Query (optional)   in Class  

GrainGenes Reference Report: PBR-143-2

[Submit comment/correction]

Reference
PBR-143-2
Title
Meta-analysis of the genetics of resistance to Fusarium head blight and deoxynivalenol accumulation in barley and considerations for breeding
Journal
Plant Breeding
Year
2023
Volume
143
Pages
2-25
Author
Sallam AH
[ Show all 7 ]
Abstract
Fusarium head blight (FHB) or scab is a devastating disease of barley that severely reduces the yield and quality of the grain. Additionally, mycotoxins produced by the causal Fusarium species can contaminate harvested grain, resulting in food safety concerns and further economic losses. In the Upper Midwest region of the United States, Fusarium graminearum is the primary causal agent, and deoxynivalenol (DON) is the main mycotoxin associated with Fusarium infection. Deployment of resistant cultivars is an important component of an integrated strategy to manage this disease. Unfortunately, few good sources of FHB resistance have been identified from the evaluation of large collections of Hordeum germplasm. Over the past 25 years, many barley mapping populations have been developed with selected resistance sources to identify the number, chromosomal position and allelic effect of quantitative trait loci (QTL) contributing to FHB resistance and DON accumulation. To consolidate the genetic data generated from 14 mapping studies that included 22 bi- or tri-parental mapping populations and three genome-wide association (GWAS) mapping panels, a consensus map was constructed that includes 4145 SNP, SSR, RFLP and AFLP markers. A meta-analysis based on this consensus map revealed 96 QTL for FHB resistance and 57 for DON accumulation scattered across the barley genome. Many of the QTL explained a low percentage (<10%) of variation for the traits and were often found significant in only one or a few environments in multi-year/multi-location field trials. Moreover, many of the FHB/DON QTL mapped to chromosomal positions coincided with various agro-morphological traits that could influence the level of disease (e.g. heading date, height, spike density, and spike angle), raising the important question of whether the former are true resistance factors or are simply the result of pleiotropy with the latter. Considering the magnitude of effect, consistency of detection across environments and independence from agro-morphological traits, only three of 96 QTL for FHB and five of 57 QTL for DON were considered priority targets for marker-assisted selection (MAS). In spite of the challenge for having a limited number of useful QTL for breeding, genomic selection holds promise for increasing the efficiency of developing FHB-resistant barley cultivars, an essential component of the overall management strategy for the disease.
External Databases
https://doi.org/10.1111/pbr.13121
Map Data
Barley, Consensus 2023, FHB
QTL
[ Hide all but 1 of 256 ]
MetaQ.FHB_1H_1
MetaQ.FHB_1H_2
MetaQ.FHB_1H_3
MetaQ.FHB_1H_4
MetaQ.FHB_1H_5
MetaQ.FHB_1H_6
MetaQ.FHB_1H_7
MetaQ.DON_1H_1
MetaQ.DON_1H_2
MetaQ.DON_1H_3
MetaQ.HD_1H_1
MetaQ.FHB_2H_1
MetaQ.FHB_2H_2
MetaQ.FHB_2H_3
MetaQ.FHB_2H_4
MetaQ.FHB_2H_5
MetaQ.FHB_2H_6
MetaQ.FHB_2H_7
MetaQ.FHB_2H_8
MetaQ.FHB_2H_9
MetaQ.FHB_2H_10
MetaQ.FHB_2H_11
MetaQ.FHB_2H_12
MetaQ.FHB_2H_14
MetaQ.FHB_2H_13
MetaQ.FHB_2H_15
MetaQ.FHB_2H_16
MetaQ.FHB_2H_17
MetaQ.FHB_2H_18
MetaQ.FHB_2H_19
MetaQ.FHB_2H_20
MetaQ.FHB_2H_21
MetaQ.FHB_2H_22
MetaQ.FHB_2H_23
MetaQ.FHB_2H_24
MetaQ.FHB_2H_25
MetaQ.FHB_2H_26
MetaQ.FHB_2H_27
MetaQ.FHB_2H_28
MetaQ.FHB_2H_29
MetaQ.FHB_2H_30
MetaQ.FHB_2H_31
MetaQ.FHB_2H_32
MetaQ.FHB_2H_33
MetaQ.FHB_2H_34
MetaQ.FHB_2H_35
MetaQ.FHB_2H_36
MetaQ.FHB_2H_37
MetaQ.FHB_2H_38
MetaQ.FHB_2H_39
MetaQ.FHB_2H_40
MetaQ.FHB_2H_41
MetaQ.FHB_2H_42
MetaQ.FHB_2H_43
MetaQ.DON_2H_1
MetaQ.DON_2H_2
MetaQ.DON_2H_3
MetaQ.DON_2H_4
MetaQ.DON_2H_5
MetaQ.DON_2H_6
MetaQ.DON_2H_7
MetaQ.DON_2H_8
MetaQ.DON_2H_9
MetaQ.DON_2H_14
MetaQ.DON_2H_13
MetaQ.DON_2H_10
MetaQ.DON_2H_11
MetaQ.DON_2H_12
MetaQ.DON_2H_15
MetaQ.DON_2H_16
MetaQ.DON_2H_17
MetaQ.DON_2H_18
MetaQ.DON_2H_19
MetaQ.DON_2H_20
MetaQ.DON_2H_21
MetaQ.DON_2H_22
MetaQ.DON_2H_23
MetaQ.DON_2H_24
MetaQ.DON_2H_25
MetaQ.DON_2H_26
MetaQ.DON_2H_27
MetaQ.HD_2H_1
MetaQ.HD_2H_2
MetaQ.HD_2H_3
MetaQ.HD_2H_4
MetaQ.HD_2H_5
MetaQ.HD_2H_6
MetaQ.HD_2H_7
MetaQ.HD_2H_8
MetaQ.HD_2H_9
MetaQ.HD_2H_10
MetaQ.HD_2H_11
MetaQ.HD_2H_12
MetaQ.HD_2H_13
MetaQ.HD_2H_14
MetaQ.HD_2H_15
MetaQ.HD_2H_16
MetaQ.HD_2H_17
MetaQ.HD_2H_18
MetaQ.HD_2H_19
MetaQ.HD_2H_20
MetaQ.HD_2H_21
MetaQ.HD_2H_22
MetaQ.HD_2H_23
MetaQ.HD_2H_24
MetaQ.HT_2H_1
MetaQ.HT_2H_2
MetaQ.HT_2H_3
MetaQ.HT_2H_4
MetaQ.HT_2H_5
MetaQ.HT_2H_6
MetaQ.HT_2H_7
MetaQ.HT_2H_8
MetaQ.HT_2H_9
MetaQ.HT_2H_10
MetaQ.HT_2H_11
MetaQ.HT_2H_12
MetaQ.HT_2H_13
MetaQ.SD_2H_1
MetaQ.SA_2H_1
MetaQ.SA_2H_2
MetaQ.SA_2H_3
MetaQ.RNN_2H_1
MetaQ.KPS_2H_1
MetaQ.KPS_2H_2
MetaQ.KPS_2H_3
MetaQ.FHB_3H_1
MetaQ.FHB_3H_2
MetaQ.FHB_3H_3
MetaQ.FHB_3H_4
MetaQ.FHB_3H_5
MetaQ.FHB_3H_6
MetaQ.FHB_3H_7
MetaQ.FHB_3H_8
MetaQ.FHB_3H_9
MetaQ.DON_3H_1
MetaQ.DON_3H_2
MetaQ.DON_3H_3
MetaQ.DON_3H_4
MetaQ.DON_3H_5
MetaQ.DON_3H_6
MetaQ.DON_3H_7
MetaQ.HD_3H_1
MetaQ.HD_3H_2
MetaQ.HD_3H_3
MetaQ.HT_3H_1
MetaQ.HT_3H_2
MetaQ.HT_3H_3
MetaQ.HT_3H_4
MetaQ.HT_3H_5
MetaQ.HT_3H_6
MetaQ.HT_3H_7
MetaQ.HT_3H_8
MetaQ.KPS_3H_1
MetaQ.KPS_3H_2
MetaQ.KPS_3H_3
MetaQ.FHB_4H_1
MetaQ.FHB_4H_2
MetaQ.FHB_4H_3
MetaQ.FHB_4H_4
MetaQ.FHB_4H_5
MetaQ.FHB_4H_6
MetaQ.DON_4H_1
MetaQ.DON_4H_2
MetaQ.DON_4H_3
MetaQ.DON_4H_4
MetaQ.DON_4H_5
MetaQ.HD_4H_1
MetaQ.HT_4H_1
MetaQ.HT_4H_2
MetaQ.HT_4H_3
MetaQ.HT_4H_4
MetaQ.HT_4H_5
MetaQ.KPS_4H_1
MetaQ.KPS_4H_2
MetaQ.FHB_5H_1
MetaQ.FHB_5H_2
MetaQ.FHB_5H_3
MetaQ.FHB_5H_4
MetaQ.FHB_5H_5
MetaQ.FHB_5H_6
MetaQ.DON_5H_1
MetaQ.DON_5H_2
MetaQ.DON_5H_3
MetaQ.HD_5H_1
MetaQ.HD_5H_2
MetaQ.HD_5H_3
MetaQ.HD_5H_4
MetaQ.HD_5H_5
MetaQ.HT_5H_1
MetaQ.HT_5H_2
MetaQ.HT_5H_3
MetaQ.HT_5H_4
MetaQ.HT_5H_5
MetaQ.HT_5H_6
MetaQ.FHB_6H_1
MetaQ.FHB_6H_2
MetaQ.FHB_6H_3
MetaQ.FHB_6H_4
MetaQ.FHB_6H_5
MetaQ.FHB_6H_6
MetaQ.FHB_6H_7
MetaQ.FHB_6H_8
MetaQ.FHB_6H_9
MetaQ.FHB_6H_10
MetaQ.FHB_6H_11
MetaQ.FHB_6H_12
MetaQ.FHB_6H_13
MetaQ.FHB_6H_14
MetaQ.FHB_6H_15
MetaQ.DON_6H_1
MetaQ.DON_6H_2
MetaQ.DON_6H_3
MetaQ.DON_6H_4
MetaQ.DON_6H_5
MetaQ.DON_6H_6
MetaQ.HD_6H_1
MetaQ.HD_6H_2
MetaQ.HD_6H_3
MetaQ.HD_6H_4
MetaQ.HD_6H_5
MetaQ.HT_6H_1
MetaQ.HT_6H_2
MetaQ.HT_6H_3
MetaQ.FHB_7H_1
MetaQ.FHB_7H_2
MetaQ.FHB_7H_3
MetaQ.FHB_7H_4
MetaQ.FHB_7H_5
MetaQ.FHB_7H_6
MetaQ.FHB_7H_7
MetaQ.FHB_7H_8
MetaQ.FHB_7H_9
MetaQ.FHB_7H_10
MetaQ.DON_7H_1
MetaQ.DON_7H_2
MetaQ.DON_7H_3
MetaQ.DON_7H_4
MetaQ.DON_7H_5
MetaQ.DON_7H_6
MetaQ.HD_7H_1
MetaQ.HD_7H_2
MetaQ.HD_7H_3
MetaQ.HD_7H_4
MetaQ.HD_7H_5
MetaQ.HD_7H_6
MetaQ.HD_7H_7
MetaQ.HD_7H_8
MetaQ.HT_7H_1
MetaQ.HT_7H_2
MetaQ.HT_7H_3
MetaQ.HT_7H_4
MetaQ.HT_7H_5
MetaQ.HT_7H_6
MetaQ.HT_7H_7
MetaQ.SA_7H_1

GrainGenes is a product of the Agricultural Research Service of the US Department of Agriculture.