75 {11549}.  
ma:  Xwmc273-7B – 13 cM – Lr14a – 10 cM – Xgwm344-7B {10520}; Xwmc10/Xgwm344/wPt1085-7B 
– 1.1 cM – wPt4038-HRM – 0.1 cM – Lr14a – 1.0 cM – wPt4140-HRM {11015}.  
The Lr14 region in tetraploid wheat harbours Qlr.ubo-7B.2, a gene that confers durable resistance in 
durums {10734, 10736} and that is present in many Italian, CIMMYT and ICARDA durum cultivars 
{10736}. The relationship of this gene described as Lr14c (reference genotype Creso) in {10735} remains 
to be determined. Reasons for considering Lr14c as a unique allele are given in {10735} but according to 
{11518} the gene sequence in Creso is identical to that of Lr14a. In association mapping the presence of 
QLr.ubo-7B.2 was predicted with 96% accuracy based on appropriate alleles of Xcfa2257.2, Xgwm344.2 
and Xwmc10 in the distal region of chromosome 7BL {10736}.  c: Lr14a encodes a membrane-localized 
protein with 12 ankyrin repeats and structural similarity to Ca2+-permeable non-selective cation channels 
{11549}. GenBank MT 123593.  
Based on sequence Lr14a was identified in a few spelt (e.g. PI 190962) and a few wild emmer accessions 
{11549}. 

Lr14b {319}.  i:  Maria Escobar/6*Thatcher {319}.  v:  Weebill 1 {10571}.  v2:  Bowie Lr3;  CI 13227 
Lr68 {10817};  Maria Escobar Lr17 {319};  Rafaela Lr17 {314}.  
Most accessions with Lr14b, including the Tc NILs probably carry APR gene Lr68 {10817} which could 
be the same as QLr.osu-7BL {10817}.  A marker based on the Lr14a sequence failed to amplify a product 
in the Tc+14b NIL {11549}. 

Lr14ab.  i:  Lr14a/6*Thatcher//Lr14b/6*Thatcher Seln {319}.  

LR15  

Lr15 {843}.  2DS {942}, {843}.  i:  Thatcher*6/Kenya W1483 {306}.  bin:  2DS1-0.33-0.47.  v:  Kenya 
W1483 {843}.  ma:  Xgwm4562-2D – 3.1 cM – Lr15 – 9.3 cM – Xgwm102-2D {11234};  Xwmc764-2B – 
9.4 cM – Lr16 – 1.4 cM – Xwmc661-2B {11219}. 
Probably allelic with Lr2.  

LR16 



 

118   PATHOGENIC DISEASE/PEST REACTION  

 

Lr16 {318}.  The following chromosome locations are consistant with the finding that the first location 
was based on the use of a Rescue monosomic series. Rescue differs from CS by a 2B-4B translocation 
{939}. Lr16 is always asociated with Sr23.  [LrE {31}].  4B {312}. 2BS.  i:  Exchange/6*Thatcher {306}; 
RL6096 = Tc*6/T6 {307}.  v:  AC Domain {10170};  AC Foremost {10170};  Arapahoe {2101};  Brule 
{2101};  Ciano 79 {1373};  Etoile de Choisy {74};  Imuris 79 {1373};  McKenzie {10170};  Millenium 
{2101};  Papago 86 {1373};  Redland {2101};  Vista {2101}; Waxwing {11267}.  v2:  AC Barrie Lr13 
{10178};  Columbus (heterogeneous) Lr13 {1258};  Exchange Lr10 Lr12 {31};  Kenyon Lr13 {300};  
Francolin#1 Lr46 {11219}; Selkirk Lr10 Lr14a {31};  T6 Lr3bg {307};  Warden Lr10 {31}.  ma:  
Distally located: Lr16 – Xwmc764-2, 1, 9 and 3 cM, respectively, in crosses RL4452/AC Domain, 
BW278/AC Foremost and HY644/McKenzie {10189, 10170}. 

A recessive gene LrCH1539 in accession CH1539, flanked by markers scau2BS81 (6.227 Mb, CS RefSeq 
1.0) and scau2BS47 (7.006 Mb) was located at the same position as Lr16 {11680|.  

LR17  

Lr17a.  [Lr17].  2A {314}. 2AS {62}.  bin:  2AS-5 {10572}.  i:  Klein Lucero/6*Prelude {318}; Klein 
Lucero/6*Thatcher {318}; Maria Escobar/4*Thatcher {318}.  v:  CDS Stanley {11579}; EAP 
26127{314};  Jagger {10346}, {338}, {10146};  Jupateco {939};  Klein Lucero {318};  Mace {11579};  
Santa Fe {10830};  TAM111 {10595};  SY Mattis {11579};  Trego {10572}.  v2:  Fuller Lr39 {10699};  
Inia 66 Lr13 Lr14a;  Jagger Lr37 {11328};  Lerma Rojo 64 Lr13 Lr34 {1373};  Maria Escobar Lr14b 
{318};  Rafaela Lr14b {314}.  ma:  Xbarc123-2A – 4.8 cM – Xgwm636-2A – 4.0 cM – Lr17a{10571}; 
Xgwm614-2A – 0.7 cM – Lr17a – Xwmc407-2A{10572}; Lr17a – 3.7 cM – Xbarc212-2a {10795}.  

Lr17b {1350}.  [WBR2 {615}, LrH {970}].  2A {1350}.  v:  Brock {260};  Harrier {1350};  Maris 
Fundin {1350};  Norin 10-Brevor, 14 {1350};  Norman {1350}.  v2:  Contra Lr13 {10345};  Hobbit Sib 
= Dwarf A Lr13 {1350};  Kalasz Lr13 {10345};  Riband Lr13 {10345};  Sarka Lr13 {10345};  Tarso 
Lr26 {229}.  

LR18  

Lr18 {318}.  Derived from T. timopheevii. Independently derived lines with Lr18 possess a unique N 
band terminally located in chromosome 5BL {1614}. Low seedling responses conferred by Lr18 are most 
effective at 15-18C. With increasing temperatures the response becomes less effective and ineffective at 
25-27C {935}, see also, {1614}.  5BL {935} = T5BS.5BL-5G#1L {389}.  i:  Africa 43/7*Thatcher 
{318}; Red Egyptian PI 170925/6*Thatcher {318}.  v:  Africa 43 {318};  Red Egyptian PI 170925 {318};  
Red Egyptian PI 17016-2c {318};  Sabikei 12 {935};  Timvera {935};  Timvera Derivative {935};  
Certain WYR accessions {935};  FTF {1614};  Several Sabikei lines including Sabikei 12 {1614}.  v2:  
Ck9803 Lr11 {10595};  FFR 524 Lr11 {10595};  Jamestown Lr11 {10830};  Pioneer 2684 Lr11 
{10595};  SS520 Lr11 {10595}.  
A resistance gene, LrTt2, in line 842-2 was located on chromosome 5BL in a similar region to Lr18. The 
claim that Lr18 and LrTt2 were different was based on low seedling infection types, but the genetic 
backgrounds were different {10752}. 



 

119   PATHOGENIC DISEASE/PEST REACTION  

 

LR19 

Lr19 {140}.  Derived from Th. elongatum.  
7DL = T7DS.7DL-7Ae#1L {1323}, {389}, {388}, {657}, {291}, {956}  i:  Agatha = T4 = TC + Lr19 
{1323}, {956};  Sears transfer 7D-7Ag no. 1 {10255}.  v:  Dobrynya{ 10821};  Ekada 6 {10821};  L503 
{1346};  L505 {10821};  L513{1346};  Mutant 28 {598};  Samsar {108};  Sunnan {684};  Pallada 
{11161};  Volgouralskaya {10821};  See Sr25.  
7AL  Lines I-22 and I-23 {10255}.  v2:  Kinelskaya Niva Lr23 {10821};  Oasis 86 Lr13 {1373}.  
7AL  tv:  This translocation was transferred to durum wheat and engineered to produce normally 
inherited secondary recombinants with smaller alien segments, such as R5-2-10, and tertiary 
recombinants such as R1 {10633}.  ma:  Located in the Xwg420-7Ag – Xmwg2062-7Ag interval {10255};  
RAPD, SCAR and SSR markers co-inciding with, or flanking, Lr19 in a derivative of Knott's Agatha 
Mutant 28 (C80.1) were reported in {10379}. ma:  Xbg262436 – LR19 – Xbarc76-7E – PSY-E1n- 
XBE445653 {11699}.  c:  A candidate sequence, AG15, with a 1,258 amino acid sequence and a CC-
NBS-LRR structure was reported in {10575}. The chromosome with Lr19 in Indis is probably identical to 
that in Agatha {1162}. 7DL = T7DS.7DL-7Ae#1-7DL {388}.  v:  Mutant 235 {681}. 7AL = T7A-7Ae#1 
{330}.  v: Sears' 7A-7Ag No.12 {330} 7BL {1163}.  v:  88M22-149 {1163}; 4 further derivatives of 
88M22-149 {0232}.  
7AgL {1304} = 7Ae#1L.  su:  Agrus.  ma:  Co-seg with 8 RFLP markers {048}; Ep-D1c – 0.33 cM – 
Lr19 {1587}; cosegregation with Ep-D1d {974}; Prins et al {1162} studied 29 deletion mutants in Indis 
and determined the gene order: Sd-1 – Xpsr105-7D – Xpsr129-7D – Lr19 – Wsp-D1 – Sr25 – Y; The 
following gene order for the Thinopyrum segment is given in {0101}; Cent – Sd1 – Xpsr165-7D – 
Xpsr105-7D – Xpsr129-7D – XcslH81-1 – Xwg380-7D – Xmwg2062-7D – Lr19 – Wsp-D1 – Sr25/Y; An 
STS marker closely linked and distal to Lr19 was developed from an AFLP {0273}. 
Although Lr19 is usually associated with Sr25. Sears' transfer 7D-7Ag No. 11 carries neither Lr19 nor 
Sr25. See Lr29. 
Knott {681} obtained two mutants (28 and 235) of Agatha possessing Lr19, but with reduced levels of 
yellow pigment in the flour. Marais {890, 892} obtained mutants and recombined lines with intermediate 
levels of, or no, yellow pigment. It was shown that recombinant line 88M22-149 lacked yellow pigment 
{1163}.  
Secondary translocation line I-96 derived from Sears' 7D-7Ag no.1 involved Lr19 being located in an 
intercalary segment with low yellow pigment and lacking Sd1 {10255}.  
Two T7DS.7DL-7EL-7DL lines: 1-40 lacked PSE-E1 whereas 9-80 carried it {11699}. 
Lr19 in lines I-22 and I-23 retaining yellow pigment but lacking Sd1 was transferred to durum 
chromosome 7BL {10255}. One of the lines with the shortest 7Ag segment, Lr19-I49-299, was used in a 
further cycle of recombination {10278}. 

LR20 

Lr20 {140}.  7AL {1305, 1554}.  i:  Thatcher+Lr20.  s:  CS*5/Axminster 7A {1293}.  v:  Axminster 
{1175}, {1305}, {348};  Birdproof {1554};  Bonus {1554};  Converse {1554};  Festival {1554};  Kenora 
{1554};  Kenya W744 {1554};  Maris Halberd {608};  Normandie {1554, 348};  Sappo {608};  Sicco 
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{310};  Thew {140, 1552};  Timmo {608}.  v2:  Norka Lr1 {1554};  See Pm1 (Reaction to Blumeria 
graminis) & Sr15 (Reaction to Puccinia graminis) with which Lr20 is always associated. Lr20 in Sicco 
appears to differ from that in Sappo, Timmo and Maris Halberd {310}; Lr20 in Norka (Lr1+Lr20) may 
differ from that in Thew {939}.  ma:  Complete cosegregation of several markers including Xcdo347-7A, 
Xpsr121-7A, Xpsr680-7A, Xpsr687-7A, Xbzh232(Tha)-7A, Xrgc607-7A and Xsts638-7A with Pm1 and 
Lr20 was reported in {323}; Lr20 – STS638, 7.1 cM {10263}.  

LR21 

Lr21 {1241}.  [Lr40 {10415, 1200}].  1DL {1241}. 1D {650}. 1DS {448}.  i:  Thatcher*6/Tetra 
Canthatch/Ae. tauschii var. meyeri RL 5289 {306}.  v:  Barlow {11093};  Faller {11093}; Tetra 
Canthatch/Ae. tauschii var. meyeri RL 5289, RL 5406 {648};  Lovitt {10766};  McKenzie {228, 10766};  
Prosper {11093};  WGRC2 = TA1649/3* Wichita {299};  WGRC7 = Wichita/TA1649//2*Wichita 
{299}.  v2:  AC Cora Lr13 {713}; WGRC16 = TAM107*3/Ae. tauschii TA 2460 Lr39 {10415}, {220}.  
dv: Ae. tauschii accessions: RL5289 = TA1599{1241}; Ae. tauschii TA2460 Lr39 {10415}, {220};  
TA1649 {299};  TA1691 {299};  TA2378 {299};  TA2470 {299};  TA2483 {299};  TA2495 {299};  
TA2527 {299};  TA2528 {299}.  ma:  All members of the Lr21 family carry a STS derivative of 
XksuD14-1D that has a resistance gene analogue structure {299}; XksuD14-1D was reported to map 1.8 
cM proximal to Lr21 in{375}; Lr21 – 0 cM – rgaYr10b – 0.6 cM – Xgdm33-1D {360}; Xksu-1D is part 
of Lr21 {10420}.  c:  Lr21 was cloned and shown to have a NBS-LRR structure {10420}.  Lr21-mediated 
resistance requires expression of RAR1, SGT1 and HSP90 {11274}. 
A reconstituted effective Lr21 allele (designated Lr21-b) was obtained as a rare (1/5,872) recombinant 
(accession TA4446) between Lr21 pseudogenes in common wheat cultivars Fielder and Wichita {10620}. 
Further haplotype analyses are reported in {10766}. 
A further spontaneous allele designated Lr21-tbk with ‘several mutations in exons 2 and 3’ leading to 
three amino acid changes was identified cv. Tobak {11762}. 

LR22  

Lr22a {1241}.  Adult plant reaction.  2DS {1241}.  i:  Neepawa*6/RL5404, RL4495 {10467}; 
Thatcher*3//Tetra Canthatch/Ae. squarrosa var. strangulata RL 5271 {306};  Thatcher*7//Tetra-
Canthatch/RL5271, RL 6044 {10467};  CH Campala Lr22a {11209}.  v: Line 98B34-T4B {10467}; 
Tetra Canthatch/Ae. squarrosa var. strangulata RL 5271, RL 5404 {311}. v2:  AC Minto Lr11 Lr13 
{713}.  dv:  Ae. squarrosa var. strangulata RL 5271.  ma:  Xgwm296-2DS – 2.0 cM – Lr22a {10446}; 
Xgwm455-2D – 1.5 cM – Lr22a – 2.9 cM – Xgwm296-2D {10467};  Xgwm455-2D – 0.39 cM – Lr22a – 
1.1 cM – Xgwm296-2D {11209}.  c:  GenBank KY064064; NBS-LRR structure encoding an intracellular 
immune receptor homologous to the Arabidopsis thaliana RPM1 protein {11209}. 

Lr22b{298}.  Adult plant reaction. v:  Canthatch {298};  Marquis {970};  Thatcher {298}.  
This gene will be present in near-isogenic lines based on Thatcher. 

LR23 
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Lr23 {948}.  [LrG {951}].  2BS {948}.  i:  Lee FL 310/6*Thatcher {948}.  s:  CS*7/Kenya Farmer 2B 
{948}; CS*6/Timstein 2B {948}.  v:  BT-Schomburhk {11601};  Cranbrook;  Crim {1091};  
Hope/Timstein {1091};  I 310678 {1091};  I 310685 {1091};  I 349162 {1091};  IWP94 {10569};  K 
45973 {1091};  K 51070 {1091};  Rocta {1091}.  v2:  Gamenya Lr3 {1552};  Gabo Lr10 {1552};  
Kenya Farmer Lr10 {1552};  Lee Lr10 {1552};  Pastor Lr46 {10928};  Timstein Lr10 {1552};  
Brambling Lr14a Lr34 {10563}.  tv:  Altar 84 {1058}:  Gaza {11601};  Tamoroi {11601}.  ma:  
Associated with Xksu904(Per2)-2B {90};  SSR and KASP markers were developed in {11601}. 
A QTL, which is likely to correspond to Lr23, was identified in the Opata 85/W-7984  (ITMI) RIL 
mapping population. The resistance was contributed by W-7974 {0090}. 

LR24 

Lr24.  Derived from Thin. elongatum. 
Always present with Sr24 {956}. See Sr24 (Reaction to P. graminis).  [LrAg {141}].  3DL {1389, 956}.  
i:  Tc+Lr24 (ex Agent).  v:  Cody {1284};  Cutter {10595};  Jagalene {10595};  McCormick {10595};  
Ogallala {10595};  Osage {143};  Payne {1390, 1024};  SST 23 {1324};  SST 44 = T4R {1324};  
Timpaw {1255};  Torres {128};  Wanken {1255};  Australian genotypes {340}.  v2:  Blueboy II Lr1 
Lr10 {141};  Fox Lr10 {141};  Lockett Lr9 {10146};  Parker 76 Lr10 {1024, 143};  Siouxland Lr26 
{1283}.  ma:  Co-seg of Lr24 in Agent with 8 RFLP markers; segment in Sears' 3D-3Ag#1 is shorter than 
in Agent {48};  Tagged with Xpsr1203-6B {1271};  cosegregation with RAPD marker that was converted 
to a SCAR {231}; Linked with SCAR marker SCS73719 earlier thought to tag Lr19 {10147}. 
Australian white seeded cultivars with Lr24 were recombinants derived from Sears’ translocation lines 
3Ag#3 and 3Ag#14.  
1BL {185} = T1BL.1BS-3Ae#1L {600}  v:  Amigo {1463}, {185}, {600};  Teewon {600}.  ma:  SCAR 
markers were developed in {10368}. A PCR marker, Sr24#12, was confirmed across all sources of Lr24 
{10257}. 
This source of Lr24 is also not associated with red seed colour.  

LR25 

Lr25.  Derived from S. cereale cv. Rosen.  4BS{389}, {271}, {270}, {380}.  Revised to T4BS.4BL-5RL 
{543} and later to T4BS.4BL-2R#1L.  i:  Tc+Lr25 Lr48 {10738}.  v:  Transec {273};  Transfed {269};  
Always present with Pm7.  ma:  Cosegregation with a RAPD {1165}.  
LR25 is closely linked with LR48 {10738}. 

LR26 

Lr26.  Derived from S. cereale. See also Reaction to P. graminis, Sr31; Reaction to P. striiformis, Lr26.  
T1BL.1RS.1R (1B).  i:  MA1 and MA2 four breakpoint double translocation lines 1RS-1BS-1RS-
1BS.1BL in Pavon {84}.  v:  AGS 2000 {10595};  Derivatives of Petkus rye - see Yr9 (Reaction to P. 
striifromis) & Sr31 (Reaction to P. graminis);  Bacanora 88 {1373};  Cougar {267};  Pioneer 26R61 
{10595};  Rawhide (heterogeneous) {267};  GR876 {753};  Iris {75};  Sabina {75}.  v2:  Beaver Lr13 
{10687};  Cumpas 88 Lr13 {1373};  Istra Lr3 {76};  Siouxland Lr24 {1283};  Solaris Lr3 {76};  Many 
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wheats with Lr26 also carry Lr3. Amika {heterogeneous} Lr3 {76};  See also {310}.  tv: Cando*2/Veery, 
KS91WGRC14 {381}.  ma:  Several markers tightly linked with Lr26 were identified in {377}.  
1BS/1RS recombinants 4.4 cM proximal to Gli-B1/Glu-B3 {0084}. Hanusova et al. {492} identified 127 
wheats with Lr26 but only 16 of them were listed. 

LR27 

Lr27 {1367}.  One of two complementary genes; the second gene, Lr31, is located in chromosome 4BS 
{1367}. The following wheats have both Lr27 and Lr31. 
Lr27 is present in wheats with Sr2, but is not expressed in the absence of the complementary factor 
{1366}.  [LrGt {1366}, A {1058, 1366}].  3BS {1367}.  s:  CS*6/Ciano 3B {1366}; CS*6/Ciano 5B 
{1366}; CS*6/Hope 3B {1366}.  v:  Gatcher {1366};  Ocoroni 86 {1373}.  v2:  Anhuac Lr13 Lr17 
{1361};  Cocoraque 75 Lr13 Lr17a Lr34 {1361};  Jupateco 73S Lr17a {1361};  SUN 27A Lr1 Lr2a 
{1366};  Timgalen Lr3 {heterogeneous} Lr10{1366}.  tv:  Benimichi C2004 {10585};  Jupare C2001 
{10585}.  ma:  Positive association with XksuG53-3B {1058}.  

LR28 

Lr28 {967}.  Derived from Ae. speltoides.  4AL {967} = T4AS.4AL-7S#2S {389}.  i:  CS 2A/2M 4/2 
{967};  CS 2D/2M 3/8 {967}.  v:  Sunland {11069}; Tobak {11717}.  ma:  Lr28 was tagged using STS 
primer OPJ-01378 {1052}; A linked RAPD marker, S421640 was converted to a TPSCAR, SCS421570 
{10236}; Xbarc219-4A – 2.2 cM – Xwmc219-4A {11069}.  

LR29 

Lr29 {939}.  Derived from Th. elongatum.  7DS {939} = T7DL-7Ae#1S {389}.  i:  Sears' CS 7D/Ag#11 
{1300, 939}; RL6080 = Tc*6/Sears' 7D/Ag#11 {316}.  ma:  Co-segregation with two RAPDs {1165}.  

LR30 

Lr30 {315}.  Recessive {315}.  [LrT].  4AL {315}.  i:  RL 6049 = Thatcher*6/Terenzio {315}.  v2:  
Terenzio Lr34 {315}.  

LR31 

Lr31 {1367}.  One of two complementary genes, the second gene is Lr27.  [B {1058, 1366}].  4BL 
{1367}.  v:  Ocoroni 86 {1373}.  v2:  Chinese Spring Lr12 Lr34 {1367};  See Lr27 for list of wheats with 
Lr27 +Lr31.  tv:  Benimichi C2004 {10585};  Jupare C2001 {10585}.  ma:  A positive association with 
XksuG10-4B {1058}.  
Possible commonality with Lr12. 

LR32 

Lr32.  3D {644}. 3DS {645}.  i:  RL6086 = Tc*7/RL5713/Marquis K {10874};  BW196 = 
Katepwa*6/RL5713/2*Marquis K {10874}.  v:  Tetra Canthatch/Ae. tauschii RL5497-1, RL5713, 
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RL5713/Marquis-K {644}.  dv:  Ae. tauschii RL5497-1 {644}.  ma:  Xbcd1278-3D – 3.6 cM – Lr32 
{48}; Xcdo395-3D – 6.9 cM – Lr32{48}; Xbarc128-3D – 9.1 cM – Lr32 – Xwmc43/Xbarc235-3D 
{10874}.  

LR33 

Lr33 {325}.  1BL {325}.  i:  RL6057 = Tc*6/PI 58548 {325, 297, 321}.  v:  PI 268454a {297};  PI 58548 
{325, 297}.  v2:  KU168-2 Lr34 {11687}; PI 268316 Lr2c Lr34 {297};  Others {1322}.  ma:  KASP 
markers flanking Lr33 in the centromeric region were identified in {11687}. 

LR34  TraesCS7D03G0183600 

Lr34 {299, 297}.  In addition to conferring seedling and adult plant resistance, Lr34 responds in a 
complementary manner when combined with either Lr33 or LrT3 {321}. In the Thatcher background, 
Lr34 is associated with increased resistance to stem rust {299}, {321}. 
Although the resistance gene in the near-isogenic Thatcher line, RL6077, was considered to be Lr34 on 
the basis of disease response, leaf tip necrosis and its association with resistance to stripe rust, a cross 
with RL6058 segregated for two genes. A translocation to another chromosome was suggested {324}.  
[LrT2 {321}].  7DS {1058}, {324}. 7D {299}.  i:  Arina + Lr34 {10648};  Lalbahudar + Lr34 {10648};  
Line 897 {321};  Line 920 {321};  Selections Jupateco 73R Lr17a Lr27 + Lr31 and Jupateco 73S Lr17a 
Lr27 + Lr31 and Cocoraque 75 Lr13 Lr17a Lr27 + Lr31 and Anhuac 75 Lr13 Lr17a Lr27 + Lr31, can be 
considered near-isogenic for the presence and absence, respectively, of Lr34{1361}.  v:  Ardito {10648};  
Arina*3/Forno {10380};  Bezostaya {10387, 10648};  Condor {10387, 10648};  Cook {10387};  Forno 
{10066, 10387, 10380};  Fukuho-Komugi {10387, 10648};  Kavkaz {10648};  Lantian 12 {10682};  
Libellula {10682};  Otane {10387};  Pegaso {10648};  Penjamo 62 {10648}; RL6058 = Tc*6/PI 58548 
{297};  PI 268454 {297};  Strampelli {10682};  Westphal 12 {268};  Others {1322}, {1376}, {299}, 
{321};  See {1362};  2174 {10888};  List of U.S. hard wheats in {10888};  Pedigree charts showing the 
presence of Lr34 in various Canadian wheat classes are given in {10889}.  v2:  Anza = WW15 Lr13 
heterogeneous {10648};  Brambling Lr14a Lr23 {10563};  BH1146 Lr13;  Chinese Spring Lr12 Lr31 
{301, 10648};  Chris Lr13 {10648};  Frontana Lr13 {1374};  Glenlea Lr1 {327}, {10648};  Jupateco R 
Lr17a, Lr27 + Lr31 {10648};  Lageadinho LrT3 {321};  Laura Lr1 Lr10 {712};  Mentana Lr3b {10493, 
10648};  Parula Lr13 Lr46 {1374};  PI 58548 Lr33 {297}, {321}; RL 6059 = Tc*6/Terenzio Lr33 {297}; 
RL 6069 = Tc*6/Lageadinho LrT3 {321}; RL6070 = Tc*5/PI 321999 LrT3 {321}; RL6050 = 
Tc*6/Terenzio LrT3 {321};  Saar Lr46 {10481};  Sturdy Lr12 Lr13 {301};  Terenzio Lr3 Lr30 LrT3 
{321};  Thirteen Thatcher lines with 2-gene combinations{434}.  ma:  Complete linkage with Ltn (leaf 
tip necrosis) {1361}, Yr18 (Reaction to P. striiformis) {1362, 937} and Bdv1 (Reaction to barley yellow 
dwarf virus) and Pm38 (Reaction to B. graminis) {0090}; association with Xwg834-7D {268}; Xgwm120-
7D – 0.9 cM – Lr34 – 2.7 cM – Xgwm295-7D {10259}; Lr34 .....XsfrBF473324 – 0.5 cM – Xsfr.cdo475-
7D – 0.7 cM – Xswm10-7D {10387};  A 150 bp allele (b) of STS csLV34, derived from wEST BQ788742 
was identified in most wheats with Lr34; CsLV34a – 0.4 cM – Lr34 {10387};  STS marker csLV34 was 
used to confirm or postulate the presence of Lr34 in Australian cultivars {10493} and Hungarian 
materials {10701};  Further markers for Lr34 and various marker-positive haplotypes that lack leaf rust 
resistance are described in {10888, 10887};  A gene based (3 bp indel in in exon 11), dominant HRM 
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marker is reported in {11669}.  c: Lr34 spans 11,805 bp and produces a 1,401 aa protein that belongs to 
the drug resistance subfamily of ABC reporters {10648}; GenBank FJ436983 {10648};  Further 
confirmation of the ABC transporter is provided in {10887}.  
A QTL, which is likely to correspond to Lr34, was identified in the Opata 85/W-7984 (ITMI) RI mapping 
population. The resistance was contributed by Opata 85 {0090}. 
On the basis of leaf tip necrosis and lack of segregation in a diallel, cv. Saar, Simogh, Homa, Parastoo and 
Cocnoos were considered to have Lr34, but each also possessed 2 or 3 additional adult plant resistance 
factors {10110}. This gene is identical to Yr18, Pm38 and Ltn and confers stem rust resistance in some 
genetic backgrounds.  
Lr34 conferred seedling resistance to leaf rust when transformed into durum wheat {11314}. 
Diagnostic markers based on the gene sequence are reported in {10713}; AC Domain, Cappelle Desprez, 
H-45, Jagger, Newton, RL 6077, and H-45 do not carry Lr34 {10713}. 

LR35 

Lr35 {651}.  Derived from Ae. speltoides{651}.  Adult plant resistance {651}.  2B {651} = 2BL-2SL-
2SS#2.2SL#2 {11037}.  i:  RL6082 = Thatcher*7/RL5711 {11037}.  v:  RL5711 {651}.  ma:  A. SCAR 
marker was developed {9923}.  
Complete cosegregation between Lr35 and RFLP loci Xwg996-2B, Xpsr540-2B and Xbcd260-2B was 
observed. The RFLP probe BCD260 was converted to a CAPS and STS marker {0045}. Lines with 
shortened alien segments are reported in {10741}. 
Lines with shortened alien segments bearing Lr35 are described in {10741}. 

LR36 

Lr36.  Derived from Ae. speltoides.  6BS {292}.  v:  CDC Bounty {11253};  Line 2-9-2 {292};  Line 
E84018 {292}.  al: Ae. speltoides Popn. 2 {292}.  ma:  Xcfd13-6 – 5.2 cM – Lr36 – 3.8 cM – Xgwm88-
6B {11588}.  Since Lr36 is located in an alien segment these markers likely map the boundaries. 

LR37 

Lr37 {62}.  Derived from Ae. ventricosa.  Recessive {667}. 
Lr37 can be detected in seedlings at low temperatures (17oC) and is effective in adult plants under field 
conditions. See also Sr38 (Reaction to P. graminis) and Yr17 (Reaction to P. striiformis) 2AS {62}. 6Mv 
= 2MS-6MS.6ML or 2MS-6ML.6MS {0009}.  
VPM1 and derivatives: 2AS {62} = 2AL.2AS-2NvS{0213}  i: RL 6081 = Tc*/VPM1{939}; RL6081 = 
Tc*8/VPM1 {316};  Various NILs listed in {0213}.  v:  Hyak {21};  Madsen {20};  Rendezvous {62};  
VPM1 {62};  VPM1 derivatives {939};  see also Reaction to P. striiformis tritici Yr17. Moisson 
derivatives: Lr {113}. 2AS = 2AL.2AS-2NvS {113}.  ad:  Moisson + 6Nv = 6NvS.6NvL-2NvS or 
6NvL.6NvS-2NvS {0009}.  v:  Mx12 {0213};  Mx22 {0213}.  ma:  (relevant to both groups of 
derivatives) PCR primers designed from marker csVrga1D3 {0183} producing a 383 bp product allows 
detection of the 2NvS segment {0213};  see also: See also Sr38 (Reaction to P. graminis) and Yr17 
(Reaction to P. striiformis.  
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A resistance gene analog containing an NBS-LRR R gene sequence was isolated from the Ae. ventricosa 
segment carrying Lr37 {0183}. 
The 2NS translocated segment carrying Lr37 replaced the distal half of chromosome 2A (25-38 cM) from 
Xcmwg682-2A to XksuH-9-2A. PCR markers were developed for the 2NS and 2AS alleles of Xcmwg682 
{10073}. SCAR markers SC-372 and SC-385 were developed in {10796}. 

LR38 

Lr38 {392}.  Derived from Th. Intermedium.  
1DL = T1DS.1DL-7Ai#2L {389}, {390}.  v:  T25 {390}.  
2AL = 2AS.2AL-7Ai#2L {389}, {392}.  v:  W49 {392} = T33 {390}.  
3DS = 3DL.3DS-7Ai#2L{389}, {390}.  v:  T4 {390}.  
5AS = 5AL.5AS-7Ai#2L{389}, {390}.  v  T24 {390}.  
6DL = 6DS.6DL-7Ai#2L{389}, {390}.  i:  RL6097 = Thatcher*6/T7 {307}.  v:  T7{390}, {307};  
7Ai#2(7D) {389}, {392};  7Ai#2(7A) {390}.  su:  W52 {389}, {390}.  

LR39 

Lr39 {1200, 2100}.  Derived from Ae. tauschii {02100}. Lr41 {215}. LrT {11207}.  2DS{10731, 
02100}.  i:  TC*4 / Overley, GSTR 447 {11498}.  v:  Amour {11086};  Bullet {11086};  Fuller {10595}; 
KS90WGRC10 = TAM107*3/Ae. tauschii TA2460 {220};  Overley {10595, 10699};  Postrack {10830};  
PostRock {11093};  PBW114 /Ae. tauschii PAU14195 // 4*WH542 backcross selections {11207};  
TAM112 {11086; TA4186 = TA1675*2/Wichita {02100};  Thunderbolt{02100};  Winterhawk {11086}.  
v2:  Fuller Lr17a {10699}; WGRC16=TAM107*3/Ae. tauschii TA 2460 {220}.  dv:  Ae. tauschi 
PAU14195 {11207}; Ae. tauschii TA 1675 {2100}; Ae. tauschii TA2460 Lr21 {10415, 220}; 
Lr21{10415,220}.  ma:  10.7 cM distal to Xgwm210-2D{02100};  Four markers, Xbarc124-2D, 
Xgwm210-2D, Xgdm35-2D and Xcfd36-2D were closely linked with the terminally located Lr39 
(formerly Lr41), but the gene order was inconsistent and no specific allele was associated with it 
{10731};  Xcau96-2D – 1.6 cM – LrT (Lr39) – 0.6 cM – Xbarc124-2D – 0.3 cM – Xte6-2D – IwT – 4.1 
cM – Xgdm35-2D {11207}.  c:  Predicted to encode a wheat tandom kinase (WTK) – two amino acid 
changes relative to T. tauschii AL8/78 {11685}. 

LR40  Deleted, see LR21. 

Lr40 {10415, 1200}.  

LR41 Deleted, see LR39. 

Lr41 {215}.  

LR42.  AET1Gv20040300. 

Lr42 {218}.  1D {218}.  i:  TC*4 / Century, GSTR 448 {11498}; Tc + Lr42 PI 701841 {J. Kolmer pers. 
com Feb 2023}.  v:  AR93005 {10840};  Fannin {10595};  KS93U50 {M22059}.  v2:  KS91WGRC11 
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Lr24 {10840}, {218};  Quaiu 3 Lr46 {10943}.  dv:  TA2450 {218}.  v:  KS93U50 {11599}.  ma:  Lr42 
– 0.8 cM – Xwmc432-1D – 1.6 cM – Xcfd-D1 {10840}.  Flanked by pC43 and pC50 at 8.65 Mb and 8.77 
Mb, respectively (Aet 4.0) {11599}.  c:  CC-NB-ARC protein with 920 amono acids{11599}. Marker 
Pc50, 46 kb from LR42 was recommended for MAS although additional gene-based markers were 
identified {11599}.  
According to {11599} Lr42 was present in >1,000 CIMMYT lines. 

lr42.  c:  The lr42 allele has fewer LRR repeats {11599}. 

LR43 Deleted, wrongly based on a gene combination. 

Lr43 {218}. 

LR44 

Lr44 {322}.  1B {322}.  i:  RL6147 = Thatcher*6/T. spelta 7831 {322}.  v:  T. spelta 7831 {322}; T. 
spelta 7839 {322}.  

LR45 

Lr45 {958}.  Derived from Secale cereale.  2A = T2AS-2R#3S.2R#3L {389}, {958}.  i:  RL6144 = 
Thatcher*7/ST-1 {958}.  v:  ST-1 {958};  Various Australian backcross derivatives {958}.  

LR46 

Lr46 {1364}.  Completely linked with Yr29 {0119}. Adult plant resistance.  1B{1346}. 1BL{0119}.  s:  
Lalbahadur(Pavon 1B) Lr1 {1364};  Lalbahadur(Parula 1B) {10281}.  v:  Attila {10281};  Kundan 
{11248};  Siete Cerros {10817}.  v2:  CI 13227 Lr3c;  Frontana Lr13 Lr14b Lr34 Lr68 {10817};  Pavon 
F76 Lr1 Lr10 Lr13 {1364, 119};  Parula Lr13 Lr34 {10281};  Parula Lr3b Lr13 Lr14b Lr34 Lr68 
{10817};  Quaiu 3 Lr42 {10943};  Saar Lr34 {10481}.  tv:  Present in the following tetraploid wheats in 
combination with other genes/QTL: Bairds {11600}; Dunkler {M23032}; Heller#1 {M23032}.  ma:  An 
RFLP marker associated with Lr46 with a recombination value of about 10% was identified in{0119}; 
Xwmc44-1B – 1.4 cM – Xbac24prot – 9.5 cM – Lr46 – 2.9 cM – Xbac17R.......Xgwm140-1B {10281}; 
Xwmc44-1B – 3.6 cM – Lr46 2.1 cM – XtG818/Xbac17R......Xgwm140-1B {10281}; XSTS1BL2 – 2.2 cM 
– Lr46/XSTS1BL9 – 2.2 cM – XSTS1BL17 {10326}. Associated with Ltn2 and Yr29. 

LR47 

Lr47 {9901}.  Derived from Ae. speltoides {9901}.   
7AS = Ti7AS-7S#1S-7AS.7AL {9901}.  v:  Bionta 2004 {10737}. Pavon derivative PI 603918 {9901}. 
Backsross derivatives based on Express, Kern, RS15, Yecora Rojo and UC1041 {0126, 11721}. 
Recombinants with reduced 7S#1 segments {11721}.  c:  Lr47 was identified as a CNL, which was also 
present Ae. speltoides accessions T2140002, Y162 and Y397 {11721}.  
7A = T7AS-7S#1S.7S#1L {389}.  v:  CI 17882, CI 17884, CI 17885, KS 90H450 {9901}.  
7AL = Ti7AS.7AL-7S#1L-7AL.  Pavon derivative PI 603919 {9901}.  ma:  Lr47 was located in the 
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distal one-third of 7AS, 2-10 cM from the centromere and within a 20-30 cM segment {9901}. Complete 
linkage with several RFLP markers {9901} and PCR specific markers {0126}. 
KASP markers for detection of Lr47 are reported in {11544}. 

LR48 

Lr48 {0085}.  Adult plant resistance {0085}. Recessive {0085}.  2BS {10842, 329}. 4BS {10738}.  i:  
CSP44 / 5*Lal Bahadur AUS91421 {0329}.  v2:  CSP44 Lr34{0085};  Dove Lr34{0329}.  ma:  
Xgwm429b-2B – 6.1 cM – Lr48 – 7.3 cM – Xbarc7-2B {329};  RAPD markers flanking Lr48 at 2.7 and 
8.6 cM are reported in {10738}; Xwmc175-2B – 10.3 cM – Lr48 – 2.5 cM – Xwmc332-2B {10842};  
Centromere – 27.5 cM – Lr48 (est.) {10842}; Xgwm429b-2B – 4.2 cM – Sun563/Sun497 – 0.6 cM – 
IWB31002/IWB39834/IWB3432/IWB72894/Lr48 – 0.3 cM – IWB70147 – 2.0 cM – Xbarc67-2B {11112}; 
Xsun563/Xsun497 – 0.6 cM – 5 SNP markers/Lr48 – 0.3 cM – IWB70147 – 2.0 cM – XBARC0-7-2B – 9.4 
cM – Lr13 {11172}.  
Lr48 is closely linked with Lr25 {10738}. Based on haplotype analysis Lr48 was postulated in 13 
Australian Condor relatives {11112}. The suggestion that this gene is present in 13 Australian varieties 
carrying Lr48 markers and hence Lr48 {11172} needs verification. 

LR49 

Lr49 {0085}.  Adult plant resistance {0085}.  2AS {0329}. 4BL{0329}.  i:  VL404 / 5*Lal Bahadur Lr34 
{0329}.  v2:  Tonichi Lr34 {0329};  VL404 Lr34 {0085}.  ma: Xbarc163-4B – 8.1 cM – Lr49 – 10.1 cM 
– Xwmc349-4B {0329};  Xgwm251-4B – 8.6 cM – XsunKASP_21 – 0.4 cM – Lr49 – 0.6 cM – 
XsunKASP_24 – 8.1 cM – Xwmc349-4B {11484}.  

LR50 

Lr50 {0221}.  Based on linkage with SSR markers.  2BL {0221}.  v:  KS96WGRC36 = TAM*3/TA870 
{0221};  U2657 = Karl 92*4/TA674 {0221};  U3067 = TAM107*4/TA874 {0221};  U3193 = 
TAM107*4/TA874 {0221}.  tv:  T. armeniacum TA870 {0221}; T. armeniacum TA145;  TA874 
{0221};  TA870 {0221};  TA895 {0221}.  ma:  Linked with Xgwm382-2B (6.7 cM) and Xgdm87-2B (9.4 
cM) {0221}.  

LR51 

Lr51 {308}.  1BL {0308}.  i:  Express*7/T1 {0308}; Koln*7/T1 {308}; UC1037*7/T2 {0308}.  v:  
Neepawa*6/Ae. speltoides F-7, selections 3 and 12 {306};  Interstitial translocations T1AS.1AL-1S#F7-
12L-1AL {0308} = T1;  T1BS.1BL-1S#F7L-1BL {0306}.  al:  Ae. speltoides F-7 selections 3 and 12 
{0306}.  ma:  Linked with RFLP markers Xmwg710-1B and Xaga7-1B {0308};  A CAPS marker was 
developed from XAga7-1B {0308}.  

LR52 

Lr52 {10035}.  [LrW {309}].  5BS {10035}.  bin:  5BS6-0.81-1.00.  v:  AUS28183 = V336 {10679};  
AUS18187 {10679};  Tc-LrW = RL6107 {10035}.  v2:  V618 Lr33 {309};  V336 Lr33 LrB {309}.  ma:  
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Xgwm234-5B – 10.2 cM – Lr52 – 3.3 cM – Yr47 – 9.6 cM – Xcfb309-5B {10679}; Xcfb309-5B – 
Xsun480/Xmag705/Xfcp552-5B – 0.4 cM – Yr47 – 4.3 cM –icg16c008/Xgwm234-5B {11200}; Xsun180 – 
0.4 cM – Lr52 – 0.2 cM – Yr47 – 1.4 cM – Xgwm234-5B {11200}.  

LR53 

Lr53{10203}.  [LrS8 {10204}].  6BS {10203}; According to {11778} Lr53 originated from Ae. 
longissima or Ae. sharonensis; 6SS.6SL-6BL {117787}.  v:  98M71 = AUS 91388 = T. dicoccoides 
479/7*CS {10204}.  Yangmai 21 derivative C580 with a reduced alien segment (<6.03 MB).  tv:  T. 
dicoccoides 479 {10204}.   ma:  Xgwm191-6B – 18.9 cM – Yr35 – 3 cM – Lr53 – 1.1 cM – Xcfd-6B – 3.4 
cM – Xgwm50-6B {10780}. Lr53 was genetically independent of Lr36 {10780}. 
Genetically associated with Yr35. 

LR54 

Lr54 {10139}.  Derived from Ae. kotschyi.  2DL {10139}.  v:  Line S14 {10139}.  ad:  Line 8078 
{10139}.  al: Ae. kotschyi 617 {10139}.  

LR55 

Lr55 {10180}.  Derived from Elymus trachycaulis {10180}. 1B (1BL.1HtS {10180}.  ad:  CS + 1Ht 

{10180}.  v:  KS04WGRC45 = Heyne*3/TA5586.  

LR56 

Lr56 {10224}.  [LrS12 {10204}]. 6A (6AL-6SshL.6SshS) {10224}.  v:  Line 0352 = Ae. sharonensis-
174/9*CS//3*W84-17/3/CS/4/W84-17 {10224};  Recombinants with shorter segments - 07M4-39, 07M4-
157 and 07M4-175 - are reported in {10691}.  al:  Ae. sharonensis-174 {10224}.  

LR57 

Lr57 {10328}.  Derived from Ae. geniculata. 5DS (5DL.5DS-T5MSG {10328}.  v:  TA5601 {11553}; 
TA5602 {10328};  TA5603 {10328};  Since TA5602 and TA5603 are fourth backcross selections to 
WL711, they likely also carry Lr13.  al:  Ae. geniculata (=ovata) (USUSMGMG TA10437) {10328}.  ma:  
Completely linked with distinctive alleles of Gsp, Xfbb276 and Xbcd873 {10328};  Completely linked 
with Yr40 {10328};  CAPS marker XLr57/Yr40-MAS-CAPS16 {10770}.  
Line TA5601 carries an estimated 5% of 5Mg; and TA5602, 20% {11553}. Genetic analysis of the 
segment in TA5602 indicated terminal replacement of 9.4 Mb in chr 5D and that Lr57 is 12.4 cM distal to 
Yr40 {11553}. 

LR58 

Lr58 {10375}.  Derived from Ae. triuncialis = T2BS.2BL-2tL(0.95). 2BL {10375}.  v:  TA5605 = 
WL711*4/Ae. triuncialis TA10438 Lr13 {10375}.  al:  Ae. triuncialis TA10438 {10375}.  ma:  TA5605 
possesses Ae. triuncialis alleles of RFLP markers XksuH16, XksuF11 and Xbg123 and SSR marker 
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Xcfd50 in the terminal region of chromosome 2BL {10375};  A codominant STS marker Xncw-Lr58-1 
was based on the sequence of XksuH16 {10819}. 
Identical in sequence to Lr9 {11630}. The differing chromosome location was attributed to radiation 
treatment {11630}.  

LR59 

Lr59 {10399}.  Derived from Ae. triuncialis.  1A, probably 1AS alien centric fusion {10399}.  v:  Line 
0306 {10399} = Ae. peregrina-680/2*CS//5*W84-17 {10399}.  al:  Ae. peregrina (UUSS, 2n=28) 680 
{10399}.  
Problems in recovering balanced recombinants are reported in {10762}. 
Further study of this translocation (Lr59-Full) identified a 1AS.1LP-6SP-6BS structure. Another round of 
recombination identified the following types: 1AS.1LP-1AL; 1AS.1LP-6SP-6BS; and 1AS.1AL-1LP-6SP-
6BS (Line Lr59-151 had the shortest alien segment). Recombinants with 6BS retained the wheat GLI-B2 
locus {11499}. 

LR60 

Lr60 {10400}.  [LrW2 {0305}].  1DS {10400}.  v:  RL6172 {0305} = Thatcher*3/V860.  ma:  Lr60 – 
8.4 cM – Xbarc149-1D/Lr21{10400}; Lr60 – 13 cM – Lr21 {10400}.  

LR61 

Lr61 {10485}.  [LrAW2 {11223}].  6BS {10485}.  tv:  AUS 26579 {11224};  AUS 26582 {11224}; 
Guayacan 2 {10485};  Guayacan INIA {10485};  PI 244061 {11280}.  ma:  Lr61 – 2.2 cM – 
P81/M70269/P87/M75131 – 4.6 cM – P87/M76149 – 21.7 cM – Xwmc487-6B {10485};  sun682 – 0.7 cM – 
Lr61/sun683/sun684 – 0.2 cM – sunKASP_60 {11223}; sun682 – 0.6 cM – Lr61/sun684 – 0.6 cm – 
sunKASP_59 {11223}. 
The designation LrAW2 was also used for Lr82.  

LR62 

Lr62 {10537}.  Derived from Ae. neglecta 6A = 6AL-6AenL.6AenS {10537}.  v:  Line 03M119-71A 
{10537}.  al:  Ae. neglecta 155 {10537}.  
Associated with Yr42 {10537}. 

LR63 

Lr63 {10875}.  Derived from T. monococcum  3AS {10875}.  i:  RL6137 = Thatcher*6/TMR5-J14-12-24 
{10646, 10875}.  v:  TMR5-J14-12-24{10646}.  dv: T. monococcum {10646}.  ma:  Xbarc321/Xbarc57-
3A – 2.9 cM – Lr63 {10875}.  

LR64 
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Lr64 {10550}.  6AL {10550}.  i:  RL 6149 = Thatcher*6/T. dicoccoides 8404 LrX {10550}.  v:  
Tc/RL6149-RIL13, GSTR 451{11399, 11498}.  tv:  T. dicoccoides 8404 {10550}.  ma:  Xbarc104-6A – 
13.9 cM – Lr64 – 21.9 cM – Xgwm427-6A {10550};  K-IWB38521 – 1.0 cM – Lr64/K-IWB59855 – 2.9 
cM – K-IWB72197 – 10 cM – K-IWB73609 {11399}. 
The second recessive gene (LrX) in RL6149 was located in chromosome 1DS: K-IWB577 – 11.2 cM – 
LrX/IWB38437 {11399}. 

LR65 

Lr65 {10848}.  [LrAlt {10739}].  2AS {10739, 10848}.  v:  Selection ARK 0; {10848}.  v2: T. spelta 
Altgold Rotkorn Lr71 {10739, 10848}.  ma:  Lr65 – 1.8 cM – Xbarc212-2A/Xwmc382-2A – 2 cM – 
Xgwm636{10739}; XE41M57-165 – 3 cM – Lr65 – 2 cM – Xbarc124/Xbarc222/Xgwm614-2A {10848}; 
LR65 – 0.5 cM – Alt-64 – 0.05 cM – Alt-21 – 1.7 cM – Xbarc212-2A {11536}; AltID-11 – 0.7 cM – Lr65 
– 0.02 cM – Alt-64 – 1.1 cM – Alt21 {11536}. TraesCS2A02G001500 was predicted as the candidate 
position for LR65 {11536}. LR65 was estimated to be about 10 cM from LR17 {10848}.  
Some plants of Altgold Rotkorn possess Lr71 conferring IT 12C {10848}. 

LR66 

Lr66 {10591}. LrS13 {10592}. 3A {10591}. 3A = 3A-3SS.  v:  Line 07M127-3 = Ae. speltoides / 5*CS // 
2*CSph1b mutant /3/2* W84-17/4/CSN3AT3B {10591}.  al:  Ae. speltoides Accession 691{10591}.  
ma:  Most user-friendly marker, SCAR S15-t3 {10591}.  

LR67 

Lr67 {10675}.  Adult plant resistance.  4DL {10675}.  bin:  C-0.53 {10675};  Distal to 0.56 {10678}.  i:  
RL6077 = Thatcher*6/PI 250413 {10675}.  v:  Chapingo 48 {11070};  PI 250413 {10676};  Yaqui 53 
{11070}.  v2  NP876 Lr46 {11441}; Sujata Lr46 {11440, 11442}.  ma:  Xcfd71-4D – 1.5 cM – Lr67 
{10675};  Pleiotrophic with Yr46;  Close linkage with Xcfd71-4D and Xbarc98-4D estimated at 4.4 cM, 
and Xcfd23-4D at 5.2 cM (all on the same side of Lr67/Yr46 {10678}; Xgwm165-4D/Xgwm192-4D – 0.4 
cM – Yr46/Lr67 {10678}.  c:  This multiple disease resistance locus was identified as a hexose transporter 
most similar to the STP13 family and containing 12 predicted transmembrane helices {11070};  GenBank: 
coding sequence KR604817.2, 1,545 bp; protein sequence ALL26331.2, 514 amino acids. Lr67 was 
predicted in 51 accessions mainly collected in the Indian subcontinent {11448} using the gene-specific 
marker SNP1-TM4 {11070}. 
Lr67 is pleiotropic or closely linked with Sr55, Yr46, Pm46 and Ltn3. 

LR68 

Lr68 {10817}.  Adult plant resistance.  7BL {10817}.  v:  Arula 1 CIMMYT GID 1847450 {10817};  
Arula 2 CIMMYT GID 1847422 {10817}.  v2:  Arula 1 Lr14b CIMMYT GID 1847450 {10817};  Arula 
2 Lr14b CIMMYT GID 1847422 {10817};  Frontana Lr13 Lr14b Lr34 Lr46 {10817};  Parula Lr3b Lr13 
Lr14b Lr34 Lr46 {10817};  Rayon F89 Lr14b {10817};  Sujata Lr46 Lr67 {11442};  Weebill Lr14b 
{10817}.  ma:  Close linkage with several markers in chromosome arm 7BL and Lr14b in the Apav x 
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Arula population. Flanking markers are Xpsy1-1 and Xgwm146-7BL at 0.4 and 0.6 cM. Gamma-
irradiation induced deletion stocks of Arula 1 that lack LrP but have Lr14b were identified showing that 
the two genes are located at different closely linked loci {10817}; Xwmc232-2B – 0.2 cM – Xcfa2257-2B 
– 1.1 cM – Cs7BLNLRR – 0.3 cM – Psy1-1 – 0.5 cM – Lr68 – 0.6 cM – Xgwm146-2B {10817};  
Gamma-irradiation induced deletion stocks of Arula 1 lacked Lr68 but had Lr14b showing that the two 
genes are located at different closely linked loci {10817}.  

LR69 

Lr69 {10903}.  3DL {10903}. v:  Toropi-6.3 {10903}.  

LR70 

Lr70 {10904}.  5DS {10904}.  v:  Yet to be named selection of cross or backcross to Tc {10904}.  v2:  
KU3198 Lrk1 {10904}.  ma:  Lr70 – 5.6 cM – Xbarc130-5D – 1.7 cM – Xwmc233-5D {10904}.  
Lrk1 is possibly Lr52 {10904}. 

LR71 

Lr71 {10911}.  [LrAK12c {10910}].  1B centromere region not resolved {10911}.  bin:  Markers 
flanking Lr71 mapped to 1BS10-0.5-cent and 1BL6-cent-0.32.  v:  LrARK12c = T. spelta Altgold 
Rotkorn selection {10910};  Common wheat reference line under increase {10911}.  v2:  T. spelta 
Altgold Rotkorn (heterogeneous) Lr65 {10911, 10910}.  ma:  Xgwm11-1B – 3.3 cM – Xgwm18-1B – 1.0 
cM – Lr71 – 1.3 cM – Xbarc187-1B – 0.5 cM – Xbarc137-1B {10911}.  

LR72 

Lr72 {10947}.  7BS {10947}.  tv:  Altar C84 GID 30374 {10947};  Atil C2000 GID 6719128.  tv2:  
Storlom Lr3a {10947}; Llareta INIA Lr14a{10947}; Jupare Lr27 + Lr31 {10947}.  ma:  Lr72 – 5.5 cM 
– Xwmc606-7B {10947}.  

LR73 

Lr73 {10969}.  2BS {10969}.  v:  Morocco {10969};  Several Australian cultivars {10969}.  v2:  
Federation LR10 {10969};  ma:  wPt8760 – 4 cM – Lr73 – 1.4 cM – wPt8235 {10969}.  

LR74 

Lr74 {11031}.  Adult plant resistance  3BS {11031}.  bin:  3BS8-0.78-0.87.  v:  AGG91583WHEA=BT-
Schomburgk Selection {11031};  Spark {11031}.  ma: Xcfb5006-3B – 1.9 cM – Lr74 – 2.2 cM – 
BS00009992 – 2.7 cM – Xgwm533-3B {11031}.  
Tc*3 / Caldwell population: a gene for adult plant resistance derived from Caldwell was identified with 
closest marker Xcfb5006-3B; the Tc*2 / Caldwell 24-1 parent shared the same T allele at KASP marker 
IWB44132 as Spark and BT-Schomburgk Selection {11281}. 
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LR75 

Lr75 {11053}.  Adult plant resistance.  [Qlr.sfr-1BS {10066}].  1BS {10066, 11053}.  bin:  1BS10-0.5-
1.00.  v:  ArinaLr75, Arina*2//Forno/Arina#F7NIL85 {11053};  C14.20 {11053}.  v2:  Forno Lr14a Lr34 
{11053}.  ma: Xgwm604-1B 1.6 – cM – Lr75 – 2.70 cM – swm271 – 0.14 cM – Xgwm11-1B/Xgwm18-
1B/swm294/swm278/swm275 {11053}.  

LR76 

Lr76 {11055}.  Derived from Ae. umbellulata.  [LrUmb {11055}].  5DS {11055}.  v:  IL 393-4 {11055}; 
T. durum cv. WH890/ Ae. umbellulata Pau 3732 // CS PhI/3/2*WL711, C14.21 {11055}.  al:  Ae. 
umbellulata Pau 3732 {11055}.  ma:  Lr76 – 7.6 cM – Xgwm190-5D {11055}. Lr76 behaves as an allele 
of Lr57 derived from Ae. geniculata. The low infection types are also different. A co-segregating 450 bp 
Lr57-Yr40-CAPS16 marker was present in IL 393-4, but not in many Australian wheat cultivars {11055}. 
The introgression carrying the Ae. umbellulata segment replacing terminal Chr. 5DS was 9.47 Mb with 
the break point between TraesCS5D02G1600 and TraesCS5G02G20010 {11552}. Independent mutations 
indicated that Lr76 and Yr70 were different genes {11552}. 

LR77 

Lr77 {11164}.  Adult plant resistance.  3BL {11164}.  v:  Tc*2 / Santa Fe 8-1C.9 {11164}; Tc*2 / 
Toropi GSTR 449 {11164} v2:  Duster Lr3a Lr11 Lr34 PI 639233 {11164};  Santa Fe Lr3a Lr37 PI 
641772 {11164}.  ma:  IWB2531 – 3.5 cM – IWB32805 – 3.5 cM – Lr77/IWB10344 – 0.9 cM – 
IWB73555 – 5.3 cM – IWB12260 {11164}. 

LR78  

Lr78 {11212}.  Adult plant resistance.  [QLr.cdl.5D {11212}].  5DS {11212}.  bin:  According to 
{10125} Xbarc130 is in bin 5DS2-0.78-1.00 and Xcfd189 is in bin 5DS1-C-0.63.  v:  Tc *2 / Santa Fe 
GSTR 450 {11498}.  Tc*3 / Toropi 4A212A {11212}.  v2:  Toropi PI 344200 {11212}.  ma:  Xcfd189-
5D – 13.2 cM – IWA2689 – 2.2 cM – Lr78 – 8.0 cM – Xcfa2104-5D {11212}. }.  
A second selection Tc*2 / 3A12A crossed with Tc segregated for multiple QTL in chromosome arms 1BL 
(possibly LR46), 3BS and 4BS {11212}. 

LR79 

Lr79 {11224}.  [LrAW3 {11224}].  3BL {11224}.  bin:  3BL-0.63-0.90.  tv:  242/Bansi#149, C18.15 
{11224}.  tv2:  AUS26582 Lr61 {11223, 11224}.  ma:  KASP_31457 – 8.1 cM – sun770 – 2.9 cM – 
Lr79 – 1.8 cM – sun786 {11224}.  
Lr79 conferred resistance to Australian common wheat Pt races, but not to durum-specific Ethiopian and 
Californian races {11224}. 

LR80  
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Lr80 {11464}.  [LrH2 {11464}].  2DS {11464}.  v:  Hango-2, FLW6-Selection AGG95499WHEA 
{11464}.  ma:  Xgdm35-2D – 7.5 cM – Xcau96-2D – 0.4 cM – Lr80 – 0.2 cM – Xbarc124-2D – 13.2 cM 
– Xgwm296-2D {11464}. Xcau96-2D – 4.0 cM – KASP_17425 – 0.2 cM – Lr80 – 0.4 cM – KASP_17148 
– 1.0 cM – Xbarc124-2D {11464}. 

LR81  

Lr81 {11583}.  Lr470121 {11583}.  2AS {11583}.  bin:  2AS-0.78-1.00.  v:  RIL 92 PI 700925 
{11583}.  v2:  PI 470121 Lr34 {11583}.  ma:  Xwmc827-2A – 9.4 cM – Xstars-KASP320 – 0.5 cM – 
LR81 – 0.2 cM – Xstars-KASP323 – 5.3 cM – Xwmc296-2A {11583}. 

LR82 

Lr82 {11586}.  LrAW2 {11586}.  Recessive.  2BL {11586}.  v:  Aus27352 {11586}.  ma:  KASP_22131 
– 0.8 cM – Lr82 – 1.2 cM – KASP_11333 {11586}. 
The designation LrAW2 was also used for Lr61. 

LR83 
Lr83 {11638}.  LrX {11399}.  Recessive.  1DS {11399; 11638}.  v:  PI 701502 {11638}.  v2:  RL6149 
Lr60 {11399; 11638}.  ma:  K-IWB38437 – 1 cM – LR83 – 8.6 cM – 1D_9037237 – 4.7 cM – K-IWB577 
{11638}.  LR83/IWB38437 – 11.2 cM – K-IWB577 {11399}.  Locus order: LR83 – LR60 – LR42 – LR21 
{11638}. 

LR84.  TRITD6Bv1G225630 (Svevo).  

Lr84 {11640}.  QLr.cim-6BL) {11600}; QLr.hzau-6BL {11640}; TtRPM1-630 {11640}.  Adult plant 
resistance.  6BL {11600, 11639}.  tv:  Atred#2+6BL {11640}; Atred#2 / Bairds RIL 397 GID 7013103 
{11600, 11640}.  tv2:  Bairds {M11600, 11640}; Dunkler {11639, 11640}; Heller#1 {11639, 11640}; 
Planeta {11640}.  ma:  IWB8763 – LRXX – IWB10767 (0.9 cM. 131.6 Kb) {11640}.  c:  NBL-LRR 
structure annotated as an RPM1-like gene {11640}. 

LR85 

Lr85 {11712}.  6B (6B-6Ssh) {11683, 11684, 11712}.  v:  Line 6B-RY-32-3-14 {11683} = Line 42 
{11684} = D42 {11712} = Genebank accession number to be advised.  al:  Ae. longissima AEG-6782-
2 {11712}; Ae. sharonensis AEG-548-4 {11683; 11712}.  c:  The same NLR gene with a distinctive 
coiled-coil (CC) domain was cloned from each alien diploid accession {11712}. 
Development of lines with shortened 6Ssh segments is described in {11684}. 
All 16 EMS-induced mutants in Line D42 were susceptible to both leaf rust and stripe rust {11712}. 

3.22.2 Temporary designations 

LrAc {11613}.  Adult plant resistance.  5DS {11613}.  v:  Ae. caudata derivative PAU16060 {11613}.  
al:  Ae. caudata PAU3556 {11613}. 
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LrAp {11698}.  6BL = 6BS.6BL-6UP {11698}.  v:  WL711 derivative ILpau16061 {11698}.  al:  Ae 
peregrina pau3519 {11698}. 
 
LrBi16 {11042}.  7BL {11042}.  bin:  7BL-10.  v:  Bimai 16 {11042}.  ma: Zcfa2257-7B –  2.8 cM – 
LrBi16 – 2.6 cM – Xgwm344-7B {11042}; Xcfa2257-7B – 2.8 cM – LrBi16 – 2.5 cM – Xgwm344-7B 
{11082};  A closer AFLP marker could not be converted to a STS/SCAR marker{11082}.  
Bimai 16 also carries Lr26 and LrZH84 {11042}. Allelic with Lr14c, but showed different reaction 
patterns compared to lines with Lr14c and LrFun {11082}. 

LrFun {11038}.  7BL {11038}.  bin:  7BL-10.  v:  Fundulea 90 {11038}.  ma: Xgwm344-7B – 4.4 cM – 
LrFun – 5.7 cM – Xwmc70-7B {11038}.  

LrGam6 {10929}.  2BL {10929}.  v2:  Sinvalocho MA Lr3 LrSV1 LrSV2 {10929}.  ma: Xbarc-2B – 0.6 
cM – Xgwm382-2B – 0.6 cM – LrGam6 – 17.9 cM – Xgwm528-2B {10929}.  

LrK1 {10904}.  5BS {10904}.  v2:  Ku3198 Lr70 {10904}.  ma: LrK1 – 0.6 cM – Xcfd20/Xgwm234-5B 
{10904}. LrK1 could be Lr52 or an allele {10904}. 

LrKr1 {10233}.  v:  Thatcher {10233}.  v2:  Kanred LrKr2 {10233}.  

LrKr2 {10233}.  v2:  Kanred LrKr1 {10233}.  

LrMq1 {10233}.  v:  Marquis {10233}.  

LrNJ97 {11043}.  2BL {11043}.  v:  Neijiang 977671 {11043}.  ma:  Xwmc317-2B – 4.2 cM – LrNJ97 
– 2.2 cM – Xbarc159-2B – 2.3 cM – Xwmc356-2B {11043}.  

LrP {11614}.  5DS {11614}.  v:  Ae. peregrina derivative PAU16058 {11614}.  al:  Ae. peregrina 
PAU3519 {11614}. 
 
LrPI244061 {11280}.  2BS {11280}.  tv:  PI 244061 {11280}.  ma:  LrPI144061 – 11.5 cM – 
KASP_2BS_IWB6117 {11280}.  
This gene might be Lr13 {11280}. 

LrPI287263 {11280}.  6BL {11280}.  tv:  PI 287263 {11280}.  ma:  LrPI287263 – 2.8 cM – 
KASP_6BL_IWB44753 – 2.8 cM – Xdupw217 {11280}. 

LrPI209274 {11218}.  6BS {11280}.  tv:  PI 209274 {11280}.  ma:  KASP_6BS_IWB39456 – 3.7 cM – 
LrPI209274 – 1.0 cM – KASP_6BS_IWB6117 – 8.1 cM – Xdupw217-2B {11280}. 
This gene may be Lr53 {11280}. 

LrSV1 {10929}.  Adult plant resistance.  2DS {10929}.  v2:  Sinvalocho MA Lr3 LrGam6 LrSV2 
{10929}.  ma:  Xgwm296-2D – 1.4 cM – LrSV1 – 7.1 cM – Xgwm261-2D {10929}.  

LrSV2 {10929}.  Adult plant resistance.  3BS {10929}.  v2:  Sinvalocho MA Lr3 LrGam6 LrSV1 
{10929}.  ma:  Xgwm389-3B – 3.0 cM – LrSV2/Xgwm533-3B – 4.2 cM – Xgwm49-3B {10929}. 
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 According to {11334} LrSV2 acted in a complementary way with Lrc-SV2 on chromosome 4BL. These 
complementary genes were closely linked to the locations of Lr27 and Lr31 but were considered to be 
different genes.  

LrTb {820}.  Adult plant resistance {820}.  v2:  AC Taber Lr13 Lr14a {820}.  

LrTm {277}.  dv:  T. monococcum.  ma:  Linked to microsatellite locus Xgwm136 {277}.  

LrTr {227}.  v:  Ae. triuncialis derivatives {227}.  ad:  WL711 BC2F5 addition lines {227}.  al: Ae. 
triuncalis Acc. 3549 {227}.  ma:  Lines with LtTr possessed a homologue of Xgwm368-4B {227}.  

LrTt1 {10031}.  Reccessive {10031}.  [lrTt1 {10031}].  2A {10031}.  v:  Line 842 = Saratovskaya*2/T. 
timopheevii spp. viticulosum {10031}.  ma:  Xgwm812-2A – 1.5 cM – LrTt1 {10031}.  

LrVPM {1603}.  7DL {1603}. GERMPLASM? 

LrW2 {305}.  A gene, identified only as Lr, was transferred to wheat chromosome 2AS from 6Mv {113}: 
cosegregating markers were Xpsr933-2A and Xpsr150-2A. GERMPLASM  

LrWo {10747}.  5B {10747}.  tv:  Wollaroi AUS99174 {10747}.  ma:  Xgwm234-5B – 7.2 cM – LrWo – 
20.3 cM – wPT-1420 {10747}.  
The relationship of LrWo to Lr52 was not established. 

LrZH84 {10581}.  1BL {10581}.  v:  Guizhou 98-18 {11042};  Tian 95HF2;  Xinong 1183-4 {11042};  
Zhoumai 11 {10682}.  v2:  Predgornaia 2 Lr26 {10581};  Zhou 8425B Lr26 {10581}.  ma: Xbarc8-1B 
(cent) – 5.2 cM – LrZh84 – 3.9 cM – Xgwm582-1B {10581}.  

Lr64i#2 {11079}.  [6Ai#2 {11079}].  v:  Tulaikoskaya 5 {11079};  Tulaikoskaya 10 {11079};  
Tulaikoskaya 100 {11079}.  

A series of temporary designations for seedling and adult plant resistance genes in six durums is given in 
{1648}. 
A potentially novel resistance gene was located in chromosome 5BS of Iranian landrace PI 289824. 
Xgwm234-5B – 8.9 cM – Lr – 2.3 cM – STS Xtxw200 {10253}.  

Complex genotypes 
AC Domain: Lr10 Lr16 Lr34 {820}.  
AC Splendor: Lr1 Lr16 Lr34 {10179} 
AC Teal: Lr1 Lr13 Lr16 {821} 
Alsen: Lr2a Lr19 Lr13 Lr23 Lr34 {10152} 
Alsen: Lr2a Lr10 Lr13 Lr23 Lr34 {10223}. 
Benito: Lr1 Lr2a Lr12 Lr13 {1256}.  
Buck Manantial: Lr3 Lr13 Lr16 Lr17 Lr34? {300}.  
Carberry: Lr21 Lr16 Lr23 Lr34 Lr46 {11567}. 
Coker 9663: Lr9 Lr10 Lr14a {10742}.  
Duster: Lr34 Lr46 Lr77 {11369}. 



 

136   PATHOGENIC DISEASE/PEST REACTION  

 

Estanzuela Benteveo: Lr13 Lr26 Lr34 {10980}.  
Estanzuela Pelon: Lr1 Lr17a Lr26 Lr34 {10980}.  
Estanzuela Tarariras: Lr3bg Lr13 Lr34 {10980}. 
Era: Lr10 Lr13 Lr34 {342}.  
Grandin: Lr2a Lr3 Lr10 Lr13 Lr34 {821}. 
INIA Boyero: Lr13 Lr26 Lr34 {10980}.  
INIA Churrinche: Lr10 Lr24 {10980}.  
INIA Tero: Lr17a Lr24 {10980}. 
Mango: Lr1 Lr13 Lr26 Lr34 {1374}.  
MN7529: Lr1 Lr2a Lr10 Lr16 {976}.  
Norm: Lr1 Lr10 Lr13 Lr16 Lr23 Lr34 {10152, 10223} 
Opata 85: Lr10 Lr27+Lr31 Lr34 {1058}.  
Pasqua: Lr11 Lr13 Lr14b Lr30 Lr34 {304}.  
Pioneer 26R61:  Lr13 Lr14b Lr26 {10742}.  
Prospect: Lr1 Lr2a Lr10 Lr13 {197}.  
Roblin: Lr1 Lr10 Lr13 Lr34 {303}, {713}.  
Trap: Lr1 Lr3 Lr10 Lr13 Lr34 {1374}. 
Genotype lists: Australian cultivars {0288}; Chinese cultivars {0013, 10682, 11310}; Combinations with 
Lr34 {1361}; Cultivars from the former USSR {1380}; Czechoslovakian/Czech cultivars{855}, {0102}, 
{11717}; European cultivars {0229, 0260, 0288, 0337,10345, 10794}; Indian cultivars {1365, 1345}; 
Indian Subcontinent {1365}; Mexican cultivars {1373}; U.S.A. cultivars {1219}, {978}, {0334}, 
{10111}, {10146}, {10152}, French cultivars {10792}, Croatian cultivars {11135}. Kazakhstan cultivars 
{11161}, see also {970}. See {11178} for review and analysis of leaf rust resistance genes in six durum 
wheats. 

3.22.3. Suppressor of genes for resistance to P. triticina 

SULR23 

SuLr23 {1058}.  Suppressing allele.  2DS {1058}.  v: Altar 84/Ae. tauschii 219 {1058}.  

suLr23 {1058}.  Non-suppressing allele.  v:  Opata 85 {1058}.  
See also evidence for specific suppression in {948}. 

3.22.4. QTLs for reaction to P. triticina 

Two QTLs, located distally on chromosome arm 1BL and on chromosome 7DS, were mapped for leaf 
rust severity in a Fukuho-komugi/Oligoculm doubled haploid population {10060}. The resistance on 1BL 
was contributed by Oligoculm and explained 15% of the variation. The 1BL QTL may correspond to 
Lr46 and was associated with marker Xwmc44-1B {0460}. The resistance on 7DS was contributed by 
Fukuho-komugi and explained 41% of the variation. The 7DS QTL corresponds to Lr34 and was 
associated with marker Xgwm295-7D {10060}. Two major QTL, located on chromosomes 7D and 1BS, 
for leaf rust resistance were mapped in an Arina/Forno RIL population {10066}. The resistance on 7D 
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was contributed by Forno and explained 32% of the variation. This QTL most likely corresponds to Lr34 
{10066}. The resistance on 1BS (QLr.sfr-1BS) was associated with Xgwm604-1B and was contributed by 
Forno {10066}. Additional minor QTLs were identified on chromosome arms 2DL, 3DL, 4BS and 5AL 
{10066}.QTLs for leaf rust resistance were identified in {0050} and were named by the catalogue 
curators as follows:  
QLr.pser.1BL {10743}.  1BL {10743}.  bin:  1BL6-0.32 {10743}.  ma:  Proximal to Xgwm264.1-1BL 
{10743}. Associated with lm producing a lesion mimic phenotype in the absence of disease {10743}. 
QLr.sfr-1B {0050}.  1BS {0050}.  v:  Forno/T. spelta cv. Oberkulmer mapping population; the resistance 
was contributed by Forno {0050}.  ma:  Associated with Xpsr949-1B and Xgwm18-1B {0050}. 
QLr.sfr-2B {0050}.  2B {0050}.  v: Forno/T. spelta cv. Oberkulmer mapping population; the resistance 
was contributed by Oberkulmer {0050}.  ma:  Associated with Xpsr924-2B and Xglk699-2B {0050}. 
QLr.sfr-3A {0050}.  3A {0050}.  v:  Forno/T. spelta cv. Oberkulmer mapping population; the resistance 
was contributed by Forno{0050}.  ma:  Associated with Xpsr570-3A and Xpsr543-3A {0050}.  
QLr.sfr-4B {0050}.  4B {0050}.  v:  Forno/T. spelta cv. Oberkulmer mapping population; the resistance 
was contributed by Forno {0050}.  ma:  Associated with Xpsr921-4B and Xpsr593-4B {0050}.  
QLr.sfr-4D {0050}.  4DL {0050}.  v:  Forno/T. spelta cv. Oberkulmer mapping population; the 
resistance was contributed by Forno {0050}.  ma:  Associated with Xglk302-4D and Xpsr1101-4D 
{0050}.  
QLr.sfr-5D {0050}.  5DL {0050}.  v: Forno/T. spelta cv. Oberkulmer mapping population; the resistance 
was contributed by Oberkulmer {0050}.  ma:  Associated with Xpsr906-5D and Xpsr580-5D {0050}. 
QLr.sfr-7B.1 {0050}.  7B {0050}.  v:  Forno/T. spelta cv. Oberkulmer mapping population; the 
resistance was contributed by Forno {0050}.  ma:  Associated with Xpsr593-7B and Xpsr129-7B {0050}. 
QLr.sfr-7B.2 {0050}.  v: Forno/T. spelta cv. Oberkulmer mapping population; the resistance was 
contributed by Forno {0050}.  ma:  Associated with Xglk750-7B and Xmwg710-7B {0050}.  

AGS 2038 (R) / UG111729 (MR): RIL population. Seedling and adult plant resistance was controlled by 
several QTL, the most important of which was designated QLr.ags-1AL spanned by IWB20487 and 
IWA4022 {11507}. 
 
Avocet S / Attila: At least two additive genes for slow rusting {10586}. In addition to Lr46 there were 
small effects on chromosomes 2BS, 2BL and 7BL {10586}. 

Avocet R (S) / Chilero: Lr46/Yr29 and QLr.cim-5DS/QYr.cim-5DS, from Chilero, and QLR.cim-
1DL/QYr.cim-1DL from Avocet R {11306}. 

 
Avocet / Kundan: RIL population:  Lr29 (flanked by 10902272 and 02414, R2 = 0.5 -0.65), QLR.cim-
2BL flanked by 1237388 and 1081780_35C>T from Avocet and QLr.cim-2DS flanked by 1237388 and 
1081780_35C>T from Kundan {11248}. 

 
Avocet / Pastor: RIL population: QTLs mapped on 1BL (Lr46, 2BS, 5A, 6B and 7BL plus minor QTLs 
on 1B, 2A and 2D {10928}.  

Avocet S / Pavon 76: QTL identified included: 1BL (PstAFAMseCAC1&2), 4BL (Xgwm368), 6AL 
(Xgwm617), 6BL (PstAGGMseCGA1) {10443}.  
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Beaver / Soissons: DH population: QTL for resistance to Australian pathotypes were located on 4-6 
chromosomes over 3 years; the most consistent being 1B(1BL.1RS), 4BS (proximal to Xbarc20-4B) and 
5AS (QTLBvr5AS, proximal to Xbarc10-5A) and in the vicinity of wPt-8756 and wPt-1931 {10687}. 
 
Capo (R) / Arina (S) and Capo (R) / Furore (S): Four QTL on chr. 2AL, 2BL, 2BS and 3BS, were from 
Capo and one on 5BLwas from Arina; the QTL on 2AL, 2BL and 3BS were co-located with QTL for 
resistance to stripe rust {11449}. 
 
CI 13227 (R) / Lakin (MS): DH population: Adult plant resistance conferred by QLR.hwwg-2DS (R2 = 
0.11 – 0.26), QLr,hwwg-7BL (R2 = 0.08-0.19, likely Lr68), and QLr.hwwg-7AL from CI 13227, and 
QLr.hwwg-3BS from Lakin {11311}. 

CI 13227 (R) / Suwon (S): SSD population {10211}. Two QTLs for slow leaf rusting, located on 
chromosomes 2B and 7BL, were mapped for final severity, area under disease progress curve, and 
infection rate in a QLr.osu-2B was associated with microsatellite markers Xbarc18-2B and Xbarc167-2B 
(R2 = 9-18%). QLr.osu-7BL was associated with microsatellite marker Xbarc182-7B (R2 = 12-15%) 
{10211}. CI 13227 constributed the resistant alleles for both QTLs. QLrid.ocu-2D, linked to Xgwm261-
2D, affected the duration of infection {10211}. However, Thatcher backcross derivatives of CI 13227 
appeared to have Lr3c and Lr46 {11021}.  
 
Libellula / Huixianhong:  RIL population: Six QTL on chromosome arms 1AS, 1AL, 1BL (Lr34), 3AL, 
4BL and 7DL were detected in a least two of seven environments, the most effective of which was 
identified as Lr34 {11757}. 
 
Mianyang351-15 (R) / Zhengzhou 5389 (R): RIL population: four QTL were located on chromosome 
arms 1BL (Lr46), 2AS (Yr37), 2DS, and 7BL (Lr68) {11545}. 

Ning7840 / Clark: RIL population: QLr.hwwg-5AS from Ning 7840; QLr.hwwg-6AS from Clark, flanked 
by barc23-6A and IWA3321; Qlr.hwwg3BS.1 from Clark, flanked by IWA4654 and IWA1702; possibly 
Lr74; and QLr.hwwg-7DS/Lr34 from Ning 7840 {11278}. 

TA 4152-60 (MR) / ND495 (MR): DH population: Five QTLs for APR were identified in the field, viz. 
QLr.fcu-3AL (R2 = 0.18), QLr.fcu-3BL (R2 = 0.19), QLr.fcu-5BL (R = 0.07), and QLr.fcu-6BL (R2 = 0.12) 
from TA 4152-60 and QLr.fcu-4DL (R2 = 0.13) from ND495 {10757}. The 3AL gene also conferred 
seedling resistance to some races and the 3BL gene conferred resistance to race MFPS {10757}. 

Thatcher*3 / Americano 44d: RIL population: QTL for adult plant resistance identified on 
chromosomes 3AS (QLr.cdl-3A), 3DS (QLr.cdl-3DS) and 6DS (QLr.cdl-6D); both the 3AS and 3DS 
QTLs were required for expression of resistance {11296}. 

26R61 (S) / AGS 2000 (R): RIL population. A single QTL (QLr.uga-2BS) flanked by wPt-666389 and 
wPt-2600 on chromosome arm 2BS was designated LrA2K {11507}. LrA2K – 2.9 cM – Xwmc770-2B 
{11507}. 

 
Review of QTL in hexaploid wheat {11442}. 
 
Tetraploid wheat: 
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Atred#1 / Dunkler: RIL population: Four QTL for APR, including Lr46, QLr.cim-5BL and QLR.cim-
6BL from Dunkler and QLr.cim-2Bc from Atred#1 {11639}.   

Atred#1 / Heller#1: RIL population: Four QTL for APR, including Lr46, QLr.cim-5BL and QLR.cim-
6BL from Dunkler and QLr.cim-2Bc from Atred#1 {11639}.  

Bairds (R) / Atred#1: RIL population: Four QTL for APR, including Lr46, QLr.cim-5BL and QLR.cim-
6BL from Bairds and QLr.cim-2Bc from Atred#1 {11600}.   

Colosseo / Lloyd: A major QTL, QLr.ubo-7B.2, for seedling and adult plant resistance from Colosseo, 
was located between Xgwm344.2-7B and DART 378059, bin: 7BL 10-0.78-1.00 {10600}.  

TA4152-60 / ND 495: DH population: Four QTLs for APR, QLr.fcu-3AL(Xcfa2183-3AL – Xgwm666-
3AL, R2=0.18), Qlr.fcu-3BL(Xbarc164-3BL – Xfcp544-3BL, R2=0.19), Qlr.fcu5BL, and Qlr.fcu-
6BL(Xbarc5-6BL – Xgwm469.2-6BL, R2=0.12) were from TA4152-60 and Xlr.fcu-4DL (Xgdm61-4DL – 
Xcfa2173-4DL, R2=0.13) was from ND495 {10717}. The 3AL QTL conferred seedling resistance to all 3 
races, and the 3BL gene gave race-specific seedling resistance to one race. Xlr.fcu-3BL was effective only 
in the presence of an allele associated with Xgwm359-5DS {10717}. 

Association mapping in durum wheat indicated genomic regions affecting leaf rust response in 
chromosomes 1A, 1B, 2A, 2B (Lr13, Lr23 region), 3B, 5A, 5B, 6B, 7A, and 7B (see Lr14 {10736}. 

Historical review of leaf rust work in Canada {18053}.  
 

3.23. Reaction to Pyrenophora tritici-repentis (anomorph: Drechlera tritici-repentis) 

Disease: Tan spot, yellow leaf spot. Virulence in the pathogen is mediated by host-specific toxins and 
host resistance is characterized at least in part by insensitivity to those toxins. Three toxins, Ptr ToxA, Ptr 
ToxB and Ptr ToxC have been identified (see {10153}). Toxin sensitivity determined by use of toxins 
extracted from pathogen strains and resistance determined by infection experiments are treated as 
different traits, although common genes may be involved. A review is provided in {10690}. 
Introgressions of genes for insensitivity to Ptr ToxA and Ptr ToxB are outlined in {10153}. 

Batavia (S) / Ernie (R): DH population tested over three years. Four (1A(Ernie), 7A, 2BS, 3BS 
(Batavia)), five (2BS, 5BL(E), 3D, 6A, 7D(B)) and four (2BS, 5BL(E), 1A, 6A(B),) QTL accounted for 
most of the variation in each year. The greatest effect across years was the QTL on chromosome 2BS 
(R2=0.382, 0.298 and 0.362, respectively). This QTL was validated in four additional populations 
{10782}. 

Grandin (S) / BR34 (R): RIL population: QTL in 1BS, QTs.fcu-1BS, (13-29% of variation depending on 
race) and 3BL, (13-41%) were involved in resistance to 4 races. Five other QTL showed race specific 
responses {10248}. 
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TA4152-60 (R) / ND495 (S): DH population: Five QTLs for resistance, all from TA4152-60 {10580}, 
viz., QTs.fcu-2AS and QTs.fcu-5BL.1 conferring resistance to all races used, QTs.fcu-5AL conferring 
resistance to races 1, 2 and 5, QTs.fcu-5B.2 conferring resistance to races 1 and 2, and QTs.fcu-4AL 
conferring resistance to race 3.  

WH542 (R) / HD29 (S): RIL population: SIM indicated QTL on chromosomes 1B, 3AS, 3BL, 5B and 
6BS, but only two were confirmed by CIM, Qts.ksu-3AS flanked by Xbarc45-3A and Xbarc86-3A (LOD 
5,4, R2 = 0.23) and Qts.ksu-5BL (probably Tsn1) flanked by Xgwm499-5B and Xest.stsbe968-5B (LOD 
6,5, R2 = 0.27) {10552}. 

Wangshuibai / Ning 7840: RIL population: Race 1: QTs.ksu-1AS, R2=0.39 (nearest marker Xcfa2153-1A 
and QTs.ksu-2BS, R2=0.04) (nearest marker Xbarc2-2B {10753}. 

3.23.1. Insensitivity to tan spot toxin (necrosis) 

TSN1 

tsn1 {10207}, {346}.  Insensitivity (disease resistance) is recessive {346}. Tsr1 {10508}, see Resistance 
to tanspot.  5BL {346}.  v:  AC Barrie {10153};  AC Cadillac {10153};  AC Elsa {10153};  Atlas 66 
{10458};  BR34 {10458, 0007};  CEP17 {0007};  Chinese Spring {10458,0007};  Erik {10458, 10030, 
7};  IA807 {0007};  IA905 {7};  Laura {10153};  ND688 {10458};  Opata 85 {10458}; Synthetic W-
7976 = Cando/R143/Mexicali 'S'/3/Ae. squarrosa C122 {10458}, {10207}, {346}; Synthetic W-7984 = 
Altar 84/Ae. tauschii CI 18 {10458,0007}.  tv:  Altar 84 {0007};  D87450 {0007}; T. dicoccoides Israel 
A {10506}. ma:  Xbcd1030-5B – 5.7 cM – tsn1 – 16.5 cM – Xwg583-5B{346}; tsn1 – 3.7 cM – 
Xbcd1030-5B{0007}; Xfgcg7-5B – 0.4 cM – Tsn1/Xfcg17-5B – 0.2 cM – Xfcg9-5B {10207}; Xfcg17-5B – 
0.2 cM – Tsn1 – 0.6 cM – Xfcg9-5B {10207}; Xfcp1-5B and Xfcp2-5B delineated Tsn1 to an interval of 
about 1 cM {10337}; Tsn1 was placed in a 2.1 cM region spanned by XBF483506 and 
XBF138151.1/XBE425878/Xfcc1/XBE443610 {10413}.  
According to {10376} the same dominant allele, presumably tsn1, conferred resistance to chlorosis 
induced by races 1 and 3 in cultivars Erik, Hadden, Red Chief, Glenlea and 86ISMN 2137 in crosses with 
6B-365. 

Tsn1.  Sensitive to Ptr ToxA.  v:  Bobwhite {10458};  Cheyenne {10458, 0007};  Glenlea {10458};  
Grandin {10458};  Hope {10458, 0007};  Jagger {0007};  Katepwa {10458};  ND2709 {10458};  ND495 
{0007};  Sumai 3 {10458};  Timstein {10458, 0007}.  v2:  Kulm Tsc1 {10458}, {10030}, {346};  
Trenton Tsc1 {0315}.  dv:  Two Ae. speltoides accessions {10756}.  tv:  Langdon {10458};  Some T. 
dicoccoides accessions {10756}.  ma: Xbcd183-5B – 1.2 cM – Tsn1/Xbcd1030-5B – 2.4 cM – Xrz575-5B 
{10688}.  c: Tsn1 has 8 exons and a S/TPK-NBS-LRR structure; all three domains are required for 
function and TSN1 protein does not interact directly with ToxA {10756}. Tsn-ToxA interaction has a 
major role in SNB development in both common and durum wheat whereas it has a variable role in 
tanspot development in bread wheat and is not a significant factor for tanspot development in durum 
wheat {11204}.. 
In Kulm/Erik, toxin response accounted for 24% of the variation in disease response, which was affected 
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by 4-5 genes {10030}. 
Ptr ToxA is functionally identical to S. nodorum ToxA but has two predicted amino acid differences 
{10459}. See Reaction to Phaeosphaeria nodorum. 
Australian cultivars with tsn1 and Tsn1 are listed in {10540}. 

TSN2 

Tsn2 {10344}.  Conditions resistance to race 3 {10344}  3BL {10344}.  sutv:  LDN(DIC-3B) {10344}.  
tv: T. turgidum no. 283, PI 352519 {10344}; T. dicoccoides Israel-A {10344}.  ma:  Identified as a QTL 
in region Xgwm285-3B – Xwmc366.2-3B (R2=91%) {10344};  Also classified as a single gene: Xgwm285-
3B – 2.1 cM – tsn2 –.2 cM – Xwmc366.2-3B {10344}.  

3.23.2. Insensitivity to tan spot toxin (chlorosis) 

TSC1 

Tsc1 {344}.  Sensitivity to Ptr ToxC {344}.  1AS {344}.  v:  6B365 {0315};  Louise {11751}; LMPG-6 
{11751};  Opata 85 {344}.  v2:  Kulm Tsn1 {0315};  Trenton Tsn1 {0315}.  ma:  Gli-A1 – 5.7 cM – 
Tsc1 – 11.7 cM – XksuD14-1A{0315}; Mapped to a 2.4 cM region spanning184 kb (CS RefSeq 2.1) in 
the Penawawa / PI626523 RIL population {11751}.  
According to {10376} the same allele, presumably tsc1, conferred resistance to chlorosis induced by 
races 1 and 3 in cultivars Erik, Hadden, Red Chief, Glenlea and 86ISMN2137 in crosses with 6B-365. 
tsc1 {344}.  Insensitivity is recessive. QTsc.ndsu-1A {9924}.  v:  Chinese Spring {11751}; Katepwa 
{315};  Opata 85 {344};  Penawawa {11751}; PI 62673 {11751}; Synthetic W-7984 {315}.  

TSC2 

Tsc2.  Sensitive to Ptr ToxB {10015}.  2BS {10015}.  bin:  2BS3-0.84-1.00.  v:  Aronde {11750}; 
Katepwa {10871};  Maris Dove {11750};  Synthetic W-7984 {10015};  Thatcher {11750}.  tv:  Altar 84 
{11750}. 
tv:  Altar 84 {11750}. 
 
tsc2.  Insensitivity allele {10015}  v:  Chinese Spring {11750}; Lynx {11750}. Opata 85;  Salamouni 
{10871}.  tv:  Altar 84 {10871;  Langdon {11750}.  ma:  Xmag681-2B/XTC339813 – 2.7 cM – 
Tsc/XBE444541 – 0.6 cM – XBE517745{10871};  An XBE444541 EST-STS co-segregating marker for 
Tsc2 was developed and lines with tsc2 produced a 505 bp fragment whereas those with Tsc2 produced a 
340 bp band {10871}.  Mapped to a 1.921 Mb region (23.106 – 25.027 Mb) {11750} 

QTL  

QTsc.ndsu-1A {9924}.  Resistance is likely recessive {344}  [Tsc1 {344}].  1AS {344}.  v:  Synthetic 
W7984 {344}.  ma:  Association with Gli-A1 {0264}, {0040}, {344}.  
QTsc.ndsu-1A, or a closely associated gene, confers insensitivity to Ptr ToxC, see {0315}. Inoculation 
with purified toxin Ptr ToxC was used to map this locus. QTsc.ndsu-1A confers resistance in both 
seedlings and adult plants. 
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QTsc.ndsu-4A.  4AL {0090}.  v:  Opata 85/Synthetic W-7984 (ITMI) RI mapping population; resistance 
was contributed by W-7984 {0090};  In W-7976/Trenton resistance was contributed by W-7976 {0264}.  
ma:  Association with Xksu916(Oxo2)-4A and Xksu915(14-3-3a)-4A {0090};  In W-7976/Trenton there 
was association with Xwg622-4A {0264};  Minor QTLs in chromosomes 1AL, 7DS, 5AL and 3BL were 
associated with resistance in adult plants {0264}.  

QTL 

'ITMI population': In addition to tsc2 which accounted for 69% of the phenotypic variation in response 
to race 5, a QTL in chromosome 4AL (Xksu916(Oxo)-4AS, W-7948) accounted for 20% of the 
phenotypic variation {10015}.  

Salamouni / Katepwa: RIL population: variation at the Tsc2 locus explained 54% of the variation in 
response to race DW5 {10871}. 

QTL analyses of durum crosses infected with various isolates of race 4 (lacking in Ptr Tox 1, 2 and 3) 
detected QTL on chromosomes 1A (2 QTL), 4B (3 QTL) and 5A (1 QTL) {11649}. 

 

3.23.2. Insensitivity to tan spot toxin (chlorosis)TSR1 

Tsr1. [tsn1 See: Insensitivity to tanspot toxin]. Resistance is recessive.  5BL.  v:  Genetic stocks that do 
not have Tsn1 and other genes that respond to toxins produced by the pathogen.  
The gene in Erik was allellic with resistance in a diverse set of genotypes including spelt and durum 
derivatives {10557}. 

TSR2 

Tsr2.  Resistance is recessive. Confers resistance to race 3 {10344}. [tsn2 {10344}].  3BL {10344}. sutv:  
LDN (DIC-3B) {10344}.  tv:  T. dicoccoides Israel-A {10344}.  tv2:  T. turgidum no. 283, PI 352519 
Tsr5 {10344}.  ma:  Identified as a QTL in region Xgwm285-3B – Xwmc366.2-3B (R2 = 91%) {10344};  
also classified as a single gene: Xgwm285-3B – 2.1 cM – tsr2 – 15.2 cM – Xwmc366.2-3B {10344}.  

TSR3 

Tsr3. [tsn3 {10394}].  3D {10394}. 3DS {10419}.  v:  XX41 = [Langdon/Ae. tauschii CI 00017] 
{10394};  XX45 {10394};  XX110 {10394}.  dv:  Ae. tauschii CI 00017 {10394}.  ma:  Xgwm2a – tsn3, 
15.3 cM, 14.4 cM and 9.5 cM in CS/XX41, CS/XX45 and CS/XX110, respectively {10419}.  
Resistances in XX41 and XX110 were recessive whereas that in XX45 was dominant - all three were 
hemizygous-effective {10394}. The genes were given different temporary designations {10394, 10419}, 
but all will be considered to have a common gene until they are shown to be different. 

TSR4 
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Tsr4.  Resistance is recessive. Resistance to race 1 (culture ASC1a) {10350}. [tsn4 {10350}].  3A 
{10350}.  v:  Salamouni {10350}.  

TSR5 

Tsr5. [tsn {10509}].  3BL {10509}.  tv2:  T. turgidum no. 283, PI 352519 Tsr2 {10509}.  ma:  Tsr5 – 8.3 
cM – Xgwm285-3B – 2.7 cM – Tsr2 {10509}.  

TSR6 

Tsr6 {10668}.  Resistance is recessive.  2BS {10668}.  v:  ND-735 {10668}.  ma:  Xwmc382-2B – 15.3 
cM – wPt-0289 – 4.6 cM – Tsr6 – 18.7 cM – Xwmc-2B {10668}. According to {10668} Tsr6 should be 
identical to tsc2 (see Insensitivity to tan spot toxin (chlorosis)). 

TSR7  

Tsr7 {11363}.  Dominant.  QTs.zhl-3B {11362}.  3BL {11362, 11363}.  v:  Br34 {11363}; Penawawa 
{11363}.  sutv:  Linked STARP markers were developed {11363}.  ma:  Linked STARP markers were 
developed {11363}.  
Tsr7 conferred resistance to race 1 (isolate Pti2), race 2 (isolate 86-124), race 3 (isolate 331-9), and race 5 
(isolate DW5) {11362}. 

Temporary designations 

TsrAri {10765}.  Recessive  3A {10765}.  v:  Arina {10765};  Heines VII {10765};  Zenith {10765}.  

TsrHar {10590}.  3B {10590}.  v:  Dashen {10590};  HAR 604 {10590};  HAR 2562 {10590}.  
Effective against races ASC1a (race 1) and DW-16 {10590}. 

QTL 

Louise / Penawawa: RIL population: QTs.zhl-1A, located at interval 0-6.0 cM and likely Tsc1; QTs.zhl-
2D, located at 144.0-152.0 cM; QTs.zhl-3B, located at 72.0-78.0; and QTs.zhl-5A located at 154-160 cM 
{11362}. 

A QTL analysis of 4 durum crosses identified 12 QTL on chromosomes 1B, 2B (2), 3A (3), 5A (5) and 
7A {11481}. 

3.24. Reaction to Rhizoctonia spp. 

Cause of Rhizoctonia root rot. 

ROT1 

Rot1 {10761}.  v:  Scarlet-Rz1 {10761}.  
Scarlet-Rz1 was produced by mutagenesis {10761}. 
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3.25. Reaction to Sitobion avenae 

English grain aphid. 

SA1 

Sa1 {10877}.  [RA-1 {10877}].  6AL {10877}.  tv:  C273 {10877}.  ma:  Xwmc179-6A – 3.37 cM – Sa1 
– 4.73 cM – Xwmc580-6A {10877}.  

3.26. Reaction to Sitodiplosis mosellana (Gehin) 

Insect pest: Orange blossum wheat midge, Wheat midge. This pest should not be confused with 
Contarinia tritici, the yellow blossom wheat midge. 

SM1 

Sm1 {218}.  2B {218}.  v:  Augusta {218, 11137};  Blueboy {218};  Caldwell {218};  CDC Landmark 
{11579};  Clark {218};  FL302 {218};  Glencross {11044};  Goodeye {11044};  Howell {218};  Knox 
62 {218};  Mono {218};  Paragon {11579};  Robigus{11137};  Seneca {218};  Skalmeje {11137}.  Unity 
{11579}.  ma:  Linked to a SCAR marker{223}; Sm1 was mapped to a 2.5 cM interval on chromosome 
2BS flanked proximally by AFLP-derived SCAR marker WM1 and distally by SSR Xgwm210-
2B{ 10291};  A combination of 2BS-5344126_kwm707 and 2BS-6229175_kwm693 appeared to be 
predictive of Sm1 but there was variation between sources {11137}. KASP marker developed in {11579}.  
c:  Gene candidate with NB-ARC-LRR-kinase-MSP structure {11579}. 

QTL 

Henong 215 (R) / Yanyou (S) and 6218 (S) / Jimai 24 (R): selected RIL populations: Several QTL 
identified: QSm.hbau-4A.2 with LOD scores 5.58 – 29.22 and PVE 24.4 – 44.8% were mapped to a 4.9 
Mb interval; nearest markers AX-109543456, AX-108942696 and AX-110928325 {11425}.  

 

Reeder I/Conan: RIL population: QSm.mst-1A, flanked by Xwmc59-1A and Xbarc1022-1A was the most 
effective and constant QTL for reduced larval infection over two years (R2=0.17 and 0.34) {10841}. RILs 
with this QTL in three genetic backgrounds had reduced infestations of 42% {10841}. 

3.27. Reaction to Schizaphis graminum Rond. (Toxoptera graminum Rond.) 

Insect pest: Greenbug 

GB1 

Gb1 {1514}.  Recessive.  [gb1 {222}].  1AS {11731}.  CI 9058 {222};  Dickinson Selection 28A {222}.  
Located in the region 13.3 – 14.2 Mb {11731}. 

GB2 
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Gb2 {1514, 1313}.  Derived from Secale cereale. 1A {554} = T1AL.1R#2S {389}.  v:  Amigo CI 17609 
{1313};  Century {0008};  TAM107 {0008};  TAM200 {0008};  TAM202 {8}.  ma:  2.7 cM proximal to 
Sec1 in 1RS, but co-segregated with Sec-1P{10167};  Within the 1R segment: Gb6 – 15.8 cM – Gb2 – 
11.4 cM – XIA294 {10764}.  

GB3 

Gb3 {1514, 624}.  Resistance in Largo and derivatives was controlled by multiallelic complementary 
genes {783}. Gb3 was postulated to be one of the loci concerned.  7D {554}. 7DL {0319}.  bin:  7DL3 
0.82-1.00.  v:  Largo CI 17895 {622};  TAM110 {0319};  TAM112 {194, 10764};  TXGBE373 {0319}.  
al:  Insave rye.  tv: Ae. tauschii PI268210 {10907}.  ma:  Completely associated with 2AFLP markers 
{0319}. These were also present in germplasm line KS89WGRC4, implying the likely presence of Gb3 or 
a closely linked resistance gene {0319}; Xgwm037-7D – 0.4 cM – Gb3/Xwmc634-7D – 0.8 cM – 
Xbarc76-7D {10169}; H1067J6-R – 0.7 cM – Gb3 – 0.4 cM – H1009B3-F{10907}. Gb3 – Gb8 15+-1.35 
cM {11378}. 

GB4 

Gb4 {523, 1514}.  7DL {10267}.  v:  CI 17959 {903}.  
Gb4 is either closely linked or allelic to Gb3 {10267}. 

GB5 

Gb5 {1515, 1514}.  7S#1L(7A) {391}; T7S#1L.7S#1S-7S {389}.  tr:  CI 17883;  CI 17884;  CI 17885 
{1515}; UCRBW98-1 and UCRBW98-2 (PI 603919 has a shortened alien segment {11515}.  ma:  KASP 
markers are reported in {11516}.  

GB6 

Gb6.  Derived from Secale cereale.  1A = T1AL.1R#2S {1151}.  v:  GRS1201{1152};  GRS1202 
{1152};  GRS1203 {1152};  GRS1204 {1152};  GRS1205 {1152};  N96L9970 {10764};  see also Pm17 
(Reaction to Blumeria graminis).  su:  Tx4386 {1150}.  ad:  Tx4333 {1150}.  al:  Insave rye.  ma:  
Within the 1R segment: Gb6 – 15.8 cM – Gb2 – 11.4 cM – XIA294 {10764}.  

GB7 

Gb7 {10169}.  7DL {10169}.  v:  Synthetic W7984 {10169}.  tv:  Ae. tauschii TA1651 {10169}.  ma:  
Xwg420-7D – 2.1 cM – Gb7 – 13.4 cM – Xwmc671-7D {10169}. KASP markers developed {M23026};  
KASP markers developed {11633}. 

GB8 

Gb8 {11378}.  [Gb595379-1 {11378}.].  7DL  {11378}.  bin:  7DL3-0.82-1.00.  v:  PI 595379-1 
{11378}.  ma:  Xbarc11-7D – 10.41 cM – Gb8/Xstars508 (596.4 Mb) – 7.4 cM – Xwmc824-7D – 4.8 cM 
– Xgwm428-7D {11378}. Gb3 – Gb8 15+-1.35 cM {11378}. 
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GB9 

Gb9 {11726}.  Gb76364{11726}.  7DL {11726}.  v:  PI 703387, CWI 76364 {11726}.  dv:  Ae. tauschii 
Wx1027 (CIMMYT) {11726}.  ma:  Mapped to a 0.6 Mb interval - Stars-KASP872 (599.8 Mb; CS 
RefSeq 2.1) 0.6 cM – Gb9 – 0.5 cM and Stars-KASP881 (600.5 Mb) {11726}. Gb9 – Gb3, 14.9 cM 
{11726}. Gb9 – Gb8, 16.3 cM {11726}. 

Temporary designations  

Gba {10267}.  7DL {10267}.  v:  TA4152L94 = CETA/Ae. tauschii Wx1027 {10267}.  ma:  Xwmc671-
7D – 34.3 cM – Gba – 20.7 cM – Xbarc53-7D {10267}.  

Gbb {10267}.  7DL {10267}.   v:  TA452L24 = CROC 1/Ae. tauschii Wx224 {10267}.  ma:  Xwmc671-
7D – 5.4 cM – Gbb – 20.2 cM – Xbarc53-7D {10267}.  

Gbc {10267}.  7DL {10267}.  v:  TA4063.1 = 68111/Rugby//Ward//Ae. tauschii TA2477 {10289}.  ma:  
Xgwm671-7D – 13.7 cM – Gbc – 17.9 cM – Xgdm150-7D {10267}.  

Gbd {10267}.  v:  TA4064.1 = Altar 84/Ae. tauschii TA2841 {10267}.  ma:  Xgwm671-7D – 7.9 cM – 
Gbd – 1.9 cM – Xwmc157-7D {10267}.  

Gbx1 {10267}.  [Gbx {10267}].  7DL {10267}.  v:  KS89WGRC4 = Wichita/TA1695//2*Wichita 
{10267}.  dv:  Ae. Tauschii TA1695 {10267}.  ma:  Xwmc157-7D – 2.7 cM – Xgdm150-7D {10267}.  

Gbx2 {10267}.  [Gbx {10267}].  v:  W7984 {10267}.  ma:  Gbx2 was located 8.8 cM from Gb3 
{10267}.  

Gby {10192}.  7A {10192}.  v:  Sando’s Selection 4040 {10192}.  ma:  Xpsr119-7A/Xbcd98-7A – 5.8 
cM – Gby  – 3.8 cM – Xpr1B-7° {10192}.  

Gbz {10171}.  7DL {10171}.  v:  KSU97-85-3 {10171}.  tv:  Ae. tauschii TA1675 {10171}.  ma:  
Xgdm46-7DL – 9.5 cM – Xwmc157-7D/Gb3/Gbz – 5.1 cM – Xbarc53-7D {10171}; Xwmc671-7D – 3.9 
cM – Gbz/Xwmc157-7D – 5.1 cM – Xbarc53 {10267}.  

QTL 

QGb.unlp.6A for antixenosis was associated with Xgwm1009-6A and Xgwm1185-6A in a 
CS/CS(Synthetic 6A) DH population {10216}.  

Antibiosis was associated with several markers, including Rc3 (7DS) in chromosome 7D {10167}. 

3.28. Reaction to Soil-Borne Cereal Mosaic Virus 

Syn.: Soilborne wheat mosaic. Vectored to the roots by the fungus, Polymyxa graminis 

SBM1 
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Sbm1 {10614}.  [SbmCz1 {10132}].  5DL {10614}.  v:  Cadenza {10132};  Claire {11138};  Moulin 
{11138};  Tonic {10614};  Tremie {11138}.  v2:  Cadenza Sbm2 {11500}.  ma:  Xbarc110-5D – 14.7 
cM – Sbm1 – 2.1 cM – Xwmc765-5D – 3.1 cM – Xbarc144-5D/Xwmc443-5D/RRES01-5D {10614};  
Caps marker RRESO1 was developed from an AFLP fragment{10614}; E37M49 – 9.0 cM – Sbm1 – 1.0 
cM – Xgwm469-5D – 2.0 cM – Xwmc765-5D. Resistant varieties carried 152 or 154 bp alleles at 
Xgwm469-5D {11138};  all susceptible genotypes had a null allele {11138}.  
Sbm1 was identified in a DH population of Avalon (S)/Cadenza (R) {10132}. 

SBM2 

Sbm2 {11500}.  2BS {11500}.  v:  Xi19 {11500}.  v2:  Cadenza Sbm1 {11500}. 

Temporary designations 

SbmTmr1 {10683}.  5D {10683}.  v:  TAM 107-R7 {10683}.  

Sbmwm1 {11435}.  v:  Heyne {11435}.  5D {11435}.  ma:  Xgwm272-5D – 20.2 cM – Sbwm1 – 2.2 cM 
– wsnp_CAP11_c209_198467 – 0.7 cM – wsnp_JD_c4438_5568170 – 8.7 cM – Xgwm469 {11435}. 
Sbm1 and Sbmwm1 are likely the same gene. 

SBWMV {10685}.  5D {10685}.  v:  KS96WGRC40 {10685}.  dv:  Ae. tauschii TA2397 {10685}.  ma:  
Xcfd010-5DL – 9.5 cM – SBWMV – 11.1 cM – Xbarc144-5D {10685}.  

QSbv.ksu-5D, (R2=0.38) was found in Karl 92*2/TA4152-4 {10273}; the resistance was contributed by 
Karl 92.  

3.29. Reaction to Tapesia yallundae. (Anomorph: Pseudocerosporella herpotrichoides 
(Fron) Deighton) 

Disease: eyespot, strawbreaker footrot. 

PCH1 

Pch1.  [Pch {261}].  7DL {708}, {1603}.  
7D {591, 592}.  s:  Courtot*/Roazon 7D {592}; Hobbit Sib*/VPM1 7D {591}.  v:  Ae ventricosa 
derivative {261};  Coda {10513};  H-93-70 {1521, 236};  Hyak {21};  Madsen {20};  Rendezvous 
{1603};  Roazon {591};  5L 219 {1521}.  
7A {0224}.  tv:  Five recombinant lines{0224}.  al:  Ae. ventricosa {261}.  ma:  Pch1 was linked to Ep-
D1 and mapped 2 cM from microsatellite marker XustSSR2001-7D {10070}; Ep-d1b was a more reliable 
marker than the STS for selecting Pch1 {10238};  Leonard et al. {10513} predicted that Ep-D1 might 
encode an oligopeptidase B, and by comparative genetics, developed primers to a wheat oligopeptidase B-
encoding wheat EST BU1003257. Complete linkage occurred for a derived STS marker Xorw1 and Pch1 
in a Coda/Brundage RIL population and the marker identified the presence or absence of Pch1 among 44 
wheat accessions {10513}. Pch1 is closely linked with Ep-V1 {973}. Delibes et al. {236} concluded that 
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Pch1 was not located in chromosome 7D whereas Law et al. {776} found that H-93-70 possessed a 
unique allele, Ep-D1b, in common with VPM1 and its derivatives. Eyespot resistance and Ep-A1b in 
chromosome 7A were genetically associated {704}. 

PCH2 

Pch2 {228}.  7A {704}. 7AL {228}, {229}.  s:  CS*/Cappelle Desprez 7A {704}, {228}.  v:  Cappelle 
Desprez {704}, {228}.  ma:  Xcdo347-7A (distal) – 11 cM – Pch2 – 18.8 cM – Xwg380-7A (proximal) 
{229}.  
According to {0380}, this gene is not effective at the adult plant stage. Instead, the adult resistance of 
Cappelle-Desprez was controlled by a gene on chromosome 5A with the possibility of two less effective 
genes on 1A and 2B. 

PCH3 

Pch3  {616}.  ad:  CS + 4V {1050}.  

Temporary designation 

PchDv {618}.  4VL {618}.  ad:  Wheat + 4V {618}.  su:  Wheat 4VL (4D), Yangmai 5 {618}.  ma:  
Distally located; Cent...Xcdo949-4V – 16 cM – PchDv – 17 cM – Xbcd588-4V {618}. 

QTL 

QPch.jic-5A {10771}.  bin:  5AL-6 0.68-0.78.  ma:  Closely associated with Xgwm639-5AL {10771}.  

 

3.30. Reaction to Tilletia caries (D.C.)Tul., T. foetida (Wallr.) Liro, T. 
controversaDisease: Bunt, dwarf smut, stinking smut. 

BT1 

Bt1.  [M1 {135}].  2B {1310}.  s:  CS*7/White Federation 38 {1304}.  v:  Albit {129};  Banner Berkeley 
{129};  Federation 41 {137};  Regal {129};  Sherman {137};  White Federation 38 {1166};  White 
Odessa {137}.  v2:  Columbia Bt6 {1005};  Hussar Bt2 {135};  Hyslop Bt4 {733};  Martin Bt7 {135};  
McDermid Bt4 {734};  Odessa Bt7 {137};  Tyee Bt4 {22}.  

BT2 

Bt2.  [H {129}].  v:  Canus {137};  Seln 1102 {11693};  Seln 2092 {11693};  Selection PS60-1-1075 
{551};  Selection 1403 {137}.  v2:  Hussar Bt1 {135}.  

BT3 

Bt3.  v:  Florence {202}, {203};  Ridit {1395}, {1000}, {152}.  
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BT4 

Bt4.  [T {136}].  1B {1274, 1285, 1005}.  v:  Bison {1285};  CI15588 {11693};  Kaw {1285};  Nebred 
{1285};  Omaha {1285};  Oveson {1235};  Tres {heterogeneous} {23};  Turkey 1558 {137};  Turkey 
2578 {137}.  v2:  Hyslop Bt1 {733};  McDermid Bt1 {734};  Oro Bt7 {137};  Turkey 3055 Bt7 {137};  
Tyee Bt1 {22}. Since Bt4 and Bt6 are very similar, as well as closely linked, only Turkey 3055 should be 
used as a definite source of Bt4, and Rio should be used as the source of Bt6  

BT5 

Bt5.  1B {1001}.  v:  Hohenheimer{397};  Selection R60-3432 {551}.  

BT6 

Bt6.  [R {1418}].  1B {1005}.  v:  Rio {1418};  Turkey 10095 & 10097 {53}.  v2:  Columbia Bt1 
{1005}.  
Since Bt4 and Bt6 are very similar, as well as closely linked, only Turkey 3055 should be used as a 
definite source of Bt4, and Rio should be used as the source of Bt6.  [T{136}]. 

BT7 

Bt7.  [M2 {1275}].  2D {1000}.  s:  CS*7/Cheyenne 2D {1000}.  v:  Baart {1275};  Cheyenne {1000};  
Federation {1275};  Gallipoli {1000};  Onas {1275};  Ranee {1000};  Selection 1833 {556}; Seln500-77 
{11693}.  v2:  CI 7090 Bt9 {1000};  Martin Bt1 {137};  Odessa Bt1 {137};  Oro Bt4 {1000};  Turkey 
3055 Bt4 {1000}.  

BT8 

Bt8 {1558}.  v:  HY476 {10181};  M822161 {11693};  PI 178210 {1558};  Yayla 305 {1558}.  

BT9 

Bt9 {1006}.  6DL {11299}.  v:  PI 166910 {1006};  PI 166921 {1006};  PI 167822 {1006};  PI 554099 
{11299};  Selection M69-2073 {551}; M90387 {11693}.  v2:  CI 7090 Bt7 {1000};  Jeff Bt10 {1436};  
PI 178383 Bt10 {1006};  Ranger Bt10 {1438}. 
Not clearly differentiated from Bt11 {11693}. 

BT10 

Bt10 {1004}.  [QCbt.spa-6D {M11298}].  6DS {10721}.  i:  BW553 = Neepawa*6//Red Bobs/PI 178383 
{10475}.  v:  AC2000 {10181};  AC Cadillac {10181};  AC Carma {10181};  AC Crystal {10181};  AC 
Foremost {10181};  AC Taber {10181};  AC Vista {10181};  Fairview {1183};  M822102 {11693};  PI 
116301 {1004};  PI 116306 {1004};  PI 554118 {11299};  Selection M69-2094 {551}.  v2:  Jeff Bt9 
{1436};  PI 178383 Bt9 {1000};  Ranger Bt9 {1438};  Others {128, 239}.  ma:  Bt10 was completely 
linked with a 590 bp fragment produced by UBC primer 196 {239};  RAPD – 1.5 cM – Bt10 {763}; 
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Bt10/FSD_RSA – 19.3 cM – Xgwm469-6D – 1.8 cM – Xwmc749-6D. The RAPD fragment was sequenced 
and converted to a diagnostic PCR marker for Bt10 in {0128}.  
Present in lines with SrCad {10733}. 

BT11 

Bt11 {10997}.  QBt.ifa-6DL {11693}.  3B {11297}; 6DL {11693}.  v:  M822123 = PI 554119 {10997, 
11693};  Elgin/PI 166910 {10997, 11693}.  ma:  May be associated with Xbarc180, Xwmc623, Xwmc808 
and Xgwm285 {11297};  Located between 492.6 and 495.2 Mbp, CS RefSeq 2.1 {11693}. 
Not clearly differentiated from Bt9 {11693}. 

BT12 

Bt12 {10997}.  [QBt.ifa-7DS {11469}].  7DS {11469}.  v:  PI 119333 {10997}.  ma:  Associated with 13 
markers in a distally located physical region of ~4.3 Mbp {11469}. Validated KASP markers were 
derived from IWB61302 and IWB50978 {11469}. Although appearing to be proximal to QDB.ui-7DS 
{11182} the genes were not clearly distinguished. 

BT13 

Bt13 {10997}.  v:  Thule III {10997};  PI 181463 {10997}.  

BT14 

Bt14 {10997}.  tv:  Doubbi CI 13711 {10997}.  

BT15 

Bt15 {10997}.  tv:  Carleton CI 12064 {10997}. 

Temporary desisgnation 

Btp {10997}.  v:  PI 173437 {10997}.  

QTL  

Blizard (R) / 8405-JC3C (S): DH population. Resistance and markers Xgwm374-1BS, Xgwm364-1BS 
and Xbarc128-1BS were within a 3.9 cM interval {10783}. 

Carberry / AC Cadillac: AC Cadillac contributed QTL QCbt.spa-6D (Bt10) on chromosome 6D 
(markers XwPt-1695, XwPt-672044, and XwPt-5114). Carberry contributed QCbt.spa-1B 
(XwPt743523), QCbt.spa-4B (XwPt 744434 – Xwmc617), QCbt.spa-4D (XwPt-9747), QCbt.spa-5B 
(XtPt-3719), and QCbt.spa-7D (Xwmc273-7D) {11298}.  
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Idaho 444 (R) / Rio Blanco S: RIL population: Three QTL for dwarf bunt resistance: QDB.ui-7DS (R2 = 
0.3-0.6), QDB.ui-1A (R2 = 0.11-0.15) and QDB.ui-2B (R2 = 0.06). Two PCR-based markers were 
developed for the wPt-2565 sequence on chromosome 7DS {11182}. 

IDO835 (R) / Moreland (S): DH population: Q.DB.ui-6DL (PVE 0.53, Bt9 region) and Q.DB.ui-7AL 
(PVE 0.38) {11400}. 

Trintella / Piko: DH population: One major gene in the chromosome 1BS centromere region, nearest 
marker Xgwm273-1B {11003}. Smaller QTL effects were detected on chromosomes 7A, 7B and 5B in 
different years. Additional QTL are listed in {18099}. 

3.31 Reaction to Tilletia indica Mitra 

Disease: Karnal bunt. 

KB1 

Kb1 {394}.  v:  Chris {394}.  v2:  CMH77.308 Kb2 {394}.  

KB2 

Kb2 {394}.  v:  PF7 113 {394}.  v  CMH77. 308 Kb1 {394};  Shanghai #8 Kb4 {394}.  

KB3 

Kb3 {394}.  v:  Amsel {394}.  

KB4 

Kb4 {394}.  v:  Shanghai #8 Kb2 {394}.  

KB5 

Kb5 {394}.  Recessive {394}  v2:  Pigeon Kb6 {394}.  

KB6 

Kb6 {394}.  Recessive {394}  v2:  Pigeon Kb5 {394}.  

QTL NEED TO SPECIFY GERMPLASM BELOW 

Qkb.cnl-3B {9956}.  ma:  Located in the interval XATPase-3B – Xcdo1164-3B.  

Qkb.cnl-5A.1 {9956}.  ma:  Located in the interval Xmwg2112-5A – Xcdo20-5A.  

Qkb.cnl-5A.2 {9956}.  ma:  Located in the interval Xabg391-5A – Xfba351-5A.  
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Qkb.ksu-4BL.1.  WL711/HD29 (R): RILs: R2 = 0.25, associated with Xgwm538-4B {10498}. 
WH542/W485 (R) RILs: R2 = 0.15, Xgwm6-4BL – Xwmc349-4BL interval {10499}.  

Qkb.ksu-5BL.1. WH542/HD29 (R): RILs: R2 = 0.19, Xgdm116-5BL – Xwmc235-5BL {10499}.  

Qkb.ksu-6BS.1. WH542/HD29 (R): RILs: R2 = 0.13, Xwmc105-6BS – Xgwm88-6BS {10499}.  

3.32. Reaction to Ustilago tritici (Pers.) Rostrup 

Disease: Loose smut. 

UT1 

Ut1 {1073}.  v:  Florence/Aurore {1073};  Renfrew {1073};  Red Bobs {1074}.  

UT2 

Ut2 {1073}.  v:  Kota {1073};  Little Club {1073}.  

UT3  

Ut3 {1074}.  v:  Carma {1074}.  

UT4 

Ut4 {1074}.  [QUt.spa-7B {11168}].  7B {11168}.  v:  9340-CP {11168};  Glenlea {11168};  TD1 
{11168};  Thatcher/Regent {1074}.  

UT5 

Ut5 {10940}.  [Ut-Fore {10940}, Ut-X {11164}].  5BL {10940}.  v:  Foremost {10940}.  ma: Xgpw5029 
– 2.8 cM – Ut5 – 1.3 cM – Xbarc232-5b {10940}. See Ut-x.  
Race T10 was used for analysis {10940}. 

UT6 

Ut6 {11169}.  [QUt.spa-5B {11168}].  5BL {11169}.  v:  AC Foremost {11169};   AC Karma {10040};  
AC Vista {11168};  Chinese Spring {11169};  Glenlea {11169};  HY320 {11169};   Oasis {11169}.  ma: 
Xgpw5029-5B – 2.8 cM – Ut6 – 2.8 cM – Xbarc232-5B {11169}.  

UT7 

Ut7 {11168}.  [QUt.spa.7A {11168}].  7A {11168}.  v:  SC8021V2 {11168}.  

UT8 

Ut8 {11168}.  [QUt.spa-3A {11168}].  3A {11168}.  v:  9340-SP {11168};   Glenlea {11168}.  
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UT9 

Ut9 {11168}.  [QUt.spa-6B {11168}].  6B {11168}.  v:  SC8021V2 {11168}.  

UT10 

Ut10 {11168}.  [QUt.sps-6D {11168}].  6D {11168}.  v:  SC80-21V2 {11168}.  

UT11 

Ut11 {11406}.  7BS {11406}.  v:  DH line TD14XDIA*B0075, CN 120264 {11406}; Sonop, TD-14 
{11406}.  ma:  Co-segregation with BS00022562_51, Excabibur_C3489_182 and 
Kukri_rep_c71778_644 at 0.43, 1.20 and 1.25 Mbp {11406}.  
Ut11 conferred resistance to race T2 but not T9 and T39; resistance to those races (and race T2) was 
conferred by QUt.mrc-5B {11406}. 

Temporary designations 

UtBW278 {11729}.  5BS {11729}.  v:  BW728 {11729}.  ma:  Mapped to a region close to Utd1 
{11729}. 
Identified in a BW278 / AC Foremost cross with a Ustiago teitici isolate virelent to AC Foremost 
{11729}. 

Utd1 {10684}.  5BS {10684}.  tv:  D93213 {10684};  P9163-BJ08*B {10684};  VIR 51658 {10684}. 
ma:  SCAR – 3.2 cM – Utd1 – 5.9 cM – Xgwm234-5B {10684}.  

Ut-x {11164}.  v:  Biggar BSR {11164}.  ma:  Xcrc4-2B – 14 cM – Ut-x – 10 cM – Xabc153-2B.2 
{11164}; Xcrc4-2B.2 (Syn. Xcrc4.2) is a SCAR.  
Resistance to race 19 was associated with chromosome 6A of Cadet, Kota, Thatcher and TD18 {0208}. In 
the case of Cadet, resistance was localized to 6AS {0208}. 

3.33. Reaction to Wheat Spindle Streak Mosaic Bymovirus (WSSMV) 

WSSMV is soil-borne and vectored by the fungus Polymxa graminis. This virus has some sequence 
similarity to Wheat Yellow Mosaic  virus {10285}. Wheat streak mosaic disease can also be caused by 
Triticum mosaic virus, which is also known as High Plains Wheat mosaic virus. Low rates of seed borne 
transmission of WSSMV are reported. 

WSS1 

Wss1 {10271}.  Derived from Haynaldia villosa.  T4VS.4DL {10271}. 4D(4DL.4VS) {10271}.  tr:  
NAU413 {10271}.  su:  Yangmai#5 4V(4D) {10271}. 
A number of secondary translocations were induced, the smallest of which was NAU421 (FL 0.78-1.00) 
{11488}.  

QTL  
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Geneva (R) / Augusta (S): 79% of the variation between these accessions was associated with markers 
Xbcd1095-2D and Xcdo373-2D located 12.4 cM apart in chromosome 2DL {0131}.  

3.34. Reaction to   Mosaic Virus 

Vectored by wheat curl mites, Eriophyes tulipae and E. tosichella. See: Resistance to colonization by 
Eriophyes tulipae. According to {10226} WSMV may also be see-borne. At least some sources of 
resistance to WSMV are also effective against Triticum mosaic virus. 

WSM1 

Wsm1 {379}, {440}.  Derived from Th. intermedium.  

4D = T4DL.4JSS {389}, {391};  T4DL.4DS-4JSS {10788}.  i:  Karl*4/CI 17884 = PI 583794 = 
KS93WGRC27 {440};  Line E*6/rec213 (Sr64, Wsm1) = GSTR 527 {11644, https://npgsweb.ars-
grin.gov/gringlobal/accessiondetail?id=2158211}.  v:  CA74 {10971};  CI 17766 = B-6-37-1 {1543}, 
{800}, {391};  CI 17884 {391};  S90H445 {391};  KS90H450 {391};  CI 17883 {389};  Mace PI 651043 
{11006, 11179, 11643}; KS03HW12 {11006};  KS08WGGRC50 {10788}.  ad:  CI 17881 {391};  CI 
17886 {391}.  su:  CI 15092 {391};  CI 17882 {391}; CI 17885 {391}.  ma:  Wsm1 co-segregated with a 
STS amplified by the primer set STSJ15 {1456};  KASP markers developed in {11643}. 
Wsm1 is located in 4JSS (formerly 4Ai#2S). CI 17882, CI 17884, CI 17885 and KS90H445 also carry a 
7S Ae. speltoides chromosome substituting for 7A (See Reaction to Schizaphis graminum). 
Wsm1 also confers resistance to Triticum Mosaic Virus {10788}. Wsm1 confers resistance at 
temperatures below 19C {11179}. 

WSM2 

Wsm2 {10898, 10802}.  3BS {10802}.  v:  Clara CL PI 1665948 {11329};  CO960293-2 {10802};  
Oakley CL PI 670190 {11329};  RonL {10898};  Snowmass {10802}.  ma:  Wsm2 – 5.2 cM – XSTS3B-
55 {10802}; Xbarc102-3B – 1.6 cM – Wsm2 {10802}; Xgwm389-3B – 30.8 cM – Wsm2 – 45.2 cM – 
Xgwm566-3B {10898}; Xbarc87-3B – 4.4 cM – Wsm2 – 3.9 cM – Xbarc102-3B {10982};  Eight SNP 
markers were mapped within 1 cM of Wsm2 {11329}. KASP markers were developed from some of these 
SNP {11330}; Mapped to a 4.0 Mb region in distal arm 3BS carrying 142 candidate genes, six of which 
were differentially expressed in Snowmass relative to susceptible Antero {11654}. 

Wsm2 confers resistance at temperatures below 19C {10802}. Allele Xbarc102-3B219 was the best 
predictor for Wsm2 {10982}. 

WSM3 

Wsm3 {10775}.  7B {10775}. 7B (7BS.7S#3L) {10775}. TBS.7S#3L {10775}.  v:  KS12WGGRC59 
TA5624 {10775}.  
Wsm3 was also effective against Triticum mosaic virus at 18C {10775}. 

For a review of WSMV see {11656}. 

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fnpgsweb.ars-grin.gov%2Fgringlobal%2Faccessiondetail%3Fid%3D2158211&data=05%7C01%7C%7C3850ae5f8f26495a057c08db878eada2%7Ced5b36e701ee4ebc867ee03cfa0d4697%7C0%7C0%7C638252819094075784%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=%2FAU3NXpcCy3PqbcYPGwNznBE9vtNmFEN7db%2Bwkl7UPA%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fnpgsweb.ars-grin.gov%2Fgringlobal%2Faccessiondetail%3Fid%3D2158211&data=05%7C01%7C%7C3850ae5f8f26495a057c08db878eada2%7Ced5b36e701ee4ebc867ee03cfa0d4697%7C0%7C0%7C638252819094075784%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=%2FAU3NXpcCy3PqbcYPGwNznBE9vtNmFEN7db%2Bwkl7UPA%3D&reserved=0
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3.35. Reaction to Xanthomonas campestris pv. undulosa 

Disease: Bacterial leaf streak 

BLS1 

Bls1 {244}.  v2:  Pavon Bls2 {244};  Mochis T88 Bls3 Bls4 {244};  Angostura F88 Bls5 {244}.  

Bls2 {244}.  v2:  Pavon Bls1 {244}.  

Bls3 {244}.  v2:  Mochis T88 Bls1 Bls 4{ 244}.  

Bls4 {244}.  v2:  Mochis T88 Bls1 Bls3 {244}.  

Bls5 {244}.  v2:  Turnco F88 {244};  Angostura F88 Bls1 {244}.  

bls1 bls2 bls3 bls4 bls5: Alondra {244}. 

3.36. Resistance to Colonization by Eriophyes tulipae (Aceria tulipae)Mite pest: Wheat 
curl mite. 
Eriophyes tulipae is the vector of wheat streak mosaic virus (WSMV) and the wheat spot mosaic agent 
(WSpM). 

CMC1 

Cmc1 {1467}.  6DS {1576}.  i:  Norsa*5/Cmc1 {10166}.  v:  Ae. squarrosa CI4/Novamichurinka (= AC 
PGR 16635) {1467};  Norstar derivative {222}.  

CMC2 

Cmc2 {1573}.  Derived from Th. elongatum.  6A = T6AS.6Ae#2S {389}. 5B = T5BL.6Ae#2S {389}. 6D 
{1575} = T6DL.6Ae#2S {389}, {1575}.  i:  Norstar*5/Cmc2 {10166}.  v:  875-94-2 {389}.  tr:  Rescue 
Derivative {1575}.  su:  Cadet 6Ae#2(6A) {1575};  Cadet 6Ae#2(6D) {1574};  Rescue 6Ae#2(6A) 
{1574};  Rescue 6Ae#2(6B) {1574};  Rescue 6Ae#2 (6D). ad:  Cadet + mono-6Ae#2 {1574};  Rescue + 
6Ae#2 {1574}.  

CMC3 

Cmc3 {222}.  Derived from Secale cereale.  1A = 1AL.1RS.  i:  Norstar*5/Cmc3 {10166}. Need to 
confirm relationship of 1RS segment in Amigo and Salmon as this NIL was derived from KS80H4200 a 
Chinese Spring Salmon line {10166}.  v:  Amigo; TAM107 {222}.  v2:  KS96GRC40 Cmc4 {222}.  ma:  
Wheat lines with the 1RS segment and hence Cmc3 can be selected with the rye-specific SSR Xscm09-1R 
{222};  

CMC4 
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Cmc4 {222}.  6DS {222}.  v2:  KS96WRC40 Cmc3 {222}.  v:  TAM112 {11612}; TAM115 {11612}; 
TAM204 {11612}.  dv:  Ae. tauschii accession {222}; Ae. tauschii TA1618 (11612}.  ma:  XksuG8-6D – 
6.4 cM – Cmc4 – 4.1 cM – Xgdm141-6D {222}.   

3.37. Reaction to Wheat Yellow Mosaic Virus 

WYMV is soil-borne and vectored by the fungus Polymixa graminis. This virus has some sequence 
similarity to Wheat Spindle Streak Mosaic {10258}, another bymovirus. 

Temporary designations 

YmIb {10750}.  2DL {10750}.  v:  Ibis {10750};  Jagger {10750};  KS 831957 {10750};  Madsen 
{10750};  Yumechikara {10750}.  ma:  Xwmc181-2D – 12.4 cM – YmIb – 2.0 cM – Xcfd16-2D – 2.0 cM 
– Xwmc41-2D – 3.1 cM – Xcfd168-2D {10750}.  
The relationship of YmIb to a previously mapped gene in 2DL for resistance to WYMV and WSSMV in 
Yangfu 9311 {10258} and a Geneva derivative {0131} was not established. 

YmYF {10258}.  2DL {10258}.  v:  Yangfu 931 {10258}.  ma:  Xpsp3039-2D/Xwmc181-2D – 0.7 cM – 
Xwmc41-3D – 8.1 cM – Xgwm349-2D {10258}.  

QYm.nau-2D {11186}.  Q.Ymym {11660}.  2DL {11186}.  bin:  2DL9-0.76-1.00.  v:  Fielder {11645};  
Yining Xiaomai {11186}.  ma:  Xwmc41-2D – 3.7 cM – 2SNP86.2 – 0.4 cM – QYm.nau-2D – 1.0 cM – 
2EST784 {11186}.  

According to {11645} QYm.nau-2D is a natural alien translocation from an Aegilops species and several 
subsequent wheat haplotypes arose from rare recombination events. This QTL is present in a wide range 
of cultivars from Europe, USA, Japan, and China {11645}. 

QTL 

Xifeng(R) / Zhen 9523(S): RIL population: Three QTLs, Qym.njuy5A.1 (R2 = 0.26-0.54), Ym.njau-3B.1 
(R2 = 0.03-0.01) and QYm.njau-7B.1 (R2 = 0.03-0.05 in some trials). The chromosome 5A gene was 
closely associated with Xwmc415.1, CINAU152 and CINAU153 and was phenotyped as a single 
Mendelian gene {11073}. 
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